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LINEAR COMPARATIVE CALIBRATION
WITH CORRELATED MEASUREMENTS

Gejza Wimmer and Viktor Witkovský

The paper deals with the linear comparative calibration problem, i. e. the situation

when both variables are subject to errors. Considered is a quite general model which

allows to include possibly correlated data (measurements). From statistical point of view

the model could be represented by the linear errors-in-variables (EIV) model. We suggest

an iterative algorithm for estimation the parameters of the analysis function (inverse of the

calibration line) and we solve the problem of deriving the approximate confidence region

for the parameters. The confidence limits are derived using the concept of Kenward and

Roger [5]. Their performance is investigated by simulation. The simulation results show

that under reasonable restrictions the proposed confidence regions are very satisfactory for

practical use.
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1. INTRODUCTION

We consider the linear comparative calibration problem, i. e. the situation when
both variables are subject to errors. We suggest a procedure for fitting the linear
analysis function and consider the problem of deriving the approximate confidence
region for the parameters of the analysis function. From statistical point of view
the analysis function expresses the ideal (true, errorless) values of the measurand
(the measured object, substance, or quantity) in units of the measuring instrument
Y (typically the more precise measuring instrument) as a function of the true values
of the measurand in units of the measuring instrument X (typically the less precise
instrument). In other words, the analysis function expresses the relationship between
the ideal (true, errorless) values of measuring the same object (substance, quantity)
by two measuring instruments X and Y, respectively.

In particular, we are interested in finding the proper estimators of the coefficients
of the linear analysis function. We also suggest a method for constructing the Scheffé-
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type confidence region for the whole linear analysis function.
The problem discussed in this paper was motivated by and is closely related to

the approach discussed in the international standard ISO 6143 [2]: Gas analysis
– Comparison methods for determining and checking the composition of calibration
gas mixtures. However, here we consider a model that allows to incorporate possibly
correlated data and combines the type A as well as type B uncertainties of the
measurements (for more details on metrological interpretation see the international
standard Guide to the expression of uncertainty in measurement, ISO GUM [1]).

From statistical point of view the model could be represented by the linear errors-
in-variables (EIV) model, see e. g. Casella and Berger [3]. In a standard situation,
the estimators of the analysis function parameters are based on minimization of the
weighted total sum of squares in the orthogonal regression with weights inversely
proportional to the true standard deviations. If the true standard deviations are
(partially or completely) unknown, and should be estimated from the measurements,
we suggest to use an alternative iterative algorithm based on locally linearized model
for parameter estimation that allows to consider the problem of deriving the approx-
imate confidence region for the parameters. The confidence limits are derived using
the concept of Kenward and Roger [5]. Their performance is investigated by simu-
lation that show that under reasonable restrictions the proposed confidence regions
are very satisfactory for practical use.

2. THE CALIBRATION MODEL

Throughout the paper we shall assume that the following assumptions and restric-
tions for the calibration model hold true:

(i) For estimation of analysis function parameters and obtaining their confidence
regions we perform a pre-planned calibration experiment with replicated mea-
surements made by both instruments Y (the more precise one) and X (the less
precise one), on a set of n ≥ 4 suitably chosen objects (substances, quantities
of interest), say V1, V2, . . . , Vn, such that their true values µi, i = 1, 2, . . . , n,
in units of instrument X , span its (that is of instrument X ) appropriate cal-
ibration range, are approximately equally spaced, with one value bellow the
lower limit and one value above the upper limit of the calibration range. The
measurements are made repeatedly m1i times, i = 1, . . . , n, for each object
measured by the measuring instrument X and m2i times, i = 1, . . . , n, for
each object measured by the measuring instrument Y.

(ii) For the less precise instrument X the measurement result xi,j is a realization
of normally distributed random variable Xi,j , i = 1, 2, . . . , n, j = 1, 2, . . . ,m1i,
with mean value µi, which is the ideal (true, errorless) value of measurand
Vi given in units of the less precise instrument. The dispersion of Xi,j is
x∆̃iσ

2
x + {Σx}ii, i = 1, 2, . . . , n, j = 1, 2, . . . ,m1i, where σ2

x is an unknown
scalar factor, x∆̃i, i = 1, 2, . . . , n, are known positive constants and Σx is an
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n×n known positive semidefinite matrix which, in accordance with ISO GUM
[1], corresponds to the type B covariance matrix. The covariances cov(Xij , Xkl)
are also assumed to be known and are cov(Xij , Xkl) = {Σx}i,k, for all i, k =
1, 2, . . . , n, j = 1, 2, . . . ,m1i, l = 1, 2, . . . ,m1k. Denoting X̄i = 1

m1i

∑m1i

j=1 Xi,j ,
i = 1, 2, . . . , n it is supposed that the random vector X̄ = (X̄1, . . . , X̄n)′ is
normally distributed with the mean µ = (µ1, . . . , µn)′ and covariance matrix
σ2

x∆x + Σx, i. e.
X̄ ∼ N

(
µ, σ2

x∆x + Σx

)
, (1)

where, ∆x = diag
(

x
e∆1

m11
, · · · , x

e∆n

m1n

)
is a (known) diagonal matrix.

The particular form of the matrix Σx depends on specific calibration problem,
and usually is given in the instrument X calibration certificate, or is evaluated
by other means, including expert judgement, see e. g. Gleser [4]. However,
often the following very simple forms are used: ΣI

x = τ2
x diag{µ2

1, µ
2
2, . . . , µ

2
n}

and ΣII
x = τ2

x µµ′, where τ2
x is a known positive constant.

Similarly, we will assume that

Ȳ ∼ N
(
ν, σ2

y∆y + Σy

)
. (2)

(iii) The random vectors X̄ and Ȳ are independent.
(iv) We assume that over the typical range of values of ν and µ (the range of

interest) the true, however unknown, analysis function is, in fact, a linear
function, i. e. ν = a + bµ, given by the (unknown) parameters a and b.

The less precise instrument X is said to be the calibrated instrument.
Based on the above assumptions (i) – (iv) we get the statistical model of the

calibration experiment:
(

X̄

Ȳ

)
∼ N

[(
µ

ν

)
,

(
σ2

x∆x + Σx 0
0 σ2

y∆y + Σy

)]
, (3)

with linear restriction on the true means µ and ν

ν = a1n,1 + bµ, (4)

where 1n,1 = 1 = (1, 1, . . . , 1)′. The (unknown) parameters of the model are a, b,
µ, ν, σ2

x and σ2
y, where a and b are the parameters of the linear analysis function.

As all the parameters a, b, µ, and ν are unknown, the model (3) with nonlinear
restrictions on the parameters (4) is a nonlinear regression model, that could be also
interpreted as an error-in-variables (EIV) model, see e. g. Casella and Berger [3].

3. ESTIMATION OF THE PARAMETERS

To estimate the parameters of the model (3) – (4) we suggest an iterative algorithm.
For similar approach see Kubáček and Kubáčková [6], Kubáček and Kubáčková [7],
and Wimmer, Witkovský and Savin [10].
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First, we propose to linearize the model (3) – (4) by using Taylor series expansion
about µ0 = (µ01, . . . , µ0n)′ and b0 (the values chosen close to the true values of the
parameters µ and b). So, µ = µ0 + δµ, b = b0 + δb and the new parameters of
the approximate linear model are δµ = (δµ1, δµ2, . . . , δµn)′, ν, a, δb, σ2

x, σ2
y. The

linearized regression model is:
(

X̄ − µ0

Ȳ

)
∼ N

[(
δµ

ν

)
,

(
σ2

x∆x + Σx 0
0 σ2

y∆y + Σy

)]
, (5)

with linear constraints

b0µ0 + b0δµ− ν + a1n,1 + δbµ0 = 0. (6)

Assuming that the model (5) with linear constraints (6) is (approximately) cor-
rect, the BLUEs (best linear unbiased estimators) of the parameters µ = µ0 + δµ,
ν, a and δb are, see e. g. Kubáčková [8], given by

µ̂ = X̄ + b0

(
σ2

x∆x + Σx

)
Q

(
Ȳ − b0X̄

)
, (7)

ν̂ = Ȳ −
(
σ2

y∆y + Σy

)
Q

(
Ȳ − b0X̄

)
, (8)

(
â

δ̂b

)
=

(
[1 µ0]

′Z−1[1 µ0]
)−1

[1 µ0]
′Z−1

(
Ȳ − b0X̄

)
, (9)

with b̂ = b0 + δ̂b. The matrix Q is given by

Q =
(
M [1 µ0]

ZM [1 µ0]

)+
, (10)

(A+ is the Moore–Penrose generalized inverse of the matrix A, see e. g. Rao and
Mitra [9]), where

M [1 µ0]
= In,n − [1 µ0]

(
n 1′µ0

µ′
01 µ′

0µ0

)−1

[1 µ0]
′, (11)

Z =
[
b2
0

(
σ2

x∆x + Σx

)
+

(
σ2

y∆y + Σy

)]
. (12)

The covariance matrix of (â, δ̂b)′ is

cov
{(

â

δ̂b

)}
= cov

{(
â

b̂

)}
=

(
[1 µ0]

′Z−1[1 µ0]
)−1

. (13)

Assuming that the model (5) with linear constraints (6) is true, the estimators
(7), (8), and (9) have multivariate normal distributions, respectively.

The estimators (7), (8), (9), and the covariance matrix (13) strongly depend on
the chosen initial values b0 and µ0, the unknown parameters σ2

x and σ2
y, and on

the quality of linearization of the originally nonlinear model (3) – (4) at these values
that, on the other hand, strongly depends on the experimental design of the cali-
bration experiment. If there is no specific prior information on the true value of the
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parameters b, µ, σ2
x and σ2

y, a natural choice of the initial values, estimated from
the measured data, could be the following:

µ̂0 = X̄, (14)

b̂0 =
nX̄

′
Ȳ − (1′X̄)(1′Ȳ )

nX̄
′
X̄ − (1′X̄)2

. (15)

The natural estimator of σ2
x is

σ̂2
x =

1
(
∑n

i=1 m1i − n)

n∑

i=1

m1i∑

j=1

(
Xi,j − X̄i

)2

m1i{∆x}i,i
, (16)

which is an unbiased estimator of σ2
x distributed as (σ2

x/p)χ2
p, where p =

∑n
i=1 m1i−n

and χ2
p represents a random variable with chi-square distribution with p degrees of

freedom, {∆x}i,i stands for the ith diagonal element of the matrix ∆x, i = 1, . . . , n.
The natural estimator of σ2

y is

σ̂2
y =

1
(
∑n

i=1 m2i − n)

n∑

i=1

m2i∑

k=1

(
Yi,k − Ȳi

)2

m2i{∆y}i,i
, (17)

which is an unbiased estimator of σ2
y distributed as (σ2

y/q)χ2
q, where q =

∑n
i=1 m2i−n

and χ2
q represents the random variable with chi-square distribution with q degrees of

freedom, {∆y}i,i stands for the ith diagonal element of the matrix ∆y, i = 1, . . . , n.
The estimators (16) and (17) are independent with the covariance matrix

W = cov
{(

σ̂2
x

σ̂2
y

)}
=

(
2σ4

x

p 0

0 2σ4
y

q

)
. (18)

The parameters µ, ν, a, and b could be estimated by (7), (8), and (9) where,
instead of the unknown values µ0, b0, σ2

x, and σ2
y, we use their estimates: µ0 = µ̂

(est)
0 ,

b0 = b̂
(est)
0 , σ2

x = σ̂
2(est)
x , and σ2

y = σ̂
2(est)
y given by equations (14) – (17), respectively.

The estimation procedure could be iterated in such a way until convergence is
reached according to the following algorithm:

Algorithm.

(i) Set k = 0 and the initial estimates of the parameters µ and b: µ̂(0) = µ̂
(est)
0 ,

b̂(0) = b̂
(est)
0 given by equations (14) – (15). Further, set σ2

x = σ̂
2(est)
x and

σ2
y = σ̂

2(est)
y given by (16) – (17).

(ii) For given µ̂(k) and b̂(k) set µ0 = µ̂(k), b0 = b̂(k) and estimate the parameters
µ, ν, a, and b as µ̂(k+1), ν̂(k+1), â(k+1), and b̂(k+1) by (7), (8), and (9). Set
k = k + 1 and repeat the point (ii) until convergence is reached (we do not
specify here the explicite form of the stopping rule).

(iii) By using σ2
x = σ̂

2(est)
x and σ2

y = σ̂
2(est)
y calculate the estimate Ŵ

(est)
of the

covariance matrix W , according to (18).
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(iv) After reaching the convergence report the final results of the estimation pro-

cedure: â(est), b̂(est), µ̂(est), ν̂(est), σ̂
2(est)
x , σ̂

2(est)
y , and Ŵ

(est)
.

Remark 1. The general calibration model (3) – (4) covers different specific sub-
models. For instance, if repeated measurements give the same numerical result for
each measurement of the same object or, when we have only one measurement for
each object, then we set y∆̃i = 0, i = 1, 2, . . . , n (and consequently σ2

y = 0).

Remark 2. If some of the covariance matrices depend on the true, however un-
known parameters µ or ν, respectively, we suggest to approximate those parameters
by their natural estimates x̄ = (x̄1, . . . , x̄n)′ and ȳ = (ȳ1, . . . , yn)′, respectively. In
particular, the type B covariance matrix ΣI

x = τ2
x diag{(µ2

1, µ
2
2, . . . , µ

2
n)′} is approx-

imated by Σ̃
I

x = τ2
x diag{(x̄2

1, x̄
2
2, . . . , x̄

2
n)′} and ΣII

x = τ2
x µµ′ is approximated by

Σ̃
II

x = τ2
x x̄x̄′. In the same way we could obtain the approximations of the covari-

ance matrices ΣI
y and ΣII

y .

4. CONFIDENCE REGIONS FOR THE PARAMETERS
AND ANALYSIS LINE

In this section we will derive the approximate confidence region for the analysis
line parameters (a, b)′ and the approximate Scheffé-type confidence region for whole
analysis line. In derivation of the approximate distribution of the suggested F statis-
tic (a scaled Wald statistic) we will follow steps suggested by Kenward and Roger
[5] for making small sample inferences for fixed effects in linear mixed models from
restricted maximum likelihood (REML). This approximate distribution is later used
to construct the confidence regions. Under assumption that the linear (linearized)
model (5) with linear constraints (6) is correct it could be interpreted as a special
form of the linear mixed model with constraints on the parameters and with two
variance components σ2

x and σ2
y. Instead of using the REML estimators we will use

the estimates that are obtained from the proposed estimation procedure given by
the Algorithm.

Following Kenward and Roger [5] the following terms are required for derivation
of the approximate distribution of the F statistic:

Φ̂ =
(
[1 µ0]

′Ẑ
−1

[1 µ0]
)−1

,

P̂ 1 = −b2
0[1 µ0]

′Ẑ
−1

∆xẐ
−1

[1 µ0],
P̂ 2 = −[1 µ0]

′Ẑ
−1

∆yẐ
−1

[1 µ0],

Q̂11 = b4
0[1 µ0]

′Ẑ
−1

∆xẐ
−1

∆xẐ
−1

[1 µ0],
Q̂22 = [1 µ0]

′Ẑ
−1

∆yẐ
−1

∆yẐ
−1

[1 µ0], (19)

where
Ẑ =

[
b2
0

(
σ̂2(est)

x ∆x + Σx

)
+

(
σ̂2(est)

y ∆y + Σy

)]
, (20)
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with µ0 = µ̂(est) and b0 = b̂(est). Further,

Λ̂ = Φ̂
{

Ŵ11

(
Q̂11 − P̂ 1Φ̂P̂ 1

)
+ Ŵ22

(
Q̂22 − P̂ 2Φ̂P̂ 2

)}
Φ̂, (21)

where Ŵij is the (i, j)th element of the matrix Ŵ
(est)

, and finally

Φ̂A = Φ̂ + 2Λ̂. (22)

Further, we will use

A1 = Ŵ11

(
tr

(
P̂ 1Φ̂

))2

+ Ŵ22

(
tr

(
P̂ 2Φ̂

))2

,

A2 = Ŵ11 tr
(
P̂ 1Φ̂P̂ 1Φ̂

)
+ Ŵ22 tr

(
P̂ 2Φ̂P̂ 2Φ̂

)
,

B =
1
4

(A1 + 6A2) , (23)

c1 =
g

8− 2g
, c2 =

2− g

8− 2g
, c1 =

1
2
, (24)

where
g =

3A1 − 6A2

4A2
, (25)

and
E∗ =

1
1−A2/2

, V ∗ =
2(1 + c1B)

(1− c2B)2(2−B)
, % =

V ∗

2(E∗)2
. (26)

Finally we get
m =

8%

2%− 1
, λ =

m

E∗(m− 2)
. (27)

The statistical inference about parameters (a, b)′, of the analysis line will be based
on the following scaled Wald-type statistic

F =
λ

2

(
â− a∗
b̂− b∗

)′
Φ̂
−1

A

(
â− a∗
b̂− b∗

)
, (28)

where the scale parameter λ is given in (27) and (a∗, b∗)′ represent the hypothetical
values of the parameters of the analysis line. If the parameters (a∗, b∗)′ are true,
then, using the arguments given by Kenward and Roger [5], the distribution of the
scaled Wald-type F -statistic given by (28) is approximately given by

F∼F2,m, (29)

where F2,m represents the Fisher–Snedecor F -distribution with 2 and m degrees of
freedom, m given by (27).

Under the assumption that the approximation (29) is acceptable, the set

C1 =

{(
a

b

)
:
(

â− a

b̂− b

)′
Φ̂
−1

A

(
â− a

b̂− b

)
≤ 2

λ
F2,m,(1−α)

}
(30)

is the approximate (1−α)×100%-confidence region for the (unknown) parameters a,
b of the linear analysis function. (F2,m,(1−α) denotes the (1−α)-quantile, α ∈ (0, 1),
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of the Fisher–Snedecor F -distribution with 2 and m degrees of freedom). It means
that confidence region C covers the true values of the parameters, a∗ and b∗, with
probability approximately equal to (1− α), i. e.

Pr
{(

a∗
b∗

)
∈ C1

}
≈ 1− α. (31)

By applying the Scheffé’s Theorem, we directly get the (1−α)×100%-confidence
region C2 for the whole linear analysis function, i. e. a + bµ for all µ ∈ 〈µl, µu〉 (the
interval represents the typical range of the calibration experiment):

C2 =
{

(a + bµ) :
∣∣∣(â + b̂µ)− (a + bµ)

∣∣∣

≤
√

2
λF2,m,(1−α)(1, µ)Φ̂A(1, µ)′, ∀µ ∈ 〈µl, µu〉

}
,

(32)

with
Pr {(a + bµ) ∈ C2, ∀µ ∈ 〈µl, µu〉} ≈ 1− α. (33)

5. SIMULATION STUDY

The approximate confidence regions (30) and (32) are based on a sequence of as-
sumptions and approximations. We have checked the basic statistical properties (the
empirical coverage probabilities) of the proposed approximate confidence region (30)
for the parameters a and b of the analysis function ν = a + bµ. This was done by
Monte Carlo simulations for a wide spectrum of experimental designs.

We have assumed the model (3) – (4), with ∆x = 1
mI, Σx = 0, ∆y = 1

mI, and
Σy = τ2

y νν′, then, 10000 independent replications of the calibration experiment
were generated, and the empirical coverage probability of the nominal 95% confi-
dence region (30) was estimated, for each combination of the following values of the
parameters:

• n ∈ {5, 10} and m ∈ {2, 5, 10}.
• a = 0 and b ∈ {10,

√
10, 1}.

• σx ∈ {0.01, 0.05, 0.1}, σy ∈ {0, 0.05, 0.1}, and τy ∈ {0.01, 0.005, 0.001}.

For each fixed n the vector µ was randomly generated with its values uniformly
distributed over the interval (n, 2n). Then the vector ν was calculated, ν = a1n,1 +
bµ and the measurements (Xi,j , Yi,j), i = 1, . . . , n, j = 1, . . . ,m, were generated
according to (3). The Algorithm was used to estimate the parameters of the model.
The Kenward–Roger’s method was used to estimate Φ̂A, m and λ, see (22) and (27).
Finally, for given true values of a and b the validity of the inequality in (30) (the
coverage of the true values) was checked. The empirical coverage probability was
calculated based on independent replications of the calibration experiment.

In Figure we present the empirical coverage probabilities of the nominal 95%
confidence region (30) for the parameters a and b of the analysis function ν = a+bµ,
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Fig. The empirical coverage probabilities of the nominal 95% confidence region (30) for

the parameters a and b of the analysis function ν = a + bµ, based on 10 000 Monte Carlo

runs for each specific design. Here we use the symbol ◦ for designs with b = 10, × for

designs with b =
√

10, and + for designs with b = 1. The left tripple of symbols for each σy

denotes the designs with σx = 0.01, the middle tripple denotes the designs with σx = 0.05,

and the right tripple denotes the designs with σx = 0.1.

based on 10 000 Monte Carlo runs for each specific design. We could conclude that
for considered class of experimental designs the empirical coverage probabilities of
the confidence region (30) are very close to the nominal 0.95 level. The minimum
observed value was 0.9386 and the maximum observed value was 0.9579.

6. CONCLUSIONS

In this paper we have suggested an iterative algorithm for estimation of the param-
eters of the linear analysis function and considered the problem of deriving the ap-
proximate confidence region for the parameters of the analysis line using the concept
of Kenward and Roger [5]. The covariance structure of the considered calibration
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model allows to consider possibly correlated data.
The performance of the proposed confidence region was investigated by simula-

tion. The simulation results imply that the empirical coverage probabilities of this
confidence region for the parameters of the analysis line are very close to the nominal
level and consequently are very satisfactory for practical use.
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