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K Y B E R N E T I K A — V O L U M E 4 2 ( 2 0 0 6 ) , N U M B E R 6 , P A G E S 7 1 1 – 7 2 2

CHOOSING THE BEST φ–DIVERGENCE GOODNESS–
OF–FIT STATISTIC IN MULTINOMIAL SAMPLING FOR
LOGLINEAR MODELS WITH LINEAR CONSTRAINTS

Nirian Martin and Leandro Pardo

In this paper we present a simulation study to analyze the behavior of the φ-divergence
test statistics in the problem of goodness-of-fit for loglinear models with linear constraints
and multinomial sampling. We pay special attention to the Rényi’s and Ir-divergence
measures.
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1. INTRODUCTION

Consider a sample of size n∈N, Y1, Y2, . . . , Yn with realizations from Y={1, 2, . . . , k}
and independent and identically distributed according to a probability distribution
p(θ0). If k = IJ we have a two-way contingency table. This distribution is assumed
to be unknown, but belonging to a known family

P =
{
p(θ) = (p1(θ), . . . , pk(θ))T : θ ∈ Θ

}

of distributions on Y with Θ ⊂ Rt+1.
The true value θ0 of parameter θ = (u, θ1, . . . , θt)

T ∈ Θ is assumed to be unknown.
Let p̂ = (p̂1, . . . , p̂k)T for

p̂j =
Nj
n

and Nj =
n∑

i=1

I{j} (Yi) ; j = 1, . . . , k. (1)

The statistic (N1, . . . , Nk) is obviously sufficient for the statistical model under con-
sideration and is multinomially distributed with parameters (n;p(θ) = (p1(θ), . . .
. . . , pk(θ)) . We denote

mj(θ) ≡ E (Nj) = npj(θ), j = 1, . . . , k (2)

and m(θ) = (m1(θ), . . . ,mk(θ))T
.
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Given a k × (t+ 1) matrix X, rank(X) = t+ 1, the set

C (X) =
{

logm(θ) ∈ Rk : logm(θ) = Xθ, θ ∈ Rt+1
}

(3)

represents the class of the loglinear models associated with X. We suppose, in the

following that J = (1,
k

.̂ . ., 1)T ∈ C (X) . Taking into account (2), the parameter
space is defined by

Θ′ =
{
θ ∈ Rt+1 : logm(θ) = Xθ and JTm(θ) = n

}
.

Now in addition to the previous model we shall assume that we have s−1 < t linear
constrains defined by

CTm(θ) = d∗, (4)

where C and d∗ are k× (s− 1) and (s− 1)× 1 matrices, respectively. If we consider
the linear constraint JTm(θ) = n associated to the multinomial sampling, we can
write the parameter space for this new model

Θ∗ =
{
θ ∈ Rt+1 : logm(θ) = Xθ and LTm(θ) = d

}
(5)

where L = (J ,C), d =
(
n, (d∗)T

)T and rank(L) = rank(LT,d) = s.
We have seen in (3) that a loglinear model relates the logarithms of the expected

frequencies of cells to a linear model. This model can be seen as a set of linear
constraints imposed on the logarithms of the expected cell frequencies. However
there are hypotheses that impose linear constraints on the expected cell frequencies
and not on their logarithms. This situation was formulated in (5). Some practical
situations require loglinear models when expected frequencies are subject to linear
constraints. In Haber and Brown [6] can be seen some interesting examples of this
model as well as a historical perspective about the development of this model.

The classical goodness-of-fit test statistics for testing if our data are from a con-
sidered loglinear model in which the expected frequencies are subject to linear con-
straints are

X2 =
k∑

j=1

(Nj −mj(θ̂))2

mj(θ̂)
or G2 = 2

k∑

j=1

Nj log
Nj

mj(θ̂)
,

where θ̂ is the restricted maximum likelihood estimator of θ ∈ Θ∗ defined by

θ̂ = arg max
θθθ∈Θ∗

hTθ, (6)

where hT = (n∗)T
X, n∗ = (N1, . . . , Nk)T.

It is important to note that θ̂ is the maximum likelihood estimator of the loglin-
ear model logm(θ) = Xθ with multinomial sampling, under the assumption that
relation (4) is satisfied, i. e., θ̂ is the restricted multinomial maximum likelihood
estimator. We can see that θ varies in Θ∗. If we were interested in the multino-
mial maximum likelihood estimator of the parameter θ associated with the loglinear
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model logm(θ) = Xθ the definition given in (6) would be valid but instead of
considering that θ varies in Θ∗ one has to assume that θ varies in Θ′.

Equivalently, the restricted maximum likelihood estimator can be defined as,

θ̂ = arg min
θθθ∈Θ∗

DKullback (p̂,p(θ)) , (7)

where DKullback (p̂,p(θ)) is the Kullback–Leibler divergence between the probability
vectors p̂ and p(θ)(see Kullback [7])

DKullback

(
p̂,p(θ̂)

)
=

k∑

j=1

p̂j log
p̂j

pj(θ̂)
.

We can observe that G2 = 2nDKullback

(
p̂,p(θ̂)

)
. The asymptotic distribution of

X2 and G2 is a chi-square with k− t+ s−2 degrees of freedom according to Haber
and Brown [6]. It is interesting to observe that X2 involve two divergence measures,
one of them the Kullback–Leibler divergence for estimation and the other one, the
Pearson’s divergence

DPearson

(
p̂,p(θ̂)

)
=

1
2

k∑

j=1

(
p̂j − pj(θ̂)

)2

pj(θ̂)
,

for testing X2 = 2nDPearson

(
p̂,p(θ̂)

)
. In the case of G2 we are using Kullback–

Leibler divergence for testing and estimation. Kullback–Leibler divergence as well
as Pearson’s divergence are particular cases of the φ-divergence measure defined
simultaneously by Csiszár [4] and Ali and Silvey [3]. This family of divergence
measures is defined in our model by

Dφ

(
p̂,p(θ̂)

)
=

k∑

j=1

pj(θ̂)φ

(
p̂j

pj(θ̂)

)
, φ ∈ Φ∗

where Φ∗ is the class of all convex functions φ (x), x ≥ 0, such that φ (1) = φ′ (1) = 0,
φ′′ (1) > 0 and 0φ (κ/0) = κ limu→∞ φ (u) /u for κ ≥ 0.). For more details about
φ-divergences see Vajda [12]. In Pardo and Menéndez [9] was established, assuming
that logm(θ) = log np(θ) ∈ C (X) , i. e., θ ∈ Θ∗, and θ̂ satisfies (7), that the family
of test statistics

Tφn

(
p̂,p(θ̂)

)
=

2n
φ′′(1)

Dφ

(
p̂,p(θ̂)

)

converges in law to a chi-square distribution with k − t+ s− 2 degrees of freedom.
Another extension of the Kullback–Leibler divergence was defined initially by

Rényi [11] and extended later by Liese and Vajda [8]: Rényi’s divergence measure.
We shall use the expression given by Liese and Vajda to measure the distance between
the nonparametric estimator p̂ and the parametric estimator p(θ̂),

Dr
Rényi

(
p̂,p(θ̂)

)
=

1
r (r − 1)

log
k∑

j=1

p̂rj pj(θ̂)1−r, r 6= 0, 1.
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It is immediate that

lim
r→1

Dr
Rényi

(
p̂,p(θ̂)

)
= DKullback

(
p̂,p(θ̂)

)

and
lim
r→0

Dr
Rényi

(
p̂,p(θ̂)

)
= DKullback

(
p(θ̂), p̂

)
.

Rényi’s divergence measure was not previously used in loglinear models. Section
2 is devoted to present some theoretical results for this divergence measure in the
context considered previously and in Section 3 a simulation study is carried out to
establish that it is possible to get some test statistics based on divergence measures
that are good alternatives to the classical likelihood ratio and Pearson test statistic
for goodness-of-fit based on multinomial sampling in loglinear models with linear
constraints. We consider in our study the family of Rényi’s test statistics as well
as the Ir -divergence test statistics. The Ir-divergence test statistics are based on
the Ir-divergence measures introduced and studied by Liese and Vajda [8]. This
is the first known a simulation study carried out in loglinear models with linear
constraints using φ-divergences because in the cited paper of Pardo and Menéndez
[9] only theoretical results were obtained.

2. RÉNYI’S TEST STATISTIC FOR LOGLINEAR MODELS

If we consider the functions

hr(x) =
{ 1

r(r−1) log (r (r − 1)x+ 1) , r 6= 0, 1
x, r = 0, 1

(8)

and

φr (x) =





1
r(r−1) (xr − r (x− 1)− 1) , r 6= 0, 1
x log x− x+ 1, r = 1
− log x+ x− 1, r = 0,

(9)

we find that Rényi’s divergence can be given as follows

Dr
Rényi(p̂,p(θ̂)) = hr

(
Dφr (p̂,p(θ̂))

)
.

We can observe that φr is a convex function with φr (1) = φ′r (1) = 0 and φ′′r (1) = 1,
i. e., Dφr

(
p̂,p(θ̂)

)
is a φ-divergence between the probability vectors p̂ and p(θ̂).

More precisely, it is the Ir-divergence

Ir(p̂,p(θ̂)) =
1

r (r − 1)




k∑

j=1

p̂rj pj(θ̂)1−r − 1


 , r(1− r) 6= 0.

For a complete study of its properties, see Liese and Vajda [8]. For testing

H0 : p = p(θ), θ ∈ Θ∗
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we consider in this paper the Ir-divergence test statistics

Irn(p̂,p(θ̂)) =





2n
r(r−1) (

k∑
j=1

p̂rj pj(θ̂)1−r − 1), r 6= 0, 1

2nDKullback(p̂,p(θ̂)), r = 1
2nDKullback(p(θ̂), p̂), r = 0,

as well as the Rényi’s family of test statistics given by,

T rn(p̂,p(θ̂)) =





2n
r(r−1) log

k∑
j=1

p̂rj pj(θ̂)1−r, r 6= 0, 1

2nDKullback(p̂,p(θ̂)), r = 1
2nDKullback(p(θ̂), p̂), r = 0.

We can observe that I2(p̂,p(θ̂)) coincides with the classical Pearson test statistic
X2 and I1(p̂,p(θ̂))and T 1 with the likelihood ratio test. In the next theorem we
present the asymptotic distribution of the family T rn(p̂,p(θ̂)).

Theorem 1. We consider the class of loglinear models associated with X, C(X),
and we shall assume that we have the s − 1 < t linear constraints given in (4).
The asymptotic distribution of the family of test statistics T rn(p̂,p(θ̂θθ)), under the
hypothesis of θθθ ∈ Θ∗, is a chi-square with k − t+ s− 2 degrees of freedom.

P r o o f . By the first order Taylor expansion of hr(x) around x = 0 we obtain

T rn(p̂,p(θ̂)) = 2n
φ′′r (1)h′r(0)hr

(
Dφr (p̂,p(θ̂))

)

= 2n
φ′′r (1)Dφr (p̂,p(θ̂)) + 2no

(
Dφ(p̂,p(θ̂))

)
,

where h and φ are defined in (8) and (9), respectively. By Pardo and Menéndez [9] we
know that 2n

φ′′(1)Dφ(p̂,p(θ̂)) converges in law to a chi-square with k−t+s−2 degrees

of freedom. Therefore 2no
(
Dφr (p̂,p(θ̂))

)
= oP (1) and T rn(p̂,p(θ̂)) converges in law

to a chi-square distribution with k − t+ s− 2 degrees of freedom. ¤

For testing H0 : p = p(θ), θ ∈ Θ∗ we can use the families of test statistics
T rn(p̂,p(θ̂)) or Irn(p̂,p(θ̂)); if it is too large, H0 is rejected. When T rn(p̂,p(θ̂)) > c or
Irn(p̂,p(θ̂)) > c, we reject H0, where c is specified so that the size of the test is α :

Pr
(
T rn(p̂,p(θ̂)) > c

∣∣∣H0

)
= α; α ∈ (0, 1) . (10)

The same for Irn(p̂,p(θ̂)). If we are able to get the value of c from the equation
(10) then we obtain exact tests based on T rn and Irn(p̂,p(θ̂)) which are obviously
equivalent. In general it is not possible to get the exact test and we have the necessity
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to consider the asymptotic tests. In this case T rn(p̂,p(θ̂)) and Irn(p̂,p(θ̂)) are not
equivalent, cf. Remark 1. Based on the previous theorem

c = χ2
k−t+s−2,α, (11)

where Pr
(
χ2
k−t+s−2 > χ2

k−t+s−2,α

)
= α. The choice of (11) in (10) guarantees

only an asymptotic size-α test. The same asymptotic critical point is obtained for
Irn(p̂,p(θ̂)) on the basis of the results in Pardo and Menéndez [9]. In the simulation
study of Section 3 we study for what choices of r in T rn(p̂,p(θ̂)) and Irn(p̂,p(θ̂)) is
the relation (10) most accurately attained.

Remark 1. We are going to analyze the relation existing between the powers of
T rn(p̂,p(θ̂θθ)) and Irn(p̂,p(θ̂θθ)) as well as between the size using the asymptotic critical
point given in (11). To avoid the problems with empty cells we are going to assume
that r > 0. We shall denote by αRényi

r , βRényi
r , αr and βr, size and power for

T rn(p̂,p(θ̂θθ)) and size and power for Irn(p̂,p(θ̂θθ)), respectively. It is obvious that

T rn(p̂,p(θ̂θθ))





<
st
Irn(p̂,p(θ̂θθ)), if r > 1

>
st
Irn(p̂,p(θ̂θθ)), if 0 < r < 1

=
a.s.

Irn(p̂,p(θ̂θθ)), if r = 1

because hr(x) < x if r > 1, hr(x) > x if 0 < r < 1 and hr(x) = x if r = 1.
We denote by X1 <st X2 that Pr(X1 ≥ x) < Pr(X2 ≥ x) for every x ∈ R+.
Taking into account that our procedure of testing uses the asymptotic critical value
c = χ2

k−t+s−2,α we have

αRényi
r

{
< αr, if r > 1

> αr, if 0 < r < 1
and βRényi

r

{
< βr, if r > 1

> βr, if 0 < r < 1.

Remark 2. In the same way as we have used the family T rn(p̂,p(θ̂θθ)) for testing
when the data are from p(θθθ), θθθ ∈ Θ∗, we can also use the family Srn(p̂,p(θ̂θθ)) =
T rn(p(θ̂θθ), p̂), i. e., we can change the position of the arguments in the divergence
measure. We are going to establish the asymptotic distribution of this family of test
statistics. We consider the function ϕr (x) = 1

r(r−1)

(
x−r+1 − r (1− x)− x

)
, which

is convex for x > 0 and satisfying ϕr (1) = ϕ′r (1) = 0 and ϕ′′r (1) = 1, i. e., ϕr ∈ Φ∗.
It is also easy see that

Dϕr

(
p̂,p(θ̂θθ)

)
= Dφr

(
p(θ̂θθ), p̂

)
.

Now by applying the result of Pardo and Menéndez [9] we obtain that

Ĩrn(p̂,p(θ̂θθ)) =
2n

ϕ′′r (1)
Dϕr

(
p̂,p(θ̂θθ)

)
= Irn(p(θ̂θθ), p̂)
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converges in law to the chi-square distribution with k− t+ s− 2 degrees of freedom
and using a similar argument as in the previous theorem we get that Srn(p̂,p(θ̂θθ))
converges in law to the chi-square distribution with k− t+ s− 2 degrees of freedom.

The asymptotic chi-squared approximation, c = χ2
k−t+s−2,α, is checked for a log-

linear model in the simulation study given in Section 3. We give a small illustration
of those results now. Figures 1 and 2 show departures of the exact size from the
nominal size of α = 0.05 for the loglinear model with constaints considered in (12) –
(13) for the null hypothesis and for various choices of r and for small to large sample
sizes. In Figure 1 we used the test statistics T rn(p̂,p(θ̂)) and in Figure 2 the test
statistic Irn(p̂,p(θ̂)).

4.2 4.4 4.6 4.8 5.00.00.10.20.3
log n

r=1r=1.4r=1.8r=3
α

r=0.5
Fig. 1. Exact size as a function of x = log n for T rn(bp,p(bθ)).

4.2 4.4 4.6 4.8 5.00.00.10.20.3
log n

r=1r=1.4r=1.8r=3
α

r=0.5
Fig. 2. Exact size as a function of x = log n for Irn(bp,p(bθ)).

Previous pictures show behavior of the exact size for nominal size of α = 0.05 for
different values of r in T rn(p̂,p(θ̂)) and Irn(p̂,p(θ̂)) including the behavior for the
likelihood ratio test (r = 1).
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3. SIMULATION STUDY

In this section we present a simulation study to see the behavior of the Rényi’s
test statistics as well as the Ir -divergence test statistics in the model of quasi-
independence with marginal homogeneity. This model in a 4× 4 contingency table
is given by

logmij(θ) = u+ θ1(i) + θ2(j) + δiI (i = j) , i, j = 1, 2, 3, 4, (12)

where
∑4
i=1 θ1(i) =

∑4
j=1 θ2(j) = 0, and the linear constraints

LTm(θ) = d, (13)

where

LT=




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 –1 0 0 0 –1 0 0 0 –1 0 0 0
0 –1 0 0 1 0 1 1 0 –1 0 0 0 –1 0 0
0 0 –1 0 0 0 –1 0 1 1 0 1 0 0 –1 0


 ,

and d = (n, 0, 0, 0)T.
There are many practical situations in two-way contingency tables with I and

J levels for the two nominal response variables X and Y in which there is a cor-
respondence between row and column variables but diagonal cells tend to be large.
These large diagonal cells often contribute significantly to the poor fit of the inde-
pendence model. One substantively interesting hypothesis is whether the rest of the
table satisfies the independence hypothesis net of the diagonal cell. This leads to the
quasi-independence model. For more details about the quasi-independence model
see Agresti [1], Powers and Xie [10], Andersen [2] and references therein.

However the study of some real situations requires to include linear constraints on
the expected cell frequencies associated with the loglinear model of quasi-independence.
A nice real example of this situation can be seen in Section 4.1 of Haber and Brown
[6]. They considered a loglinear model of quasi-independence with marginal homo-
geneity to model the frequency of ewes according to the number of lambs born in
two consecutive years.

The theoretical model considered by us is defined by the parameters

exp(θ1(1)) = exp(θ2(1)) = 0.8835, exp(θ1(2)) = exp(θ2(2)) = 0.9639,

exp(θ1(3)) = exp(θ2(3)) = 1.0448, exp(δ1) = 5.5455, exp(δ2) = 5.1557,

exp(δ3) = exp(δ4) = 4.5714,

(14)

and we understand that (θ1(1), θ1(2), θ1(3), θ2(1), θ2(2), θ2(3), δ1, δ2, δ3, δ4)T is (θ1, . . . , θt)T

according to the notation used in Section 1. These values give the following proba-
bility vector
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pij(θ) 1 2 3 4 pi∗( θ)
1 0.1355 0.0267 0.0289 0.0311 0.2222
2 0.0267 0.1502 0.0315 0.0339 0.2422
3 0.0289 0.0315 0.1561 0.0367 0.2531
4 0.0311 0.0339 0.0367 0.1807 0.2822

p∗j(θ) 0.2222 0.2422 0.2531 0.2822 1.0000

In this situation we have k = 16, t = 10 and s = 4 and therefore the asymptotic
critical point for α = 0.05 is c = 15.507. The simulated exact sizes, at a nominal size
α for a sample size n, α̂Rényi

n,r and α̂rn are given by

α̂Rényi
r,n =

Number of T rn,j > 15.507
N

and α̂rn =
Number of Irn,j > 15.507

N
,

respectively. By T rn,j and Irn,j we are denoting the value of T rn(p̂,p(θ̂)) and Irn(p̂,p(θ̂)),
in the jth simulation (j = 1, . . . , N) when the sample size is n respectively. We
shall assume in our study N = 100 000 and we consider n = 65 and 100. We are
going to consider r = 0.5 , 1, 1.4, 1.8, 2.2, 2.6, 3, 3.4 and 3.8.

In order to study the powers of the test statistics based on T rn(p̂,p(θ̂)) and
Irn(p̂,p(θ̂)) we are going to define some alternative hypotheses. We consider the
alternative hypotheses aε by defining the probability distribution

pεij(θ) =
{

(1− ε) pij(θ), (i, j) 6= (4, 3)
(1− ε) pij(θ) + ε, (i, j) = (4, 3) . (15)

We shall assume ε = 0.03, 0.07 , 0.11, 0.15 and 0.19. The way to obtain the simulated
powers β̂Rényi

r,n and β̂rn is the same as the way used for getting the simulated exact
size but now the simulations are obtained from the probability distribution given
in (15).

In Tables 1 and 2 we present the simulated exact size (column labeled with “size”)
and the power for the considered alternatives aε for n = 65 and 100, respectively.
The row LRT corresponds to the likelihood ratio test T 1(p̂,p(θ̂)) and I1(p̂,p(θ̂)).

The trade-off between size behavior and power behavior is a classical problem in
hypothesis testing as one of the referees pointed out. Therefore we have evaluated
the size-corrected relative local efficiencies

ρRényi
r (aε) =

(β̂Rényi
n,r (aε)− α̂Rényi

n,r )− (β̂Rényi
n,1 (aε)− α̂Rényi

n,1 )

β̂Rényi
n,1 (aε)− α̂Rényi

n,1

of T rn(p̂,p(θ̂)) with respect to the classical likelihood ratio test T 1
n(p̂,p(θ̂)). In a

similar way we define the local efficiencies, ρr(aε), of Irn(p̂,p(θ̂)) with respect to the
classical likelihood ratio test T 1

n(p̂,p(θ̂)). We have only included in the study the
test statistics with a simulated exact size less than or equal to 0.1, i. e., the test
statistics with simulated exact size less than or equal to the double of the nominal
size α = 0.05. In Tables 3 and 4 we present the relative efficiencies of T rn(p̂,p(θ̂))
and Irn(p̂,p(θ̂)) with respect the likelihood ratio test statistic.
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Table 1. Exact size and powers of T rnbp,p(bθ)) and Irnbp,p(bθ)) for n = 65.

size aε
r ε = 0.03 ε = 0.07 ε = 0.11 ε = 0.15 ε = 0.19

0.5 0.371 32 0.412 14 0.546 56 0.693 18 0.816 82 0.904 38
1.4 0.039 71 0.066 21 0.180 21 0.366 19 0.570 14 0.746 37
1.8 0.023 16 0.042 61 0.135 52 0.304 83 0.505 44 0.691 22

T rn 2.2 0.018 38 0.034 37 0.115 96 0.268 85 0.459 11 0.645 32
2.6 0.017 92 0.032 89 0.109 08 0.251 64 0.429 44 0.607 21
3 0.019 70 0.034 17 0.107 79 0.243 67 0.410 20 0.577 26
3.4 0.021 77 0.036 29 0.108 99 0.238 62 0.396 21 0.554 42
3.8 0.024 08 0.038 73 0.109 63 0.234 69 0.384 62 0.535 35

LRT 1 0.097 67 0.134 03 0.276 97 0.470 29 0.660 17 0.810 95
0.5 0.360 30 0.400 66 0.534 72 0.683 24 0.809 38 0.898 87
1.4 0.049 05 0.078 94 0.203 26 0.396 88 0.601 09 0.771 22
1.8 0.040 32 0.067 19 0.188 13 0.379 58 0.586 00 0.759 79

Irn 2.2 0.046 71 0.075 52 0.202 73 0.398 34 0.603 29 0.770 09
2.6 0.063 25 0.097 42 0.236 55 0.438 58 0.637 68 0.793 01
3 0.091 65 0.131 12 0.283 79 0.490 70 0.680 32 0.822 29
3.4 0.128 80 0.174 48 0.340 60 0.547 63 0.725 43 0.853 22
3.8 0.175 33 0.226 07 0.401 08 0.605 74 0.768 10 0.880 72

Table 2. Exact size and powers of T rnbp,p(bθ)) and Irnbp,p(bθ)) for n = 100.

size aε
r ε = 0.03 ε = 0.07 ε = 0.11 ε = 0.15 ε = 0.19

0.5 0.254 42 0.312 71 0.494 94 0.711 29 0.873 71 0.957 57
1.4 0.047 32 0.093 52 0.288 88 0.567 75 0.797 67 0.928 01
1.8 0.031 34 0.069 28 0.252 56 0.528 94 0.771 02 0.914 00

T rn 2.2 0.025 60 0.059 87 0.230 91 0.501 06 0.747 41 0.900 05
2.6 0.024 57 0.056 61 0.220 47 0.480 60 0.726 87 0.886 15
3 0.025 21 0.056 27 0.215 65 0.466 27 0.709 41 0.872 29
3.4 0.026 99 0.057 24 0.213 51 0.455 64 0.693 27 0.857 08
3.8 0.028 86 0.059 61 0.212 45 0.446 76 0.678 65 0.842 46

LRT 1 0.087 24 0.144 64 0.352 50 0.621 01 0.829 07 0.941 55
0.5 0.248 69 0.307 18 0.488 06 0.705 60 0.870 15 0.955 83
1.4 0.053 13 0.103 16 0.306 56 0.587 57 0.811 53 0.933 85
1.8 0.044 17 0.091 57 0.295 16 0.579 30 0.807 11 0.932 32

Irn 2.2 0.046 26 0.096 23 0.306 46 0.590 84 0.814 09 0.934 80
2.6 0.055 92 0.111 50 0.333 43 0.615 79 0.828 88 0.941 05
3 0.072 62 0.134 96 0.370 67 0.649 16 0.848 06 0.949 42
3.4 0.095 77 0.165 77 0.415 18 0.686 98 0.869 48 0.957 37
3.8 0.126 03 0.203 40 0.462 50 0.724 46 0.889 97 0.965 07

If we observe Table 1 the simulated sizes corresponding to T rn(p̂,p(θ̂)) are less
than or equal to 0.1 for all r except for r = 0.5 and for Irn(p̂,p(θ̂)) all the values of
the interval [1, 3] satisfies the condition. For n = 100 the values of r that satisfies the
condition are the same as for n = 65 in the case of T rn(p̂,p(θ̂)) and for Irn(p̂,p(θ̂))
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we have the new value r = 3.4. It is also interesting to observe in Tables 1 and 2 that
the values obtained in the simulation study are in accordance with the theoretical
results presented in Remark 1.

Table 3 indicates that the size-corrected relative local efficiency for Irn(p̂,p(θ̂))
with r = 3 is the best and of course better than the likelihood ratio test and chi-
square test statistic obtained for r = 2 in Irn(p̂,p(θ̂)). Table 4 indicates that the
size-corrected relative efficiency for Irn(p̂,p(θ̂)) with r = 3 and 3.4 are the best.
Therefore we can conclude that independently considered of the sample size the test
statistic I3

n(p̂,p(θ̂)) is a good alternative to the classical likelihood ratio test and
chi-square test statistic for the problem goodness-of-fit in multinomial sampling for
loglinear models with linear constraints.

Table 3. Size-corrected relative local efficiencies ρRényi
r (aε) and ρr(aε) for n = 65.

aε
r ε = 0.03 ε = 0.07 ε = 0.11 ε = 0.15 ε = 0.19 Total

1.4 –0.271 18 –0.216 38 –0.123 82 –0.057 00 –0.009 28 –0.677 66
1.8 –0.465 07 –0.373 34 –0.244 07 –0.142 60 –0.063 40 –1.288 48

T rn 2.2 –0.560 23 –0.455 78 –0.327 81 –0.216 46 –0.121 04 –1.681 32
2.6 –0.588 28 –0.491 59 –0.372 77 –0.268 40 –0.173 82 –1.894 86
3 –0.602 04 –0.508 71 –0.398 91 –0.305 78 –0.218 32 –2.033 76
3.4 –0.600 66 –0.513 56 –0.418 02 –0.334 32 –0.253 24 –2.119 80
3.8 –0.597 08 –0.522 88 –0.434 77 –0.359 03 –0.283 22 –2.196 98

LRT 1 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00
1.4 –0.177 94 –0.139 96 –0.066 52 –0.018 59 0.012 46 –0.390 55
1.8 –0.261 00 –0.175 66 –0.089 52 –0.029 89 0.008 68 –0.547 39

Irn 2.2 –0.207 65 –0.129 86 –0.056 32 –0.010 52 0.014 16 –0.390 19
2.6 –0.060 23 –0.033 48 0.007 29 0.021 22 0.023 11 –0.042 09
3 0.085 53 0.071 62 0.070 94 0.046 53 0.024 34 0.298 96

Table 4. Size-corrected relative local efficiencies ρRényi
r (aε) and ρr(aε) for n = 100.

aε
r ε = 0.03 ε = 0.07 ε = 0.11 ε = 0.15 ε = 0.19 Total

1.4 –0.195 12 –0.089 35 –0.024 99 0.011 48 0.030 88 –0.267 10
1.8 –0.339 02 –0.166 03 –0.067 76 –0.002 90 0.033 18 –0.542 53

T rn 2.2 –0.402 96 –0.226 00 –0.109 24 –0.026 99 0.023 57 –0.741 62
2.6 –0.441 81 –0.261 48 –0.145 64 –0.053 29 0.008 51 –0.893 71
3 –0.458 89 –0.282 06 –0.173 69 –0.077 69 –0.008 46 –1.000 79
3.4 –0.473 00 –0.296 84 –0.196 94 –0.101 84 –0.028 35 –1.096 97
3.8 –0.464 29 –0.307 89 –0.217 08 –0.124 07 –0.047 65 –1.160 98

LRT 1 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00
1.4 –0.128 40 –0.044 60 0.001 26 0.022 34 0.030 91 –0.118 49
1.8 –0.174 22 –0.053 80 0.002 55 0.028 46 0.039 61 –0.157 40

Irn 2.2 –0.129 44 –0.019 08 0.020 25 0.035 05 0.040 07 –0.053 15
2.6 –0.031 71 0.046 18 0.048 90 0.041 96 0.036 08 0.141 41
3 0.086 06 0.123 61 0.080 13 0.045 31 0.026 33 0.361 44
3.4 0.219 51 0.204 14 0.107 61 0.042 98 0.008 53 0.582 77
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[11] A. Rényi: On measures of entropy and information. Proc. Fourth Berkeley Symposium

on Mathematical Statistics and Probability 1 (1961), pp. 547–561.
[12] I. Vajda: Theory of Statistical Inference and Information. Kluwer Academic Publish-

ers, Dordrecht 1989.

Nirian Martin, Escuela Universitaria de Estadistica, Universidad Complutense de

Madrid, Avenida Puerta de Hierro s/n – 28040 Madrid. Spain.

e-mail: nirian@estad.ucm.es
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