Elango Roja; Mallasamudram Kuppusamy Uma; Ganesan Balasubramanian G_{δ} -separation axioms in ordered fuzzy topological spaces

Kybernetika, Vol. 43 (2007), No. 1, 103--111

Persistent URL: http://dml.cz/dmlcz/135758

Terms of use:

© Institute of Information Theory and Automation AS CR, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

G_{δ} -SEPARATION AXIOMS IN ORDERED FUZZY TOPOLOGICAL SPACES

Elango Roja, Mallasamudram Kuppusamy Uma and Ganesan Bala-subramanian

 G_{δ} -separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn's lemma.

Keywords: fuzzy $G_{\delta}\text{-neighbourhood},$ fuzzy $\mathbf{G}_{\delta}\text{-}T_1\text{-}\text{ordered}$ spaces, fuzzy $G_{\delta}\text{-}T_2$ ordered spaces

AMS Subject Classification: 54A40, 03E72

1. INTRODUCTION

The fuzzy concept has invaded all branches of Mathematics ever since the introduction of fuzzy set by Zadeh [10]. Fuzzy sets have applications in many fields such as information [5] and control [8]. The theory of fuzzy topological spaces was introduced and developed by Chang [3] and since then various notions in classical topology have been extended to fuzzy topological spaces. Sostak [6] introduced the fuzzy topology as an extension of Chang's fuzzy topology. It has been developed in many directions. Sostak [7] also published a new survey article of the developed areas of fuzzy topological spaces. Katsaras [4] introduced and studied ordered fuzzy topological spaces. Motivated by the concepts of fuzzy G_{δ} -set [2] and ordered fuzzy topological spaces the concept of increasing (decreasing) fuzzy G_{δ} -sets, fuzzy $G_{\delta}-T_1$ ordered spaces and fuzzy $G_{\delta}-T_2$ ordered spaces are studied. In this paper we introduce some new separation axioms in the ordered fuzzy topological spaces and we establish an analogue of Urysohn's lemma.

2. PRELIMINARIES

Definition 1. Let (X, T) be a fuzzy topological space and λ be a fuzzy set in X. λ is called a fuzzy G_{δ} -set [2] if $\lambda = \lambda_i$ where each $\lambda_i \in T$ for $i \in I$.

Definition 2. Let X, T be a fuzzy topological space and λ be a fuzzy set in X. λ is called a fuzzy F_{σ} -set if $\lambda = \lambda_i$ where each $1 - \lambda_i \in T$ for $i \in I$ (see [2]). **Definition 3.** A fuzzy set μ is a fuzzy topological space (X,T) is called a fuzzy G_{δ} -neighbourhood of $x \in X$ if there exists a fuzzy G_{δ} -set μ_1 with $\mu_1 \leq \mu$ and $\mu_1(x) = \mu(x) > 0$.

It is easy to see that a fuzzy set is fuzzy G_{δ} - if and only if μ is a fuzzy G_{δ} neighbourhood of each $x \in X$ for which $\mu(x) > 0$.

Definition 4. A family H of fuzzy G_{δ} -neighbourhoods of a point x is called a base for the system of all fuzzy G_{δ} -neighbourhood μ of x if the following condition is satisfied. For each fuzzy G_{δ} -neighbourhood μ of x and for each θ , with $0 < \theta < \mu(x)$ there exists $\mu_1 \in H$ with $\mu_1 \leq \mu$ and $\mu_1(x) > 0$.

Definition 5. A function f from a fuzzy topological space (X, T) to a fuzzy topological space (Y, S) is called fuzzy irresolute if $f^{-1}(\mu)$ is fuzzy G_{δ} - in X for each fuzzy G_{δ} -set μ in Y. The function f is said to be fuzzy irresolute at $x \in X$ if $f^{-1}(\mu)$ is a fuzzy G_{δ} -neighbourhood of x for each fuzzy G_{δ} -neighbourhood μ of f(x). Following the idea of Warren [10] it is easy to see that f is fuzzy irresolute $\Leftrightarrow f$ is-fuzzy irresolute at $a \in X$.

Definition 6. A fuzzy set λ in (X, T) is called increasing/decreasing if $\lambda(x) \leq \lambda(y)/\lambda(x) \geq \lambda(y)$ whenever $x \leq y$ in (X, T) and $x, y \in X$.

Definition 7. (Katsaras [4]) An ordered set on which there is given a fuzzy topology is called an ordered fuzzy topological space.

Definition 8. If λ is a fuzzy set of X and μ is a fuzzy set of Y then $\lambda \times \mu$ is a fuzzy set of $X \times Y$, defined by $(\lambda \times \mu)(x, y) = \min(\lambda(x), \mu(y))$, for each $(x, y) \in X \times Y$ [1]. A fuzzy topological space X is product related [1] to another fuzzy topological space Y if for any fuzzy set γ of X and η of Y whenever $(1 - \lambda) \ge \gamma$ and $1 - \mu \ge \eta \Rightarrow ((1 - \lambda) \times 1) \lor (1 \times (1 - \mu)) \ge \gamma \times \eta$, where λ is a fuzzy open set in X and μ is a fuzzy open set in Y such that $1 - \lambda_1 \ge \gamma$ or $1 - \mu_1 \ge \eta$ and $((1 - \lambda_1) \times 1) \lor (1 \times (1 - \mu)) = ((1 - \lambda) \times 1) \lor (1 \times (1 - \mu))$.

Definition 9. (Katsaras [4]) An ordered fuzzy topological space (X, T, \leq) is called normally ordered if the following condition is satisfied. Given a decreasing fuzzy closed set μ and a decreasing fuzzy open set γ such that $\mu \leq \gamma$, there are decreasing fuzzy open set γ_1 and a decreasing fuzzy closed set μ_1 such that $\mu \leq \gamma_1 \leq \mu_1 \leq \gamma$.

3. FUZZY G_{δ} - T_1 -ORDERED SPACES

Let (X,T,\leq) be an ordered fuzzy topological space and let λ be any fuzzy set in (X,T,\leq) , λ is called increasing fuzzy G_{δ}/F_{σ} if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ /if $\lambda = \bigvee_{i=1}^{\infty} \lambda_i$, where each λ_i is increasing fuzzy open/closed in (X,T,\leq) . The complement of fuzzy increasing G_{δ}/F_{σ} -set is decreasing fuzzy F_{σ}/G_{δ} . **Definition 10.** Let λ be any fuzzy set in the ordered fuzzy topological space (X, T, \leq) . Then we define

=	increasing fuzzy σ -closure of λ
=	the smallest increasing fuzzy F_{σ} -set containing λ ;
=	decreasing fuzzy σ -closure of λ
=	the smallest decreasing fuzzy F_{σ} -set containing λ ;
=	increasing fuzzy σ -interior of λ
=	the greatest increasing fuzzy G_{δ} -set contained in λ ;
=	decreasing fuzzy σ -interior of λ
=	the greatest decreasing fuzzy G_{δ} -set contained in λ .

Proposition 1. For any fuzzy set λ of an ordered fuzzy topological space (X, T, \leq) , the following are valid.

(a) $\begin{aligned} 1 - I_{\sigma}(\lambda) &= D^{0}_{\sigma}(1-\lambda), \\ (b) & 1 - D_{\sigma}(\lambda) &= I^{0}_{\sigma}(1-\lambda), \\ (c) & 1 - I^{0}_{\sigma}(\lambda) &= D_{\sigma}(1-\lambda), \\ (d) & 1 - D^{0}_{\sigma}(\lambda) &= I_{\sigma}(1-\lambda). \end{aligned}$

Proof. We shall prove (a) only, (b), (c) and (d) can be proved in a similar manner.

Since $I_{\sigma}(\lambda)$ is a increasing fuzzy F_{σ} -set containing λ , $1 - I_{\sigma}(\lambda)$ is a decreasing fuzzy G_{δ} -set such that $1 - I_{\sigma}(\lambda) \leq 1 - \lambda$. Let μ be another decreasing fuzzy G_{δ} -set such that $\mu \leq 1 - \lambda$. Then $1 - \mu$ is a increasing fuzzy F_{σ} -set such that $1 - \mu \geq \lambda$. It follows that $I_{\sigma}(\lambda) \leq 1 - \mu$. That is, $\mu \leq 1 - I_{\sigma}(\lambda)$. Thus, $1 - I_{\sigma}(\lambda)$ is the largest decreasing fuzzy G_{δ} -set such that $1 - I_{\sigma}(\lambda) \leq 1 - \lambda$. That is, $1 - I_{\sigma}(\lambda) = 1 - D_{\sigma}^{0}(1 - \lambda)$.

Definition 11. An ordered fuzzy topological space (X, τ, \leq) is said to be lower/upper fuzzy $G_{\delta} - T_1$ -ordered if for each pair of elements $a \not\leq b$ in X, there exists an increasing/decreasing fuzzy G_{δ} -neighbourhood λ such that $\lambda(a) > 0/\lambda(b) > 0$ and λ is not a fuzzy G_{δ} -neighbourhood of b/a. X is said to be fuzzy G_{δ} - T_1 -ordered if it is both lower and upper G_{δ} - T_1 -ordered.

Proposition 2. For an ordered fuzzy topological space (X, τ, \leq) the following are equivalent.

- 1. (X, τ, \leq) is lower/upper fuzzy $G_{\delta} T_1$ -ordered.
- 2. For each $a, b \in X$ such that $a \not\leq b$, there exists an increasing/decreasing fuzzy G_{δ} -set λ such that $\lambda(a) > 0/\lambda(b) > 0$ and λ is not a fuzzy G_{δ} -neighbourhood of b/a.

3. For all $x \in X$, $\chi_{[\leftarrow,x]/\chi_{[x,\rightarrow]}}$ is fuzzy F_{σ}/G_{δ} – where $[\leftarrow,x] = \{y \in X | y \leq x\}$ and $[x,\rightarrow] = \{y \in X | y \geq x\}$.

Proof. (1) \Rightarrow (2) Let (X, τ, \leq) be lower fuzzy G_{δ} - T_1 -ordered. Let $a, b \in X$ be such that $a \leq b$. There exists an increasing fuzzy G_{δ} -neighbourhood λ of a such that λ is not a fuzzy G_{δ} -neigbourhood of b. It follows that there exists a fuzzy G_{δ} -set μ_1 with $\mu_1 \leq \lambda$ and $\mu_1(a) = \lambda(a) > 0$. As λ is increasing, $\lambda(a) > \lambda(b)$ and since λ is not a fuzzy G_{δ} -neighbourhood of b, $\mu_1(b) < \lambda(b) \Rightarrow \mu_1(a) = \lambda(a) > \lambda(b) > \mu_1(b)$. This shows μ_1 is increasing and μ_1 is not a fuzzy G_{δ} -neighbourhood of b since λ is not a fuzzy G_{δ} -neighbourhood of b.

 $(2) \Rightarrow (3)$ consider $1 - \chi_{[\leftarrow,x]}$. Let y be such that $1 - \chi_{[\leftarrow,x]}(y) > 0$. This means $y \leq x$. Therefore by (2) there exists increasing fuzzy G_{δ} -set λ such that $\lambda(y) > 0$ and λ is not a fuzzy G_{δ} -neighbourhood of x and $\lambda \leq 1 - \chi_{[\leftarrow,x]}$. This means $1 - \chi_{[\leftarrow,x]}$ is fuzzy G_{δ} - and so $X_{(\leftarrow,x]}$ is fuzzy F_{σ} .

 $(3) \Rightarrow (1)$ This is obvious.

Corollary 1. If (X, τ, \leq) is lower/upper fuzzy G_{δ} - T_1 -ordered and $\tau \leq \tau^*$, then (X, τ^*, \leq) is also lower/upper fuzzy $G_{\delta} - T_1$ -ordered.

Proposition 3. Let f be order preserving (that is $x \leq y$ in X if and only if $f(x) \leq *f(y)$ in X^*), fuzzy irresolute mapping from an ordered fuzzy topological space (X, τ, \leq) to an ordered fuzzy topological space (X^*, τ^*, \leq^*) . If (X^*, τ^*, \leq^*) is fuzzy $G_{\delta}-T_1$ -ordered, then (X, τ, \leq) is fuzzy $G_{\delta}-T_1$ -ordered.

Proof. Let $a \leq b$ in X. As f is order preserving, $f(a) \leq^* f(b)$ in X^* . Hence there exists an increasing/decreasing fuzzy G_{δ} -set λ^* in X such that $\lambda^*(f(a)) > 0/\lambda^*(f(b)) > 0$ and λ^* is not a fuzzy G_{δ} -neighbourhood of f(b)/f(a). Let $\lambda = f^{-1}(\lambda^*)$. As f is order preserving and fuzzy irresolute λ is an increasing/decreasing fuzzy G_{δ} -set in X. Also $\lambda(a) > 0/\lambda(b) > 0$ and λ is not a fuzzy G_{δ} -neighbourhood of b/a. Thus we have shown that X is lower/upper fuzzy G_{δ} -T₁-ordered. That is (X, τ, \leq) is fuzzy G_{δ} -T₁-ordered.

Proposition 4. Suppose $(X_{t1}, \tau_{t1}, \leq_{t1})$ and $(X_{t2}, \tau_{t2}, \leq_{t2})$ be any two ordered fuzzy topological spaces such that X_{t1} and X_{t2} are product related (Zadeh [11]). Assume X_{t1} and X_{t2} are fuzzy G_{δ} - T_1 -ordered. Let (X, τ, \leq) be the product ordered fuzzy topological space. Then (X, τ, \leq) is also fuzzy G_{δ} - T_1 -ordered.

Proof. Let $a = (a_{t1}, a_{t2})$ and $b = (b_{t1}, b_{t2})$ be two elements of the product X such that $a \not\leq b$. Thus $a_{t1} \not\leq b_{t1}$ or $a_{t2} \not\leq b_{t2}$ or both. To be definite let us assume that $a_{t1} \not\leq b_{t1}$. Since $(X_{t1}, \tau_{t1}, \leq_{t1})$ is fuzzy $G_{\delta} - T_1$ -ordered, there exists an increasing fuzzy G_{δ} -set θ_{t1} in τ_{t1} , such that $\theta_{t1}(a_{t1}) > 0$ and $\theta_{t1}(b_{t1}) = 0$. Define $\theta = \theta_{t1} \times 1_{Xt2}$. Then θ is an increasing fuzzy G_{δ} -set in X such that $\theta(a) > 0$ and $\theta(b) = 0$. (Since $\theta(b) = \theta(b_{t1}, b_{t2}) = \theta_{t1} \times 1_{xt2}$ (b_{t1}, b_{t2}) = Min $\{\theta_{t1}(b_{t1}), 1_{xt2}(b_{t2})\}$ = Min $\{0, 1\} = 0$).

Therefore (X, τ, \leq) is lower fuzzy $G_{\delta} - T_1$ -ordered. Similarly we can prove it is also upper fuzzy $G_{\delta} - T_1$ -ordered. That is (X, τ, \leq) is fuzzy $G_{\delta} - T_1$ -ordered.

Definition 12. Let $\{(X_t, \tau_{t1}, \leq_t)\}_{t \in \Delta}$ be a collection of disjoint ordered fuzzy topological spaces. Let $X = \bigcup_{t \in \Delta} X_t$, $T = \{\lambda \in I^X | \lambda / X_t \in \tau_t\}$ and " \leq " be a partial order on X such that $x \leq y$ if and only if $x, y \in X_t$ for some $t \in \Delta$ and $x \leq_t y$. Then (X, τ, \leq) is called ordered fuzzy topological sum of $\{(X_t, \tau_t, \leq_t)\}_{t \in \Delta}$.

In this connection we prove the following proposition.

Proposition 5. (X, τ, \leq) is fuzzy G_{δ} - T_1 -ordered $\Leftrightarrow (X_t, \tau_t, \leq_t)$ is fuzzy G_{δ} - T_1 -ordered for each $t \in \Delta$.

Proof. Let (X, τ, \leq) be fuzzy G_{δ} - T_1 -ordered that $t \in \Delta$. Suppose $x, y \in X_t$ such that $x \not\leq_t y$. Then $x \not\leq y$. Hence there exists an increasing fuzzy G_{δ} -set λ in X such that $\lambda(x) > 0$ and $\lambda(y) = 0$. But λ/X_t is an increasing fuzzy G_{δ} - of X_t , such that $\lambda/X_t(x) > 0$ and $\lambda/X_t(y) = 0$. Therefore, (X_t, τ_t, \leq_t) is lower fuzzy $G_{\delta} - T_1$ -ordered. Similarly, we can show that it is an upper fuzzy G_{δ} - T_1 -ordered space.

Conversely, let (X_t, τ_t, \leq_t) be fuzzy $G_{\delta}-T_1$ -ordered for all $t \in \Delta$. Consider $x, y \in X$ such that $x \leq y$. Then there exists $t_0 \in \Delta$ such that $x, y \in X_{t_0}$, with $x \not\leq t_0 y$ or $x \in X_t, y \in X_s, t \neq s t, s \in \Delta$. If $x, y \in X_{t_0}, t_0 \in \Delta$, then by hypothesis there exists an increasing fuzzy G_{δ} -set λ in X_{t_0} such that $\lambda(x) > 0, \lambda(y) = 0$. Then λ is the required increasing fuzzy G_{δ} -set of X. But if $x \in X_t, y \in X_s, t \neq s, t, s \in \Delta$ then 1_{Xt} , is the required increasing fuzzy G_{δ} -set of X. Hence in either cases (X, τ, \leq) is lower fuzzy G_{δ} - T_1 -ordered. Similarly we can prove that (X, τ, \leq) is upper G_{δ} - T_1 -ordered.

4. FUZZY G_{δ} - T_2 -ORDERED SPACES

Definition 13. (X, τ, \leq) is said to be fuzzy G_{δ} - T_2 -ordered if for $a, b \in X$, with $a \not\leq b$, there exists fuzzy G_{δ} -sets λ and μ such that λ is an increasing fuzzy G_{δ} -neighbourhood of a, μ is a decreasing fuzzy G_{δ} -neighbourhood of a and $\lambda \wedge \mu = 0$.

Definition 14. Let $(X \leq)$ be any partially ordered set. Let $G = \{(x, y) \in X \times X | x \leq y\}$. Then G is called the graph of the partial order " \leq ".

Proposition 6. For an ordered fuzzy topological space (X, τ, \leq) the following are equivalent.

- (1) X is fuzzy G_{δ} -T₂-ordered.
- (2) For each pair $a, b \in X$ such that $a \not\leq b$, there exists fuzzy G_{δ} -sets λ and μ such that $\lambda(a) > 0, \mu(b) > 0$ and $\lambda(x) > 0$ and $\mu(y) > 0$ together imply that $x \leq y$.
- (3) The characteristic function χ_G where G is the graph of the partial order of G, is fuzzy F_{σ} in $(X \times X, \tau \times \tau, \leq)$.

Proof. (1) \Rightarrow (2) Suppose $\lambda(x) > 0$, and $\mu(y) > 0$ and suppose $x \leq y$. Since λ is increasing and μ is decreasing, $\lambda(x) \leq \lambda(y)$ and $\mu(x) \geq \mu(y)$. Therefore, $0 < \lambda(x) \land \mu(y) \leq \lambda(y) \land \mu(x)$, which is a contradiction to the fact that $\lambda \land \mu = 0$. Therefore $x \not\leq y$.

 $(2) \Rightarrow (1)$ Let $a, b \in X$ with $a \not\leq b$. Then there exist fuzzy sets λ and μ satisfying the properties in (2). Consider $I^0_{\sigma}(\lambda)$ and $D^0_{\sigma}(\mu)$. Clearly $I^0_{\sigma}(\lambda)$ in increasing and $D^0_{\sigma}(\mu)$ is decreasing. So the proof is complete if we show that $I^0_{\sigma}(\lambda) \wedge D^0_{\sigma}(\mu) = 0$. Suppose $z \in X$ is such that $I^0_{\sigma}(\lambda)(z) \wedge D^0_{\sigma}(\mu)(z) > 0$. Then $I^0_{\sigma}(\lambda)(z) > 0$ and $D^0_{\sigma}(\mu)(z) > 0$. So if $y \leq z \leq x$, then $y \leq z \Rightarrow D^0_{\sigma}(\mu)(y) \geq D^0_{\sigma}(\mu)(z)$ and $z \leq x \Rightarrow I^0_{\sigma}(\lambda)(x) \geq I^0_{\sigma}(\lambda)(z) > 0$. Hence by (2) $x \not\leq y$; but then $x \leq y$ and this is a contradiction.

 $(1) \Rightarrow (3)$ We want to show that χ_G is fuzzy F_{σ} - in $(X \times X, \tau \times \tau)$. So it is sufficient if we show that $1 - \chi_G$ is a fuzzy G_{δ} -neighbourhood of $(x, y) \in X \times X$ such that $(1 - \chi_G)(x, y) > 0$. Suppose $(x, y) \in X \times X$ is such that $(1 - \chi_G)(x, y) > 0$. That is $\chi_G(x, y) < 1$. This means $\chi_G(x, y) = 0$. That is $(x, y) \not\leq G$. That is, $x \not\leq y$. Therefore by (1) there exists fuzzy G_{δ} -sets λ and μ such that λ is increasing fuzzy G_{δ} -neighbourhood of a, μ is a decreasing fuzzy G_{δ} -neighbourhood of b and $\lambda \wedge \mu = 0$. Clearly, $\lambda \times \mu$ is a fuzzy G_{δ} -neighbourhood of (x, y). It is easy to verify that $\lambda \times \mu < 1 - \chi_G$. Thus we find that $1 - \chi_G$ is fuzzy G_{δ} -. Hence (3) is established.

(3) \Rightarrow (1) Suppose $x \leq y$. Then $(x, y) \notin G$, where G is the graph of the partial order. Given that χ_G is fuzzy F_{σ} in $(X, \times X, \tau \times \tau)$, $1 - \chi_G$ is fuzzy G_{δ} - in $(X \times X, \tau \times \tau)$. Now, $(x, y) \notin G \Rightarrow (1 - \chi_G)(x, y) = 1 > 0$. Therefore, $(1 - \chi_G)$ is a fuzzy G_{δ} -neighbourhood of $(x, y) \in X \times X$. Hence we can find a fuzzy G_{δ} -set $\lambda \times \mu$ such that $\lambda \times \mu < (1 - \chi_G)$ and λ is fuzzy G_{δ} -set such that $\lambda(x) > 0$ and μ is a fuzzy G_{δ} -set such that $\mu(y) > 0$.

We now claim that $I^0_{\sigma}(\lambda) \wedge D^0_{\sigma}(\mu) = 0$. For if $z \in X$ is such that $(I^0_{\sigma}(\lambda) \wedge D^0_{\sigma}(\mu)(z) > 0$, then $I^0_{\sigma}(\lambda)(z) \wedge D^0_{\sigma}(\mu)(z) > 0$. This means $I^0_{\sigma}(\lambda)(z) > 0$ and $D^0_{\sigma}(\mu)(z) > 0$. And if $b \leq z \leq a$, then $z \leq a \Rightarrow I^0_{\sigma}(\lambda)(a) > I^0_{\sigma}(\lambda)(z) > 0$, and $b \leq z \Rightarrow D^0_{\sigma}(\mu)(b) \geq D^0_{\sigma}(\mu)(z) > 0$. Then $I^0_{\sigma}(\lambda)(a) > 0, D^0_{\sigma}(\mu)(b) > 0 \Rightarrow a \not\leq b$; but then $a \leq b$. This is a contradiction. Hence (1) is established.

Definition 15. (X, τ, \leq) is said to be weakly fuzzy G_{δ} - T_2 -ordered if given b < a(i. e., $b \leq a$, and $b \neq a$) there exists fuzzy G_{δ} -sets λ and μ such that $\lambda(a) > 0$ and $\mu(b) > 0$ and such that if $x, y \in X, \lambda(x) > 0, \mu(y) > 0$ together imply that y < x.

Notation. The symbol x || y means that $x \not\leq y$ and $y \not\leq x$.

Definition 16. (X, τ, \leq) is said to be almost fuzzy G_{δ} - T_2 -ordered if given a || b there exists fuzzy G_{δ} -sets λ and μ such that $\lambda(a) > 0$ and $\mu(b) > 0$ and such that if $x, y \in X, \lambda(x) > 0$ and $\mu(y) > 0$ together imply that x || y.

Proposition 7. (X, τ, \leq) is fuzzy G_{δ} - T_2 -ordered, $\Leftrightarrow (X, \tau, \leq)$ is weakly fuzzy G_{δ} - T_2 -ordered and almost fuzzy G_{δ} - T_2 -ordered.

Proof. Clearly if X is a fuzzy $G_{\delta}-T_2$ -ordered, then it is weakly fuzzy $G_{\delta}-T_2$ ordered. So now let a || b. Then $a \not\leq b$ and $b \not\leq a$. Since $a \not\leq b$ and since X is fuzzy $G_{\delta}-T_2$ -ordered we have fuzzy G_{δ} -sets λ and μ such that $\lambda(a) > 0$, $\mu(b) > 0$, $\lambda(x) > 0$ and $\mu(y) > 0$ together imply that $x \leq y$. Also since $b \leq a$, there exists fuzzy G_{δ} -sets μ^* and λ^* such that $\lambda^*(a) > 0$, and $\mu^*(b) > 0$, and $\lambda^*(x) > 0$ and $\mu^*(y) > 0$ together $\Rightarrow y \not\leq x$. Thus $I^0_{\sigma}(\lambda \wedge \lambda^*)$ is a fuzzy G_{δ} -set such that $I^0_{\sigma}(\lambda \wedge \lambda^*)(a) > 0$ and $I^0_{\sigma}(\mu \wedge \mu^*)$ is such that $I^0_{\sigma}(\mu \wedge \mu^*)(b) > 0$ and $I^0_{\sigma}(\lambda \wedge \lambda^*)(x) > 0$ and $I^0_{\sigma}(\mu \wedge \mu^*)(y) > 0$ together imply that x || y. Hence X is almost fuzzy G_{δ} -T₂-ordered.

Conversely let X be weakly fuzzy $G_{\delta}-T_2$ -ordered and almost fuzzy $G_{\delta}-T_2$ -ordered. We want to show that X is fuzzy $G_{\delta}-T_2$ -ordered. So let $a \not\leq b$. Then either b < a or $b \leq a$. If b < a, then X being weakly fuzzy $G_{\delta}-T_2$ -ordered there exists fuzzy G_{δ} -sets λ and μ such that $\lambda(a) > 0$ and $\mu(b) > 0$ and such that $\lambda(x) > 0$, $\mu(y) > 0$ together imply y < x. That is $x \not\leq y$. If $b \not\leq a$, then a || b and the result follows easily since X is almost fuzzy $G_{\delta} - T_2$ -ordered.

Definition 17. Let λ and μ be fuzzy sets in (X, τ, \leq) . λ is called a fuzzy G_{δ} -neighbourhood of μ if $\mu \leq \lambda$ and there exists a fuzzy G_{δ} -set δ such that $\mu \leq \delta \leq \lambda$.

Proposition 8. An ordered fuzzy topological space (X, τ, \leq) is fuzzy $G_{\delta}-T_2$ ordered \Leftrightarrow For each pair of points $x \leq y$ in X, there exists a function f of (X, τ, \leq) into a fuzzy $G_{\delta}-T_2$ -ordered space (X^*, τ^*, \leq^*) such that (1) f is increasing/decreasing; (2) f is fuzzy irresolute; (3) $f(x) \leq^* f(y)/f(y) \leq^* f(x)$.

Proof. If (X, τ, \leq) is fuzzy G_{δ} - T_2 -ordered space, then the identity mapping is the required function.

Conversely let $x \leq y$ in X. Hence by hypothesis, there exists a function f of (X, τ, \leq) into a fuzzy G_{δ} - T_2 -ordered space (X^*, τ^*, \leq^*) satisfying the conditions (1), (2) and (3).

Since $f(x) \not\leq^* f(y)$ and (X^*, τ^*, \leq^*) is fuzzy G_{δ} - T_2 -ordered there exists an increasing fuzzy G_{δ} -set λ and a decreasing fuzzy G_{δ} -set μ such that λ is a fuzzy G_{δ} -neighbourhood of f(a) and μ is a fuzzy G_{δ} - neighbourhood of f(b) such that $\lambda \wedge \mu = 0$. Since f is increasing and λ is increasing it follows by Proposition 3.8 of [4], $F^{-1}(\lambda)$ is increasing. Also since f is increasing and μ is decreasing again by Proposition 3.8 of [4], $f^{-1}(\mu)$ is decreasing. Also since f is fuzzy irresolute $f^{-1}(\lambda)$ and $f^{-1}(\mu)$ are fuzzy G_{δ} -sets in X and also $f^{-1}(\lambda) \wedge f^{-1}(\mu) = f^{-1}(\lambda \wedge \mu) = f^{-1}(0) = 0$.

Hence X is fuzzy G_{δ} - T_2 -ordered. Analogously one can prove the proposition for decreasing function.

Proposition 9. The product of a family of fuzzy G_{δ} - T_2 -ordered spaces is also fuzzy G_{δ} - T_2 -ordered.

Proof. Let $\{X_t, \tau_t, \leq_t | t \in \Delta\}$ be a family of fuzzy G_{δ} - T_2 -ordered spaces and (X, τ, \leq) be the product of ordered fuzzy topological spaces. If $(x(t), (y_t) \in X$ such that $(x_t) \not\leq (y_t)$, then there exists $t_0 \in \Delta$ such that $x_{t_0} \not\leq y_{t_0}$. Thus there exists fuzzy G_{δ} -sets λ_{t_0} and μ_{t_0} in X_{t_0} , where λ_{t_0} is increasing and μ_{t_0} is decreasing and λ_{t_0} is

fuzzy G_{δ} -neighbourhood of x_{t_0} , μ_{t_0} is a fuzzy G_{δ} -neighbourhood of y_{t_0} , $\lambda_{t_0} \wedge \mu_{t_0} = 0$. Define

$$\lambda = \prod_{t \in \Delta} \lambda_t \quad \text{where} \quad \lambda_{t_0} = 1_{x_t} \quad \text{if} \quad t \neq t_0,$$

and

$$\mu = \prod_{t \in \Delta} \mu_t \quad \text{where} \quad \mu_{t_0} = 1_{x_t} \quad \text{if} \quad t \neq t_0.$$

Then λ is an increasing fuzzy G_{δ} -set of X and μ is decreasing fuzzy G_{δ} -set of X such that λ is a fuzzy G_{δ} -neighbourhood of (x_t) and μ is a fuzzy G_{δ} -neighbourhood of (y_t) and $\lambda \wedge \mu = 0$. Hence (X, τ, \leq) is fuzzy G_{δ} - T_2 -ordered. \Box

Proposition 10. Let $\{(X_t, \tau_t, \leq) | t \in \Delta\}$ be a family of disjoint ordered fuzzy topological spaces and let (X, τ, \leq) be the ordered fuzzy topological sum. Then (X, τ, \leq) is fuzzy G_{δ} - T_2 -ordered $\Leftrightarrow (X_t, \tau_t, \leq_t)$ is fuzzy G_{δ} - T_2 -ordered for each $t \in \Delta$.

Proof. The proof is similar to Proposition 5.

Definition 18. (X, τ, \leq) is said to be fuzzy G_{δ} -normally ordered if and only if the following condition is satisfied: Given decreasing fuzzy F_{σ} -set μ and decreasing fuzzy G_{δ} -set ρ such that $\mu \leq \rho$, there are decreasing fuzzy G_{δ} -set ρ_1 and a decreasing fuzzy F_{σ} -set μ_1 such that $\mu \leq \rho_1 \leq \mu_1 \leq \rho$.

Clearly every normally ordered space (see Katsaras [4]) is fuzzy G_{δ} -normally ordered.

Proposition 11. In an ordered fuzzy topological spaces (X, τ, \leq) the following are equivalent:

(1) (X, τ, \leq) is fuzzy G_{δ} -normally ordered;

(2) Given a decreasing fuzzy G_{σ} -set μ and a decreasing fuzzy G_{δ} -set ρ with $\mu \leq \rho$, there exists a decreasing fuzzy G_{δ} -set ρ_1 such that $\mu < \rho_1 < D_{\sigma} \ (\rho_1) \leq \rho$.

Proof. (1) \Rightarrow (2) Let μ and ρ be as given in (2).

Hence by (1) we have fuzzy G_{δ} -decreasing set ρ_1 a decreasing fuzzy F_{σ} -set μ_1 such that $\mu \leq \rho_1 \leq \mu_1 \leq \rho$. Since μ_1 is a decreasing fuzzy F_{σ} -set such that $\rho_1 \leq \mu_1$, we have $\mu \leq \rho_1 \leq D_{\sigma}(\rho_1) \leq \mu_1 \leq \rho$. This proves (1) \Rightarrow (2).

 $(2) \Rightarrow (1)$. Let μ be a decreasing fuzzy F_{σ} -set and ρ be a decreasing fuzzy G_{δ} -set such that $\mu \leq \rho$. Hence by (2) there exists a decreasing fuzzy G_{δ} -set ρ_1 such that $\mu \leq \rho_1 \leq D_{\sigma} \ (\rho_1) \leq \rho$.

Clearly $D_{\sigma}(\rho_1)$ is the smallest decreasing fuzzy F_{σ} -set containing ρ_1 . Put $\mu_1 = D(\rho_1)$. Then $\mu \leq \rho_1 \leq \mu_1 \leq \rho$ shows that (2) \Rightarrow (1) is proved.

We have now the following result which is analogous to Urysohn's lemma.

Definition 19. A function f from a fuzzy topological space (X, T) to a fuzzy topological space (Y, S) is called fuzzy G_{δ} -continuous if $f^{-1}(\lambda)$ is fuzzy G_{δ} in (X, T) whenever λ is fuzzy open in (Y, S).

Theorem 12. (X, τ, \leq) is fuzzy G_{δ} -normally ordered \Leftrightarrow Given a decreasing fuzzy F_{σ} -set μ in X and a decreasing fuzzy G_{δ} -set ρ with $\mu \leq \rho$, there exists an increasing function $f: X \to I(I)$ such that $\mu(x) < 1 - f(x)(0+) \leq 1 - f(x)(1-) \leq \rho(x)$ and f is fuzzy G_{δ} -continuous and I(I) is fuzzy unit interval (see [4]).

Proof. The proof is similar to that of Theorem 5.3 in [4] with some slight suitable modifications.

ACKNOWLEDGEMENT

The authors acknowledge the referees and the editors for their valuable suggestions resulting in improvement of the paper.

(Received December 12, 2005.)

REFERENCES

- K. A. Azad: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl. 82 (1981), 14–32.
- [2] G. Balasubramanian: Maximal fuzzy topologies. Kybernetika 31 (1995), 459-464.
- [3] C.L. Chang: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182–190.
- [4] A.K. Katsaras: Ordered fuzzy topological spaces. J. Math. Anal. Appl. 84 (1981), 44–58.
- [5] P. Smets: The degree of belief in a fuzzy event. Inform. Sci. 25 (1981), 1–19.
- [6] A.P. Sostak: On a fuzzy topological structure. Suppl. Rend. Circ. Mat. Palermo 11 (1985), 89–103.
- [7] A. P. Sostak: Basic structure of fuzzy topology. J. Math. Sci. 78 (1996), 662–701.
- [8] M. Sugeno: An introductory survey of fuzzy control. Inform. Sci. 36 (1985), 59–83.
- [9] R. H. Warren: Neighbourhoods, bases and continuity in fuzzy topological spaces. Rocky Mountain J. Math. 8 (1978), 459–470.
- [10] L.A. Zadeh: Fuzzy sets. Inform. Control 8 (1965), 338–353.

Elango Roja and Mallasamudram Kuppusamy Uma, Department of Mathematics, Sri Sarada College for Women, Salem-16, Tamil Nadu. India. e-mails: rpbalan@sancharnet.in, ar.udhay@yahoo.co.in

Ganesan Balasubramanian, Department of Mathematics, Periyar University, Salem – 636 011, Tamil Nadu. India.