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LOCALLY WEIGHTED NEURAL NETWORKS
FOR AN ANALYSIS OF THE BIOSENSOR RESPONSE

Romas Baronas, Feliksas Ivanauskas, Romualdas Maslovskis,

Marijus Radavičius and Pranas Vaitkus

This paper presents a semi-global mathematical model for an analysis of a signal of
amperometric biosensors. Artificial neural networks were applied to an analysis of the
biosensor response to multi-component mixtures. A large amount of the learning and test
data was synthesized using computer simulation of the biosensor response. The biosensor
signal was analyzed with respect to the concentration of each component of the mixture.
The paradigm of locally weighted linear regression was used for retraining the neural net-
works. The application of locally weighted regression significantly improved the quality of
the prediction of the concentrations.
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1. INTRODUCTION

Biosensors convert the physico-chemical change of a biological sensing element, usu-
ally an enzyme, resulting from the interaction with analyte into an output concen-
tration dependent signal [22, 24]. Biosensors are classified according to the nature
of the physical transducer. Amperometric biosensors measure changes of the cur-
rent on a working indicator electrode due to direct oxidation or reduction of the
products of the biochemical reaction. In this case, the potential at the electrode is
held constant while the current flow is measured. Amperometric biosensors are reli-
able, relatively cheap and highly acceptable for environment, clinical and industrial
purposes [16, 26].

Traditionally, changing biological process variables have been treated separately
and systematically [15]. In recent years, analytical multivariate methods have intro-
duced refined ways to handle complex signal inputs and to interpret their relations
to selected observations [1, 10]. Methods such as artificial neural networks (ANN)
[8, 14] become powerful tools for experimental data analysis to improve sensitivity
and selectivity of sensor systems [5, 13, 27].

This paper presents a semi-global mathematical model for the multivariate cal-
ibration of signals of amperometric biosensors. Artificial neural networks were ap-
plied to an analysis of the biosensor response to multi-component mixtures. The
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output signal was analyzed with respect to the concentration of each component
of the mixture. The calibration data was allocated into two different data sets: a
learning set, with which the neural network as global model was trained, and a test
set, which was used to improve the results of the calibration by the locally weighted
linear regression method [12, 17, 25]. The application of locally weighted regression
significantly improved the quality of the prediction of the concentrations.

This paper is organized as follows. Section 2 describes the data sets generated
using computer simulation and briefly discusses the pecularities of the biosensor
response. In Section 3, a locally weighted neural network is applied to an analysis
of the biosensor response. Section 4 discusses the results of the analysis. Finally,
Section 5 presents our conclusions.

2. THE GENERATION OF DATA SETS

While an artificial neural network provides a nonlinear approach that needs no a
priori knowledge of functional dependencies, it requires training. Training is based
upon cumulative experimental data.

An accurate and reliable calibration of the system as well as a proper test of
the methods of chemometrics requires a lot of experimental data. A mathematical
model of amperometric biosensors was used to synthesize experimental biosensor
responses to mixtures [3, 5]. The model is based on the reaction-diffusion equations
containing a nonlinear term related to Michaelis-Menten kinetics of the enzymatic
reaction. The digital simulation was carried out using the finite difference technique
[19, 23]. Assuming good enough adequacy of a mathematical model to the physical
phenomena, data synthesized using computer simulation was employed instead of
experimental data.

A computer simulation of the physical experiment is usually more affordable and
faster than actual experimentation. A computer simulation is especially reasonable
when the biosensors to be used in practice are in a stage of development. Then the
development of smart biosensors and the development of effective methods of data
analysis may be carried out in parallel.

Both modes of analyte analysis, bath (BA) and injection (IA), were supported
[18]. In the bath analysis, a biosensor remains immersed in an analyte throughout
the analysis, while in the injection analysis, the biosensor contacts the substrate for
only a short time.

The current is measured as a response of a biosensor in a physical experiment.
The overall biosensor response to a mixture is represented as the total sum of individ-
ual responses to each constituent substrate Sk (k = 1, . . . , K). In the mathematical
model each component Sk of the mixture was characterized by the individual maxi-
mal enzymatic rate V

(k)
max [5].

The biosensor response is known to be under mass transport control if the enzy-
matic reaction is faster than the mass transport in the enzyme layer [22, 23, 24]. The
dimensionless diffusion modulus σ2

k essentially compares the rate of the enzymatic
reaction (V (k)

max/KM ) with the diffusion (D(k)
S /d2) of the component Sk through the
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enzyme layer

σ2
k =

V
(k)
maxd2

D
(k)
S KM

, (1)

where d is the thickness of the enzyme layer, D
(k)
S is the diffusion coefficient and

KM is the Michaelis constant, k = 1, . . . , K. The biosensor response is under the
diffusion control when σ2

k À 1, while enzyme kinetics controls the response when
σ2

k ¿ 1. Assuming the diffusion coefficient D
(k)
S and the Michaelis constant KM to

be constant, the diffusion modulus σ2
k is a function of the maximal enzymatic rate

V
(k)
max and the membrane thickness d.

Let ~c = (c1, . . . , cK) be a vector of concentrations of K components S1, S2, ..., SK

of a mixture and ~z = ~z(~c) = (z1(~c), . . . , zN (~c)) be a vector of the biosensor current
densities at times t1, . . . , tN calculated by the computer simulation. Thus, ~z defines
a response of the biosensor to the mixture of K components of the concentrations ~c.
Note that ~z implicitly depends also on the diffusion moduli σ2

k, k = 1, . . . , K, and
hence on the membrane thickness d. Our goal is to define a nonlinear map N, such
that N(~z) = ~c.

The data vector ~z has a very large dimension N and contains a lot of redundant
information. Therefore the principal component analysis (PCA) [11] was applied
to reduce the dimensionality of the vector of the input data. As the result of data
pre-processing with PCA, the vector ~x = (x1, . . . , xJ) of J principal components of
the original data vector ~z was obtained. The dimensionality J of the resulting vector
~x is usually significantly less than the dimensionality of ~z, J ¿ N . There exist some
rules of thumb on how many dimensions to use, such as keeping all dimensions whose
contribution to the total variation exceeds 80 % . The PCA resulting vector ~x is
passed to a neural network.

3. LOCALLY WEIGHTED NEURAL NETWORKS

Let ~cx = (c1, . . . , cK) be a vector of concentrations of K components of a mixture and
~x = (x1, . . . , xJ) be the data vector of the biosensor signal after the pre-processing.
~cx is the target concentrations for the input data ~x.

The kth component of the quested nonlinear mapping from ~x to ~c can be expressed
by an artificial neural network

Nk(~x) = β0k +
p∑

s=1

βskϕ(〈~αs, ~x〉+ α0s), k = 1, . . . ,K, (2)

where Nk(~x) is the output of the kth output node expressing the concentration
of the kth component Sk of the mixture, p is the number of nodes in the hidden
layer, ~βk = (β0k, β1k, . . . , βpk), α0s, ~αs are the parameters, and ϕ is the nonlinear
activation function. The sigmoid (logistic) function was employed as the activation
function ϕ, ϕ(u) = 1/(1 + exp(−u)). The number p of nodes in the hidden layer
was chosen according to a rule of thumb. Having L observations (elements) in the
learning set, the degrees of freedom in the neural network should not exceed 0.1×L,
i. e. (p + 1)×K + p(J + 1) < 0.1× L.
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Figure 1 shows the overall architecture of the network used for the analysis of
the biosensor response. The data analysis showed that one hidden layer is enough
to achieve sufficiently good results in concentration estimation [5].

��

��

��

��

��

��

������	
��

�������	
��


�������	
��


Fig. 1. Schematic diagram of three-layer feedforward artificial neural network,
where x1, . . . , xJ are values of the biosensor current and c1, . . . , cK are

the determined concentrations of mixture components.

The neural network is usually trained by a supervised batch learning procedure
that requires a set of examples for which the desired network response is known. An
advanced variant of the back-propagation algorithm called Levenberg–Marquardt
was used to optimize the process of learning [6, 14]. After the first phase of learning
the estimated values α∗0s, ~α∗s of α0s, ~αs, s = 1, . . ., p, were kept fixed. In the second
phase, we used the locally weighted regression method to re-estimate the value of
~βk [2, 7, 20, 21].

Let Ω1 be the learning set and Ω2 be the test set of examples. Ω1 is used in
the first phase of learning, while data of Ω2 is employed for retraining the neural
network in the second phase.

For the fixed coefficients α0s = α∗0s, ~αs = ~α∗s , s = 1, . . ., p, the neural network
can be expressed as a linear regression ~βT

k
~Ψ(~x), where

~Ψ(~x) =
(
1, ϕ(< ~α∗1, ~x > +α∗01), . . . , ϕ(< ~α∗p, ~x > +α∗0p)

)T
. (3)

Given a test vector ~xq ∈ Ω2 and a weight function w(~x, ~xq), the locally weighted
loss functions are defined as follows:

∑

~x∈Ω1

w2(~x, ~xq)
(
ck(x)− ~βT

k
~Ψ(~x)

)2

, k = 1, . . .,K. (4)

Let Ω1 = (~x1, . . . , ~xL1). Then the parameter vectors ~β∗k = ~β∗k(~xq) minimizing loss
functions (4) are given by

~β∗k =
[
(WΨ)T (WΨ)

]−1
(WΨ)T WC, (5)

where Ψ is a L1 × (p + 1) (design) matrix with the elements Ψls = (Ψs(~xl)), l =
1, . . ., L1, s = 0, . . ., p; W is a L1 × L1 diagonal matrix of the local weights with the
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diagonal elements wll = (w(~xl, ~xq)), l = 1, . . ., L1; C = (ck(~x1), . . . , ck(~xL1))
T . In

(5) we use a pseudo-inverse. Here for brevity we omit the subscript k.
From (2), (3) and (5) we obtain the final estimate of Nk(~xq):

N∗
k (~xq) = β∗0k(~xq) +

p∑

s=1

β∗sk(~xq)ϕ(< ~α∗s , ~xq > +α∗0s), k = 1, . . . ,K. (6)

Locally weighted learning systems require a measure of relevance. The major
assumption that locally weighted learning rests upon is that the relevance can be
measured using the distance between data points. Nearby training points are more
relevant. A weighting or kernel function is used to calculate the weight for a given
distance between the two points. A typical weighting function is Gaussian

w(~xn, ~xq) = exp
{
−‖~xn − ~xq‖2/(2h2)

}
, (7)

where h is the bandwidth or the kernel width. It determines the range over which
the generalization is performed.

The forecasting quality of concentration ck of each component Sk, k = 1, . . . , K,
is estimated by the percentage of true interval predictions [5]

Qk =
1
L2

L2∑

i=1

Ind (N∗
k (~xi) ∈ ∆y)× Ind (ck(~xi) = y)× 100%, (8)

where the indicator function Ind (N∗
k (~xi) ∈ ∆y) equals unity when the kth output

of the network (after locally weighted training for ~xi as a query point) belongs
to the interval (y − δ1,y, y + δ2,y) of the target concentration ck(~xi) = y, and zero
otherwise. L2 is the number of observations in the test set Ω2.

When using locally weighted retraining, it is necessary to retrain the network
each time a new point is evaluated. This operation is quite time-consuming. Another
disadvantage is the need to keep the original training set. However, the improvement
in accuracy in concentration prediction offsets these disadvantages, especially in such
applications as the detection of toxins in waste water [9].

4. RESULTS AND DISCUSSION

The modelling biosensors were calibrated for mixtures of four (K = 4) components.
Each component of eight (M = 8) different concentrations was employed in the
calibration to have the biosensor response to a wide range of substrate concentra-
tions [3].

The total set of full factorial of MK = 84 = 4096 responses was split randomly
into Ω1 (learning) and Ω2 (test) sets having approximately the same number of
responses. Two thousand response curves were chosen independently as the Ω2 set.
The remaining 2096 samples were accepted as the Ω1 set, L = 2096.

The following M concentrations for each of the K components S1, . . . ,SK of the
mixture were used:

ck ∈
{

sk,m : sk,m = γm nmol/cm3
, m = 1, . . . ,M

}
, k = 1, . . . ,K,
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K = 4, M = 8;
γ1 = 1, γ2 = 2, γ3 = 4, γ4 = 8, γ5 = 12, γ6 = 16, γ7 = 32, γ8 = 64.

The biosensor response depends upon the concentration ck of the component
Sk (k = 1, . . . , K), the mode of analyte analysis (BA or IA), and the membrane
thickness d. The response of the first biosensor, having a membrane of thickness d =
0.2mm, was under dual control: by diffusion (for three components S1, S2, S3) and
by enzyme kinetics (for component S4). Another thickness d = 0.4mm was chosen
so, that the response was controlled by the diffusion for all four components.

The biosensor responses were simulated until a steady state was reached. During
the computer simulation, values ~z = (z1, . . . , zN ) of the density of the biosensor
current were stored every second of the biosensor operation, i. e. the current density
at time ti = i s was accepted as the zi, i = 1, . . . , N . The moment of the occurrence
of the steady state depends on the mode of analysis and the thickness of the enzyme
membrane [4, 22, 24].

The application of PCA to the Ω1 sets resulted in 6 principal components in all
three cases of the biosensor operation: BA at membrane thickness d = 0.2mm (N
= 300), BA at d = 0.4mm (N = 300), and IA at d = 0.2mm (N = 150). Due to
the PCA the neural networks having J = 6 nodes in the input layer were employed.
Since the mixtures to be analysed consist of four components, the networks have K
= 4 nodes in the output layer. A single hidden layer feedforward neural network
with sigmoid activation in the hidden layer has universal approximation capabilities
[8, 14]. Twelve nodes in a single hidden layer were used in the case of BA when
membrane thickness d is 0.2mm. In two other cases, BA at d = 0.4mm and IA at
d = 0.2mm, eight nodes in a single hidden layer were enough.

The forecasting quality Qk of concentration y = sk,m of the component Sk of a
mixture was estimated using quality measure (8) with the tolerance intervals ∆y
presented in Table 1.

Table 1. The accuracy intervals ∆y for prediction

of the concentration y using forecasting quality (8).

y ∆y y ∆y
1 [0, 1.5) 12 [11, 13)
2 [1.5, 2.9] 16 [15, 17)
4 [3.1, 5) 32 [31, 33)
8 [7, 9) 64 [63, 65)

In the case of injection analysis, the prediction quality achieves a suitably high
classification accuracy of over 99 % .

In the case of bath analysis, the quality of prediction depends on whether the
biosensor response is under diffusion or enzyme kinetics control. When biosensor
response was under enzyme kinetics control, we achieved a prediction quality of
76.75 % . In all other cases the forecasting quality was over 99 % . Let us remind
the reader that the biosensor response was under diffusion control when predicting
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only the component S4 with the biosensor having an enzyme membrane thickness of
0.2mm.

The prediction quality of 76.75 % is fairly low. However, this value is significantly
higher than the corresponding value of the forecasting quality (57.4 % ) achieved
using a standard ANN [5].

Table 2. The forecasting quality Qk of the concentration prediction

in bath analysis at the test set and membrane thickness of 0.2mm.

Component, k Standard ANN Locally weighted ANN
1 100 100
2 100 100
3 96 99.55
4 57.4 76.75

Figure 2 shows values of the forecasting accuracy Qk versus values of the band-
width h for all components S1, . . . , S4 of the mixtures. One can see notable non-
monotonous behaviour of the function Qk when analysing components S3 and S4.
The quality 76.75 % of the prediction of the component S4 has been achieved at h
= 0.25. The best prediction quality (99.55 % ) of S3 has been achieved at a slightly
different value (0.4) of h. Consequently, the maximizing value of the bandwidth h
depends on the activity of the enzyme to the concrete component.
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Fig. 2. The forecasting accuracy Qk versus the bandwidth h

for the mixture component Sk, k = 1, . . . , K.
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5. CONCLUSIONS

Artificial neural networks can be successfully used to discriminate components of
mixtures and to estimate the concentration of each component from the biosensor
response data.

In the case of bath analysis, the prediction quality depends on whether the biosen-
sor response is under diffusion or enzyme kinetics control. The concentration of
component Sk is predicted more accurately when the biosensor response is under
diffusion control, i. e. when the diffusion modulus σ2

k is greater than one. Because of
this, the enzyme membrane thickness as one of the factors determining the diffusion
modulus is of crucial importance for the detection limit of the biosensor.

In the case of injection analysis, the prediction quality is much less sensitive to
the ratio of the enzyme reaction rate to the rate of the mass transport through the
enzyme layer. An application of the injection analysis instead of the bath one can
increase prediction quality.

Prediction quality can also be significantly increased by the application of a locally
weighted linear regression for retraining the neural networks (Table 2).

Work is now in progress to increase the quality of phenol detection in waste
water [9].
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