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MULTIVARIATE SMOOTH TRANSITION AR MODEL
WITH AGGREGATION OPERATORS AND
APPLICATION TO EXCHANGE RATES

Tomáš Bacigál

An overview of multivariate modelling based on logistic and exponential smooth tran-
sition models with transition variable generated by aggregation operators and orders of
auto and exogenous regression selected by information criterion separately for each regime
is given. Model specification procedure is demonstrated on trivariate exchange rates time
series. The application results show satisfactory improvement in fit when particular aggre-
gation operators are used. Source code in the form of Mathematica package is provided.
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1. INTRODUCTION

Smooth transition autoregression (STAR) as a part of regime-switching family of
non-linear models uses piecewise linear structure which is easy to interpret as well as
to forecast from. Transition between regimes is controlled by comparing realizations
of the so-called transition variable to a threshold. This threshold and the parameter
of transition function that describes how smooth/abrupt the change happens, are
subject to estimation together with parameters of linear VAR model in each regime.
The 2-regime multivariate STAR model can be written in matrix notation as

yt = Φ1Xt(1−G(zt, γ, r)) + Φ2XtG(zt, γ, r) + εt, (1)

which contains k-dimensional vector of modelled variables yt, k × K parameter
matrix Φj corresponding to jth regime, K×1 regressor Xt, white noise series εt and
transition function G with transition variable zt, smooth parameter γ and threshold
r as its parameters. Dimension K is number of all (current and/or lagged) variables
included in regression. In the following, we use two different transition functions.
The first-order logistic function

G(zt, γ, r) =
1

1 + e−γ(zt−r) , γ > 0, (2)
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causes the swap of regimes permanent as transition variable passes the threshold,
whereas exponential function

G(zt, γ, r) = 1− e−γ(zt−r)2
, γ > 0, (3)

allows the second regime to arise only for zt close to threshold.

2. AGGREGATION OPERATOR

Besides the optionality in transition function, a considerable freedom is left with the
transition variable as well. Whilst usually just a lagged value of one of the modelled
variables is employed, yi,t−d for i ∈ {1, . . . k} and some integer d > 0, we use here
a more general way of generating zt, in which last d values of some observed time
series {ξi, i = 1, . . . t} is taken and so called aggregation operator A is applied to get
one-dimensional quantity, such as

zt = A(ξt−1, . . . , ξt−d). (4)

Typical continuous aggregation operator (see [1]) on the real line (Rd → R) is
weighted mean. The diversity is achieved by setting weights wi ∈ [0, 1], i ≤ d

(with
∑d
i=1 wi = 1), for instance as constant (wi = 1/d, arithmetic mean M) or

decreasing sequence based on convex bijection ϕ of [0, 1], where the weights wi =
ϕ(d−i+1

d ) − ϕ(d−id ) for i = 1, . . . d, and we denote the aggregation operator as W2

if ϕ(x) = x2 and W3 if ϕ(x) = x3. In the experiment bellow there is used also
weighted mean with Sierpinski carpet (wi = p(1− p)i−1 for i < d, wd = (1− p)d−1,
with probability p ∈ [0, 1]) and Fibonacci weights (wi = fd−i+1

fd+2−1 , i = 1, . . . d, where
fi is the Fibonacci number satisfying the recurrence relation fi = fi−1 + fi−2 with
f1 = f2 = 1).

Other type of weighted mean is achieved by applying weights to input sequence
ordered by increasing values instead of time. It is called ordered weighted average
(OWA) operator and covers also the maximum (MAX ) and minimum (MIN ).

3. TESTING FOR LINEARITY

There are two tests that should precede STAR model specification procedure. Both
are simple and perform well in finite samples, yet they do not encounter the problem
of unidentified nuisance parameters under null hypothesis.

The first one, proposed by Tsay in [7], put linearity against threshold non-linearity
(i. e. abrupt transition between regimes) using the linear regression yt = ΦXt + εt
rearranged according to the increasing order of transition variable zt so that yt(i) =
ΦXt(i) + εt(i). Here t(i) is the time index of z(i) which denotes the ith smallest
element of zt for i = 1, . . . n, shortly zt(i) = z(i). Thus the arranged regression trans-
forms a threshold model into changepoint problem. Detection of such changepoint
can be done via predictive residuals εt(i+1). If yt is linear, the recursive least square
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estimator of the arranged regression is consistent so that the predictive residuals
approach white noise and, obviously, they are uncorrelated with regressor Xt(i+1).

Let Φ̂ñ be a least squares estimate of Φ from data points associated with ñ
smallest values of zt and

η̂t(ñ+1) =
yt(ñ+1) − Φ̂ñXt(ñ+1)

[
1 + {X ′t(ñ+1)V ñXt(ñ+1)

]1/2

be the standardized residuals of the 1-step-ahead prediction in the rearranged regres-

sion with V ñ =
[∑ñ

i=1Xt(i)X
′
t(i)

]−1

. Then from the regression η̂t(j) = ΨXt(j) +
wt(j), j = ñ0 + 1, . . . n, where ñ0 denotes starting point of the recursive estimation
(usually ñ0 ≈ 3

√
n), we test hypothesis H0 : Ψ = 0 versus H1 : Ψ 6= 0 with the

test-statistic
C = [n− ñ0 −K]× (ln |S0| − ln |S1|), (5)

where

S0 =
1

n− ñ0

n∑

j=ñ0+1

η̂t(j)η̂
′
t(j), S1 =

1
n− ñ0

n∑

j=ñ0+1

ŵt(j)ŵ
′
t(j).

Under the null that yt is linear, C is asymptotically a χ2 random variable with kK
degrees of freedom.

The second test, originally developed in [6] for univariate case, assumes STAR
model framework in general and expresses the null hypothesis as equality Φ1 = Φ2 or
γ = 0 against the alternative hypothesis of inequality. The problem with the presence
of unidentified nuisance parameters under the null is resolved via approximating the
transition function G(zt, γ, r) by suitable Taylor series around γ = 0. In case of
LSTAR the 3rd-order Taylor approximation appears suitable (cf. [6]), whilst 2nd
order is recommended for ESTAR (see [3]). This replacement yields the auxiliary
regression

yt = β0,0 + β′0Xt + β′1Xtzt + β′2Xtz
2
t + β′3Xtz

3
t + et, (6)

for logistic transition and (6) with extra term β′4Xtz
4
t for exponential transition

function, where βi = (βi,0, βi,1, . . . βi,K−1)′, i = 0, 1, 2, 3, 4, are functions of the
parameters Φ1, Φ2, γ and r. The null hypothesis γ = 0 now corresponds to H ′0 :
β1 = β2 = β3(= β4) = 0 (also et = εt) and can be tested by a standard LM-
type test. Note that if zt is one of the variables included in Xt, the terms βi,0zit,
i = 1, 2, 3, 4, should be dropped from the auxiliary regression to avoid perfect multi-
collinearity.

Next, the test statistic is computed as

LM = n(ln |Σ0| − ln |Σ1|) (7)

where
Σ0 = n−1

∑

t

ε̂tε̂
′
t, Σ1 = n−1

∑

t

êtê
′
t,
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with ε̂ being residuals estimated from null hypothesis regression yt = ΦXt+εt and
ê from regressing ε̂ on Xt and Xtz

i
t, i = 0, 1, 2, 3, (4).

Under the null hypothesis of linearity, LM has an asymptotic χ2 distribution
with 3kK degrees of freedom in case of logistic transition and 4kK if exponential
STAR is considered as alternative model.

4. MODEL SPECIFICATION STRATEGY

Testing for linearity, where the linear model under null hypothesis is usually selected
in phase of preliminary specification by information criteria, can be used to choose
correct transition variable. It is the choice of variable ξt and delay d in (4) that,
if correct, minimize the p-value of Tsay or LM test. Model specification then con-
tinues by joined procedure of parameters estimation and selection of appropriate
order in both autoregression and regression on exogenous variables (that means the
maximum lag used in regressor Xt). Then we do diagnostic tests on residuals and
respecification if necessary. Finally, the models that perform best in the in-sample fit
are examined for their out-of-sample performance by comparison of forecast errors.

4.1. Model selection and estimation

Orders of endogenous and exogenous regression selected for linear model and used in
linearity tests can easily be inappropriate for STAR model building. Sometimes it is
desirable to distinguish between regimes in terms of lags, and if so, it is fair to penal-
ize the inclusion of the additional parameters in Φ1, Φ2 (associated with additional
lags) not for the whole sample size but only for the number of regime-corresponding
observations nj . In [7] such information criteria are designed for threshold VAR
model (TAR), here we provide generalization to suit m-regimes smooth transition
VAR (STAR) model.

Let us define regressor in jth regime,

Xj,t = (1,y′t−1, . . .y
′
t−pj ,x

′
t−1, . . .x

′
t−qj )

′, j = 1, 2, . . .m, (8)

where xt stands for l-dimensional exogenous variable, pj is the order of endogenous
and qj of exogenous regression, then Kj = kpj + lqj + 1 is dimension of regressor
Xj,t. As for the number of observations, nj is not necessarily an integer, but rather
a weight (

∑m
j=1 nj = n) defined as nj =

∑
t ∆Gj,t with ∆Gj,t = Gj−1,t−Gj,t, where

Gj,t = Gj(zt, γj , rj) is the transition function corresponding to jth regime, G0,t = 1
and Gm,t = 0. Then BIC information criterion based on multivariate m-regimes
STAR model

yt =
m∑

j=1

ΦjXj,t∆Gj,t + εt (9)

can be expressed as

BIC(p, q) =
m∑

j=1

(
nj ln |Σ̂j |+ ln(nj)kKj

)
, (10)
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where p = (p1, . . . pm), q = (q1, . . . qm), and

Σ̂j =
1
nj

∑

t

(yt − Φ̂jXj,t)(yt − Φ̂jXj,t)′∆Gj,t

is estimated covariance matrix. Other information criteria, such as AIC or HQIC,
are computed in a similar way.

Estimation of the model parameters θ = (Φ,γ, r), where Φ = (Φ1, . . .Φm),
γ = (γ1, . . . γm−1), r = (r1, . . . rm−1) is the problem of minimizing the trace of
Σ(θ) =

∑
t(yt − ΦXt)(yt − ΦXt)′, where Xt(γ, r) = (X ′1,t∆G1, . . .X

′
m,t∆Gm)′

and ∆Gj again is function of (γj , rj). This minimizing can be performed directly by
nonlinear least squares (NLS) routine

θ̂ = argmin
θ

Tr (Σ(Φ,γ, r)) ,

for which several iterative optimization algorithms are available in statistical soft-
ware. Alternatively, for fixed values of γ and r the model is linear in the parameters
Φ, so that these can be (conditionally upon γ, r) estimated by ordinary least squares
(OLS) as

Φ̂(γ, r) =

(∑

t

Xt(γ, r)Xt(γ, r)′
)−1 (∑

t

Xt(γ, r)y′t

)
(11)

and
(γ̂, r̂) = argmin

(γ,r)

Tr
(
Σ(Φ̂(γ, r),γ, r)

)
. (12)

As the NLS need not always result in global minimum immediately, the condi-
tional OLS grid search can help to define starting values for NLS. However, there
is still a notorious problem with parameter γ that converges too slowly so that its
estimate is rather imprecise (thus may appear insignificant) unless a large amount
of observations (zt) is available in the neighbourhood of the threshold r. Espe-
cially when γ is large, rescaling it becomes important (see [4], p. 123). Also, for
ensuring reliable estimates of Φ, each regime should contain at least about 15 % of
observations, which limits the choice of r.

4.2. Diagnostic on residuals

One of the basic diagnostics to detect model misspecification is the multivariate
Ljung–Box (also known as portmanteau) test for residual autocorrelations. Let
{ε̂t}, t = 1, . . . n, be the estimated residuals from the best-fitting model and Γ̂i =
n−1

∑
t(ε̂t−ˆ̂µ)(ε̂t−ˆ̂µ)′, i = 0, 1, . . . D be autocovariance matrix where ˆ̂µ = n−1

∑
t ε̂t

and D is some maximum lag. Then under null hypothesis of no serial dependence
in residuals the test statistic

Q = D2
D∑

i=1

1
n− i Tr(Γ̂

′
iΓ̂
−1

0 Γ̂iΓ̂
−1

0 )
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has asymptotic χ2 distribution with k2D degrees of freedom.
Another diagnostics include tests for normality, parameter constancy and residual

linearity (see [2]).

4.3. Forecasts comparison

Consider yt being described by a general STAR model

yt = F (Xt,θ) + εt

for some nonlinear function F . The optimal h-step-ahead forecast of yt+h at time
t is given by ŷt+h|t = E[yt+h|Ωt], where Ωt denotes history of the time series up to
and including the observation at time t. One possible approach to approximate the
conditional expectation is using Monte Carlo method which gives

ŷt+h|t =
1
s

s∑

i=1

F (ŷt+h−1|t + εi,θ), (13)

where s is some sufficiently large number and the εi are drawn from the presumed
distribution of εt+h−1.

The forecast (prediction) error is defined as et+h|t = yt+h − ŷt+h|t.

Given P additional observations {yn+i}, i = 1, . . . P , the out-of-sample perfor-
mance of two rival models, say A and B, can effectively be compared either directly
by their mean squared prediction error, MSPE = P−1

∑P
i=1 e

′
n+i|n+i−hen+i|n+i−h,

or by the modified Diebold–Mariano test.
Let di = g(en+i|n+i−h,A) − g(en+i|n+i−h,B), j = 1, . . . P , be a loss differential

with a loss function g (e. g., g(a) = a′a), and e ,M denotes forecast error generated
from a model M . Null hypothesis that there is no qualitative difference between the
forecasts from model A and B is expressed as H0 : d̄ = 0, where d̄ = P−1

∑P
i=1 di

is average loss differential. The modified Diebold–Mariano test statistic (see [5]) is
given by

MDM =
√
P + 1− 2h+ h(h− 1)/P

d̄√
ω
, (14)

where ω is proportional to asymptotic variance of d̄ and suggested to be estimated
as

ω̂ = γ̂0 + 2
h−1∑

i=1

γ̂i with γ̂i =
1
P

P∑

j=i+1

(dj − d̄)(dj−i − d̄),

assuming that h-step-ahead forecast errors are serially correlated up to the order
h− 1.

Under the null hypothesis the MDM test statistic has Student’s t-distribution
with (P − 1) degrees of freedom.
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5. APPLICATION

The data we put under investigation are monthly exchange rates of Czech, Slovak
and Polish currency to Euro in the period of 5.25 years. As seen in Figure 1, these
time series are non-stationary so their first differences are used for modelling instead.
Since Polish Zloty dominates the currencies of V4 countries, it is chosen to be the
transition variable. We model the CZK, SKK and PLN time series as 3-dimensional
(endogenous) variable yt without considering any exogenous ones. Mean of the data
is (−0.042,−0.038, 0.011) and determinant of covariance matrix 0.000516. Initially
a linear VAR is fitted to data with order found by minimizing information criteria
(Figure 1). The determinant of covariance matrix of residuals from the VAR(1) is
0.000234, which represents 55 % coverage in fit by the model.

10 20 30 40 50 60

32

34

36

38

CZK

10 20 30 40 50 60

42

43

44

45

SKK

10 20 30 40 50 60

3.4

3.6

3.8

4.2

4.4

4.6

4.8

PLN

Fig. 1. Exchange rates of three currencies to Euro observed monthly for 5.25 years.
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Fig. 2. First differences of the exchange rates.

The order of linear VAR model is used in linearity testing via Tsay test (against
TAR) or LM-type test (against STAR) while letting the maximum delay d vary from
1 to 12. With some aggregation operators, setting d too high causes singularity
in computation of test statistics. Parameters estimation and model selection is
performed in one step by computing BIC conditionally over parameters grid r × γ,
r = {−0.1,−0.09, . . . 0.12} and γ = {0.1, 0.5, 1, 2, 3, 4, 5, 10, 20}. Estimated residuals
are subjected to test for serial independence and if they pass, 1-step-ahead forecasts
for next 3 years are drawn from the model. To compare models, there can be
considered either in-sample (determinant of estimated covariance matrix, |Σ|) or
out-of-sample (mean square prediction error, MSPE) fit, however, the final “hit
parade” is based on ranking from modified Diebold–Mariano test, where the models
are being compared to each other in pairs and the instant evaluation points (−1, 0
or 1) are summed to constitute a score for each model. The higher the score is, the
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Fig. 3. AIC, HQIC and BIC (from above) versus order of VAR.
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Fig. 4. Residuals from the winning multivariate 2-regime ESTAR model.

better position model occupies on the list. Finally, the forecast errors from LSTAR
and ESTAR compete for overall placing.

From results in table, it is important to note that improvement in fit caused by
inclusion of aggregation operators is indeed significant. The first operator in the list
(LAST ) corresponds to the usual setup zt = ξt−d and obviously it does not belong
to the most accurate models. According to predictive accuracy, the best model
among LSTARs is the one withMEAN aggregation operator applied over last four
months of PLN exchange rates, while the best ESTAR (considering in-sample fit as
supplementary criterion) uses MIN over last 3 months.

All of the nonlinear models achieve better performance within sample than linear
VAR model. The fit ratio of winning ESTAR model with |Σ| = 0.000152 is over 70
% . However, the forecast performance displays smaller difference and VAR(1) with
MSPE= 0.5328 is serious competitor to the nonlinear models placing itself to 3rd
position overall.
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Fig. 5. Original data and forecasts from the best multivariate 2-regime ESTAR model.
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Table. Results of linearity testing and model specification.

2-regimes multivariate LSTAR overall

Aggreg. Tsay LM parameters LB Forecast ranking ranking

operator test test estimate test accuracy from DM from DM

d p-value d p-value d r γ |Σ| p-value MSPE test test

LAST 3 0.0064 9 0.00001 9 -0.20 20 0.000180 0.5052 0.6995 3 6

MAX 4 0.0349 7 < 10−6 7 0.04 20 0.000140 0.3902 0.7287 2 4

MIN 3 0.0173 3 0.00016 3 -0.10 20 0.000130 0.9711 0.5006 2 2

MEAN 4 0.0251 4 0.00012 4 -0.10 20 0.000103 0.9936 0.5084 1 1

W2 6 0.0158 5 0.00003 5 0.12 20 0.000104 0.8911 0.5227 1 2

W3 10 0.0083 6 0.00002 6 0.12 20 0.000102 0.8804 0.5406 2 3

WF 8 0.0139 5 < 10−6 5 -0.10 20 0.000106 0.9195 0.5502 2 2

WS(0.8) 10 0.0102 4 0.00001 4 -0.10 0.1 0.000107 0.8664 0.5139 1 2

2-regimes multivariate ESTAR

LAST 3 0.0064 2 0.00002 2 0.12 0.2 0.000164 0.6133 0.5654 2 2

MAX 4 0.0349 7 < 10−6 7 0.80 20 0.000130 0.3087 0.7601 3 5

MIN 3 0.0173 3 < 10−6 3 0.04 0.2 0.000152 0.7487 0.4913 2 1

MEAN 4 0.0251 4 < 10−6 4 0.12 0.2 0.000149 0.2431 0.5153 2 2

W2 6 0.0158 4 < 10−6 4 -0.07 5 0.000150 0.2607 0.5418 2 3

W3 10 0.0083 8 < 10−6 8 -0.07 10 0.000158 0.0530 0.5170 2 3

WF 8 0.0139 3 < 10−6 3 -0.06 2 0.000155 0.3354 0.5008 1 1

WS(0.8) 10 0.0102 8 0.00001 8 -0.08 10 0.000156 0.0597 0.5393 2 3

Also note that judging entirely from a single measure, either |Σ| or MSPE, need
not be the only nor the best way to choose the model. To be correct, besides the
Diebold–Mariano test of predictive accuracy it could be desirable also to perform
additional diagnostic tests on residuals to check the model adequacy. However,
at this stage the above investigation is sufficient enough to highlight the methods
described in this article.

6. CONCLUSION

In this paper we have given an overview of multivariate modelling based on logistic
and exponential smooth transition models with some useful generalizations, mainly
generating transition variable by aggregation operators and computing information
criteria with orders specific for each of m regimes. The model specification procedure
has been demonstrated on trivariate exchange rates time series. The application
results show satisfactory improvement in fit when particular aggregation operators
are used. The routines were programmed in system Mathematica 5.2, and the source
code with all utility functions available as Mathematica package is provided on the
author’s webpage: www.math.sk/bacigal/homepage/research en.html.
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