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A FEEDFORWARD COMPENSATION SCHEME
FOR PERFECT DECOUPLING
OF MEASURABLE INPUT FUNCTIONS

GIOVANNI MARRO AND LORENZO NTOGRAMATZIDIS

In this paper the exact decoupling problem of signals that are accessible for measurement
is investigated. Exploiting the tools and the procedures of the geometric approach, the
structure of a feedforward compensator is derived that, cascaded to a linear dynamical
system and taking the measurable signal as input, provides the control law that solves the
decoupling problem and ensures the internal stability of the overall system.

Keywords: geometric control theory, disturbance decoupling, measurable input functions,
model matching, unknown input observation
AMS Subject Classification: 93C35

1. INTRODUCTION

In recent years, much attention has been devoted to the localization and rejection
of input functions, which can be either disturbances or references. Necessary and
sufficient conditions for the solvability of the perfect decoupling of inaccessible signals
by state-feedback with stability were first presented by Basile and Marro in [2] and
proved by Schumacher in [9]. These conditions involve the relevant concept of self-
bounded controlled invariance, that has two important advantages. On the one
hand, it enables these conditions to be expressed in a simple and concise form. On
the other, self-bounded controlled invariant subspaces involve the minimum number
of fixed poles.

The measurable signal decoupling problem (MSDP) by state-feedback and alge-
braic feedforward was first presented by Bhattacharyya in [5] in strict structural
terms, and then extended by Basile, Marro and Piazzi in [4] in order to ensure in-
ternal stability by adding a suitable stabilizability condition, expressed in terms of
self-bounded controlled invariant subspaces. Hence, a pair of necessary and sufficient
conditions are obtained, that directly extend the ones concerning inaccessible input
functions.

In this paper, a full feedforward compensation scheme is proposed for the solution
of the MSDP. In fact, if the signal to be localized is accessible for measurement and
if the geometric conditions for its rejection are satisfied, perfect decoupling can
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be achieved by means of a suitable feedforward unit, that also guarantees internal
stability of the overall system. Hence, all the free poles of the internally stabilizable
controlled invariant subspace on which the trajectory lies are properly chosen in the
design of the feedforward unit, and the concept of self-boundedness is used to derive
a compensator of minimum dimension.

The procedure presented is based on a detailed analysis of the internal free and
fixed eigenstructure of a generic controlled invariant subspace. This approach is
alternative to that presented in [3, p.217], where the assignment of the internal
and external eigenvalues of a controlled invariant subspace is carried out through a
change of coordinates in the state and input space. Conversely, the method herein
presented is particularly convenient for computational purposes. In fact, it can be
easily exploited to derive new and efficient algorithms for the assignment of the free
internal and external eigenvalues of a controlled invariant subspace by means of a
state-feedback, as well as an alternative way to compute the invariant zeros of a
linear system.

Furthermore, in recent_years it has been pointed out that different tracking and
filtering problems can be recast as measurable signal decoupling problems. For
example, it is an easily established fact that the unknown input observation problem
is exactly dual to the MSDP (see to this purpose 7] and references therein). Hence,
the structure of the feedforward unit herein presented can be dualized so as to
obtain the matrices of an observer whose input is the sole informative output of
the given system and whose output is an estimation of a linear combination of the
state variables of the system, which is exact if the geometric conditions are satisfied.
These are in their turn dual to the ones presented in [4]. Moreover, in [8] it has
been shown that the feedforward model matching problem can be reformulated as
an extended MSDP. Hence, the signal to be decoupled is, in this case, a tracking
reference.

The paper is organized as follows: in the second section the statement of the
problem, its geometric solvability conditions and the motivations are presented, while
the third section deals with the assignment of the free poles of a generic controlled
invariant subspace by state-feedback. This is the preliminary result for the fourth
section, where the main theorem is presented, which provides a way of deriving the
matrices of the feedforward compensator if the conditions of exact solvability are met.
In the fifth section, these results are extended to the case of non-purely dynamical
systems. The last section presents all the steps for the design of the feedforward
unit as an algorithm, that can be used as a trace for software implementation.

Notation. Throughout this paper, the symbol R™ *™ denotes the space of n x m
real matrices; matrices and linear maps are denoted by slanted capitals. The image
and the null-space of matrix A are denoted by im A and ker A, whereas AT and At
denote the transpose and the Moore-Penrose pseudo-inverse of A respectively. The
symbol I, stands for the n x n identity matrix, while 0,, denotes the origin of the
vector space R".
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2. STATEMENT OF THE PROBLEM

Consider a linear, time-invariant continuous-time system ¥, described by

{ﬂﬂ:Aﬂ0+BMﬂ+Hdm £(0)=0 )
y(t) = Cz(t) @

where, for all £ >0, z(t) € R” denotes the state, u(t) € R™ the control input, d(t) € R®
a measurable input signal, y(t) € R” the output. Matrix A € R®*™ is assumed to be
stable!. Without loss of generality, assume that matrices B € R**™ and H € R***
have linearly independent columns and C € RP*™ has linearly independent rows.

The measurable signal decoupling problem (MSDP) herein considered is stated
as follows.

Problem 1. Find, if possible, a feasible control law u|jg ;) ensuring
y(t)=0 forall t>0 (2)

for any piecewise continuous and bounded d| [¢ 4..0) and such that the state-trajectory
is bounded.

The same problem can also be formulated for a discrete-time system

{mw+D=AdH+BMM+HﬂH z(0) =0
y(k) = Cz(k).

It is well-known (see for example [3, p.212]) that the necessary and sufficient condi-
tions for Problem 1 to be solvable can be expressed in geometric terms as

(C1) imHCV*+imB
(C2) Vi, is internally stabilizable

where V*:=maxV(A4,im B, ker C) denotes the largest (A, B)-controlled invariant
subspace contained in ker C, and Vp,:=V* N minS(A,ker C,im B + im H) is the
smallest (A, B)-controlled invariant subspace self-bounded with respect to ker C'
and containing im H.

The structural condition (C1) was first presented in [5], and then extended in [4]
to include the stability condition (C2), stated in terms of self-bounded controlled
invariant subspaces.

The aim of this paper is that of finding the exact structure of a feedforward
dynamical unit whose input is d and whose output is the control input u that solves
Problem 1 as shown in Figure 1. in terms of a quadruple of matrices (A, B, C., D,).

Notice that Problem 1 can be reformulated as follows.

1Note that this condition is necessary as long as a pure feedforward solution is sought. H'ow‘ever,
it can be easily relaxed to the stabilizability of the pair (4, B). In fact, in t_hls case, a preliminary
stabilizing state-feedback can be performed, and what follows will be applied to the system thus
obtained.
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Fig. 1. Feedforward measurable signal decoupling scheme.

Problem 2. Consider Figure 1, and let conditions (C1) and (C2) be satisfied. |
Find an LTI compensator ¥, such that (2) holds, and such that the overall system I\
is stable. I

3. SOME PRELIMINARY RESULTS

We begin by presenting an algorithm that, for a given h-dimensional (A, B)-controlled,
invariant subspace V, enables a matrix F € R"*™ to be found such that V is |
(A + BF)-invariant, while assigning all the free poles, i.e., all the internal eigenval-
ues of Ry, the reachable subspace on V, defined as the minimum (A + BF)-invariant
subspace containing YV Nim B (see (3, p.216] and [10, p. 84]).

Consider a basis matrix V of the controlled invariant subspace V. It is well-known
that two matrices X € R* ** and U € R™ X * exist such that

AV =V X +BU (3)
(see [3, p.207]). By definition of controlled invariance
AV CV+imB

(see [3, p.204]). As a result, it is found that AV Cim [V B ]. Hence, the set of
solutions of (3) can be parametrized as

[§]=[V B]"AV+K@® (4)

where K is a basis matrix of ker [ V B ], whose dimension is denoted by g, and ®
is an arbitrary g X h matrix. Now, notice that the following identities are equivalent:
1. VNimB =0,
2. ker[V B] =0n4m
3. Ry =0,.

Therefore, if Ry is zero, then the pair of matrices (X, U) satisfying (3) is unique.
Once two matrices X and U satisfying (3) are determined with (4), a matrix F' such
that U = — F'V can be computed. Hence equation (3) yields the identity

(A+BF)V=VX (5)
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which points out that the eigenvalues of X are the poles of V. If Ry is not zero,
then X and U can be expressed in a form that enables a matrix F' to be derived,
thus assigning all the free poles of V.

To this purpose, consider a basis matrix V' = [ R, V¢ ] of V adapted to Ry,
i.e., such that Ry is a basis matrix of Ry; denote by r the dimension of Ry. With
respect to this basis, the matrices in (4) can be partitioned as

X1 X2 N K
Xo1 X2 | =[Ry Ve B]" A[Ry Vo ]+ | K| [®1 @] (6)
Ui U, K

with Xll eR" xr, Xz] ER(h-r)XT, U1 eRmxr’ I(l GRrxg’(I,l cRY XT.
It is easy to show that K2=0: in fact, if one chooses ® =0, the pair (X,U)
solving (3) is such that X»; =0 since, if F is such that U= — FV, from

(4+BP) (R Ve]=[Re Ve]| 30 §2] ™
it follows that X1 =0, since Ry is (A + BF)-invariant. Any other choice of ® cannot
modify X in a way that X differs from zero because, since Ry is (4 + BF)-invariant
for any choice of ®, then X5, is zero for any choice of . Owing to the arbitrariness
of H this is possible only if K7 =0.

Since X2; =0, from (7) it follows that the eigenvalues of X;; are the internal
eigenvalues of Ry, while those of X5y are the fixed poles of V.

By suitably partitioning [Ry V. B]t A[ Ry V] likewise, equation (6) can be
written as

X X2 Zn Zn2 K,
O Xy | = O Zxn |+ (0] [ ®, P, ] . (8)
U U ¥ K3

Note that the eigenvalues of =55 cannot be modified by any choice of ®. The pair

(211, K1) is controllable, since the internal eigenvalues of Ry are all arbitrarily

assignable. If our aim is that of assigning the free poles of V, then ®2 can be taken

equal to zero, because its value does not modify the internal eigenstructure of Ry.
Matrix F' can be computed with the relation

F=-UWVTVv)'vT 9)

This choice, in fact, ensures that U = — F 'V, and yields an important property: with
respect to a basis adapted to V through its basis matrix V', F' assumes the structure

F=[-U 0]. ' (10)
Hence, F' does not modify any of the external eigenvalues of V.
4. MAIN RESULT
In this section, the geometric approach is applied to derive the linear dynamical

system X, that solves the decoupling problem with internal stability. To this purpose,
we introduce three important lemmas.
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Lemma 1. The subspace V,, is an (A, B)-controlled invariz;nt subspace contained |

in ker C. |
\

Lemma 2. Ry, the reachable set on V*, is a subspace of V,,.

Lemma 3. Letim H C V* +im B. Then
im H C Vy, + im B. (11)
These results are proved in [1] and [3]. Inclusion (11) ensures that two matrices
II; € R* X and IT, € R™ * ¢ exist such that

HZVH1+BH2

where V' is a basis matrix of Vp,, whose dimension is denoted by h. The matrices |
I, and II; project the subspace im H on V,, and im B respectively, and by virtue |

of (11), they can be computed by

[gl]z[v B]*H+Kv (12)
2
where K € R(® ™) X3 i5 a basis matrix of the subspace ker [ V' B ], whose dimen-
sion is denoted by g, and ¥ is an arbitrary g X s matrix.

Let Hy :=V II; and Hp := BIl,. It follows that

Hd(t) =Hvd(t) + Hpd(t) Vt>0

with Hy d(t) € V,, and Hpd(t) € im B for all t > 0. Since the pair of projecting
matrices (II;, II;) computed by means of (12) is parametrized on ker [ V' B ], the
projection of d(t) on V,, and im B is not unique in general, unless V,, N im B =0,,
i.e., unless the system is left-invertible.

The following theorem provides the matrices of the dynamical compensator X,
in Figure 1 that solves the decoupling problem.

Theorem. Let A be stable and suppose that conditions (C1)-(C2) hold; let V
be a basis matrix of V,, adapted to Ry«, the reachable subspace on V*. Let h
be the dimension of V,,, and X € R* ** and U € R™ X" be matrices satisfying (3)
referred to V,, and such that, with F defined as in (9), V,, is an internally stable
(A + BF)-invariant subspace.

Let (II;, II) be the projecting pair of im H on V,, and im B respectively. A
dynamical compensator X, whose input is d and whose output is u solving Problem 2
is described by the quadruple (A, B., C., D.) = (X, I}, -U, —II3). If V,;, =0, it
reduces to an algebraic unit D, = — Bt H.
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Proof. First consider the discrete-time case. Denoting by z the state of X, the
equations of the compensator are ’

2(k+1) = X z(k) + T d(k)  2(0)=0
u(k) = —U z(k) — M d(k).

By virtue of Lemma 2, a basis matrix of V,, adapted to Ry- exists. The choice of
matrix F' is such that the output equation of the compensator is

u(k) = FV z(k) — Iy d(k)
which, once substituted in the state equation of ¥, leads to
z(k+1) = Az(k) + BFV z(k) + VI, d(k). (13)
The state functions z(k) and z(k) are linked by the relation
z(i) =Vz2(l) Vi>0 (14)

that can be proved by induction. Equation (14) holds for i =0 since the initial
conditions of both ¥ and X, are supposed to be null. Suppose that (14) holds for
i =k; then, from (13)

z(k+1) = AV 2(k)+ BFV z(k) + VII, d(k)
=VXz(k)+ VI dk)=Vz(k+1)
by virtue of (5). As a consequence, equation
z(k+1) = (A+ BF)z(k) + VI, d(k)

describes a motion on R™ which is all contained in V,,,, hence invisible on the output.
If V,, = 0,, the control law

u(k) = —B* H d(k)

cancels the part of the disturbance on im B.
Now consider the continuous-time case. The dynamics of ¥, are described by

z2(t) = X 2(t) + I d(t) 2(0)=0
u(t) = =U z(t) — I d(¢).
Then u(t) = FV z(t) — II; d(t). This leads to
z(t) = Az(t) + BFV z(t) + VI, d(t).

We prove that z(t) =V z(t) for each positive ¢ if (0)=0. Let ¢ be such that
z(t) =V 2(¢):
2(t) = (A+BF)V z(t)+ VI d(¢)
=VXz(t)+ VI d(t) =V i(t)
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It follows that the whole state-trajectory lies on V,,. .

Both in the discrete and in the continuous time-domain, the closed-loop system
with the compensator described by the quadruple (X, IIy, —U, —II;) has state ma-
trix

A -BU

which is strictly stable. m]

Notice-that the order of the feedforward unit ¥ is minimum. In fact, it is not
necessary to reproduce the state components corresponding to (A+ BF)R»/y,, in
Y. since they are not influenced by input d.

Internal stabilizability of V,, is ensured if the plant is minimim-phase, since the
internal fixed eigenvalues of V,,, are part of those of V*.

Observe that if the classical structural condition for decoupling of inaccessible signals

imH CV*

holds, the compensator is purely dynamical, i.e. Dc = —II; = 0. In fact, in this case,
there is no need for a component of the control input u that cancels the projection
of d on im B.

5. NON STRICTLY PROPER SYSTEMS

The procedures of the previous sections can be easily extended to systems charac-
terized by an algebraic feedthrough between the output y and the inputs u and d
(see for example [3], pp. 245-247).

First, consider a discrete-time linear system X 4 with null initial state

o(k +1) = Az(k) + Bu(k) + Hd(k)
y(k) = Cz(k) + Du(k) + G d(k)

where D € R? ™ and G € RP ** are such that the matrices [ BT DT ] and [HT G*]

are full row-rank.

It is possible to define a new variable z satisfying z(k + 1) = y(k) for all k, and
consider it a state extension of Xg:

[:EZ: B ] =4 [:g,’g ] + Bu(k) + Adk)

w-o[ ]

- (48] 5-[2]. -[2]

[0 L, ]. (15)

where

Q)
Il



A Feedforward Compensation Scheme for Perfect Decoupling . . . 83

The new variable z can be interpreted as the state of a unit delay connected at
the output of ¥ 4. Note that z(0)=y(—1)=0: the conditions and the standard
procedures to solve the decoupling problem of a measurable signal can be applied
to the extended system above since it is purely dynamical and characterized by null
initial conditions, thus ensuring

2(k)=0 Vk>0
and, as a consequence, y(k) =0 for each k > 0.
The same artifice can be adopted for the continuous-time system
z(t) = Az(t) + Bu(t) + Hd(t) 2(0)=0
{ y(t) = Cz(t) + Du(t) + Gd(t).

In this case define () = y(t) as the state of an integrator stage connected in cascade
at the output y. Since z is a primitive of y, it is continuous on [0, +00): it follows that,
since y(t) =0 for all t <0, it is also z(0) =0. The cxtended system with null initial
conditions thus obtained is of the kind of system (1). This allows the application of
the conditions (C1)—(C2) and of the results of Theorem, thus ensuring y(t) =0 for
any t >0.

6. AN ALGORITHMIC PROCEDURE

The results expounded in the previous sections are collected here as an algorithm
for the calculation of the matrices of the feedforward unit that solves Problem 2.

Step 1. If ¥ is non purely dynamical, a state extension has to be performed as
pointed out in Section 5, by re-defining matrices A, B, H and C according to
(15).

Step 2. If V,,, differs from zero, a basis matrix V of V,, is computed, and the two
conditions (C1) - (C2) are tested: if they are not satisfied, the algorithm stops.

Step 3. A basis matrix of ker [V B] is computed,; if that subspace is zero, then the
matrices X and U such that (4) holds are directly determined by (5).

Step 4. If on the contrary Ry differs from zero, the basis matrix of V,,, can be
chosen in a way that its first columns are a basis matrix of Ry.. The ma-
trix [V B]tAYV is then computed and, by defining the submatrices Z;; and
K, as in (9), a matrix H can be derived that arbitrarily places the poles of
Z11 + K, Hy, the internal assignable eigenvalues of V,,,. Choosing H; =0, then
X and U follow from (8).

Step 5. Taking for example ¥ =0 in (12), the matrices II; and I, are determined.

Step 6. If V,,, differs from zero, then the quadruple of matrices (4., B., C., D.) is
obtained by simply assigning them the values of (X, II;, —U, —II5); if, on the
contrary, V,,, =0,, then the feedforward compensator reduces to an algebraic
unit with a gain B+ H. '
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7. CONCLUDING REMARKS

It has been shown that the geometric approach provides a simple way to derive a
linear compensator that solves the measurable signal decoupling problem. The exact
design of the feedforward unit for this problem can also be applied for the solution
of another fundamental control problem, the unknown-input observation of a linear
function of the state, which is the dual of the problem herein considered, as shown in
[7], and the model matching problem, both feedforward and feedback, as considered
in [8].

The theory is supported by simple software routines for MATLAB: scc in particu-
lar the functions effesta.m, gazero.mand hud.m, which can be freely downloadable
with the toolbox ga at
www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm.

(Received April 5, 2004.)
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