
Kybernetika

Zuzana Krivá
Finite-volume level set method and its adaptive version in completing subjective
contours

Kybernetika, Vol. 43 (2007), No. 4, 509--522

Persistent URL: http://dml.cz/dmlcz/135793

Terms of use:
© Institute of Information Theory and Automation AS CR, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/135793
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 4 3 (2 0 0 7) , N U M B E R 4 , P A G E S 5 0 9 – 5 2 2

FINITE–VOLUME LEVEL SET METHOD
AND ITS ADAPTIVE VERSION
IN COMPLETING SUBJECTIVE CONTOURS

Zuzana Krivá

In this paper we deal with a problem of segmentation (including missing boundary
completion) and subjective contour creation. For the corresponding models we apply the
semi-implicit finite volume numerical schemes leading to methods which are robust, efficient
and stable without any restriction to a time step. The finite volume discretization enables
to use the spatial adaptivity and thus improve significantly the computational time. The
computational results related to image segmentation with partly missing boundaries and
subjective contour extraction are presented.

Keywords: image processing, nonlinear partial differential equations, numerical solution,
finite volume method, adaptivity, grid coarsening

AMS Subject Classification: 35K55, 65M12

1. FORMULATION AND ASSUMPTIONS OF THE STUDIED PROBLEM

We are going to solve the problems of segmentation (including missing boundary
completion) and subjective contours creation. The aim of segmentation is to find
boundaries of a distinguished object of an image. In generic situation these bound-
aries correspond to edges. However, in the presence of a noise or in images with
occlusions these edges can be very irregular or even interrupted. Then the analysis
of the scene and segmentation of objects becomes a difficult task.

Subjective contours, created by human visual system in specific images, are not
a property of the image alone, but they depend both on the position of the point
of view and on the geometric properties of the image. The perception of spatial
patterns is dependent on the location of the gaze.

However, the basic technique for finding missing boundary and subjective con-
tours remains the same. In brief it can be described as follows [12, 13]: input into
the algorithm is an image I0 to be segmented. Initially, a segmentation surface (or
point-of-view surface), given by an observer (user) chosen fixation point inside the
image is constructed and taken as u0. Then this initial state of the segmentation
function is evolved by equation (1), when the“point-of-view” surface is attracted by
the existing boundaries and steepens around the edges. The surface evolves towards

510 Z. KRIVÁ

the piecewise constant solution by continuation and closing of the boundary frag-
ments (if they are missing) and the filling in the homogeneous regions – the so called
subjective surface arises.

Both the subjective surface and the segmentation can be defined as a graph that
varies rapidly across the boundary between different objects and stays flat within it.
Finding the boundary of objects then corresponds to finding an isoline or isosurface
for a proper value.

The model solving these problems is expressed by the following partial differential
equation

∂tu√
ε2+|∇Gσ ∗ u|2

−∇.(g(|∇Iρ|) ∇u√
ε2+|∇Gσ ∗ u|2

) = 0 in QT ≡ I × Ω, (1)

u(0, x) = u0(x) in Ω, (2)
u(t, x) = u0(x) on I × ∂Ω, (3)

where u is a computed segmentation function or a subjective surface, Ω ⊂ Rd is a
rectangular computational domain (a subdomain of the image domain), ε > 0 is a
parameter, I = [0, T] is a time interval and Iρ is a function given by

Iρ =
(i) I0 (no regularization), ρ = 0,

(ii) Gρ ∗ I0 (regularization by a smoothing kernel), ρ 6= 0.
(4)

The convolution of H(x) and h(x) is defined by (H ∗ h)(x) =
∫
Rd
H(s)h(x − s) ds.

Further assumptions on the data of the model are summarized in

g(s) is a decreasing smooth function, g(0) = 1, 0 < g(s)→ 0 for s→∞, (5)

Gσ ∈ C∞(Rd) is a smoothing kernel with
∫

Rd
Gσ(x) dx = 1 (6)

and Gσ(x)→ δx for σ → 0, δx–Dirac function at point x,
u0 ∈ L∞(Ω), (7)
I0 ∈ L2(Ω). (8)

If we replace |∇Gσ ∗ u| by |∇u| in (1), then we can interpret the equation in two
ways: like a modification of a well-known level set equation [11, 15, 16]

∂tu

|∇u| = ∇.
(∇u
|∇u|

)
(9)

regularized in a sense of Evans and Spruck

|∇u| ≈ |∇u|ε =
√
ε2 + |∇u|2, (10)

or, as a mean curvature flow of graphs with respect to the Riemann metric given
by the image features. The idea to use Riemannian mean curvature flow of graphs
to compute the subjective contours originates in [12, 13, 14]. Then, ε is not only

Finite–Volume Level Set Method . . . 511

the regularization factor, but also a modelling parameter which can help in suitable
denoising and completing of missing boundaries. For small ε, the subjective surface
closes gaps in image object boundaries and is stabilized, i. e. almost unchanging by
further evolution, so it is easy to stop the segmentation process. For ε = 1 we come to
the mean curvature problem for graphs, where the normal speed mean normal to the
graph (i. e. segmentation function) itself and not normal to its isolines or isosurfaces
([7]).Our usage of |∇Gσ ∗ u| instead of |∇u| in (1) is motivated by the effort to
properly compute gradients in the finite volume method (dealing with piecewise
constant approximations) and will be discussed later in more details.

For the numerical solution of (1) we have chosen the semi-implicit finite volume
method. The so-called co-volume method based on semi-implicit time discretization
for level-set-like problems was given in [2] and it has been applied to the segmentation
problem in [8, 9] where also efficiency of the semi-implicit approach has been strongly
emphasized. The co-volume technique as well as the finite volume technique is based
on integral (weak, variational) formulation of (1). In such way, the discretization
scheme naturally respects a variational structure of the problem. The semi-implicit
discretization in time yields L∞-stability property (i. e. no spurious oscillations
appear in a solution) for any length of a discrete time step. This is a main advantage
in comparison with explicit time stepping, where the stability is often achieved only
under severe time step restriction. In every time update we solve linear system of
equations which can be done efficiently using, e. g., suitable preconditioned iterative
linear solvers. The advantage of the finite volume method in comparison with the co-
volume method is, that in many cases the computational time can be even fastened
by using spatial adaptivity [5, 6, 4], that appears to be easier to implement using
finite volume grids.

2. DERIVING THE FV SCHEMES

First, to obtain the integral formulation of the diffusion equation (1), let us integrate
it over a finite region p ⊂ Ω. Then, using Green’s theorem, for any p we get the
integral identity∫

p

∂tu√
ε2 + |∇Gσ ∗ u|2

dx−
∫

∂p

g(|∇Iρ|) ∇u√
ε2 + |∇Gσ ∗ u|2

.~ν ds = 0. (11)

where ~ν is the outward unit normal vector to ∂p.
To discretize the integral form (11) in time we choose N as the number of time

steps and obtain the length of a uniform discrete time step k = T
N . Then at any

discrete time tn = nk, n = 1, . . . , N we replace the time derivative by the backward
difference, i. e. ∂tu by (un − un−1)/(k), where un, un−1 are solutions of (11) at times
tn = nk, tn−1 = (n − 1)k, respectively. Treating the spatial nonlinear terms of the
equation using solution from the previous time step and using approximation of the
linear terms at the current time level leads to the so-called semi-implicit method.

For discretization in space we use the so-called finite volume method (FVM). We
have two inputs into the model, namely the point-of-view surface (initial condition)
u0 and the regularized image Iρ. Our spatial discretization is given by the pixel/voxel

512 Z. KRIVÁ

structure of the input image and thus it is the same for both u0 and Iρ. It means,
the continuous image domain is subdivided into the rectangular regions p and at
every time tn we look for a solution un constant over each such control volume p.
Instead of (1) we use its integral formulation (11) in these control volumes p. Now,
let us introduce further notation to be able to give the precise formulation of our
schemes. Let τh be a mesh of Ω with cells (control volumes) p of measure m(p),
where h is the maximal diameter of a cell in the mesh. For every cell p we consider
a set of neighbors N(p) consisting of all cells q ∈ τh for which common interface of
p and q is a line segment, denoted by epq, of non-zero measure m(epq) (see Figure 1
for 2D case).

Fig. 1. Notation for the finite volume scheme in 2D case.

We assume that for every p, there exists a representative point xp ∈ p such, that
for every pair p, q, q ∈ N(p), the vector xq−xp

|xq−xp| is equal to unit vector ~νpq which is
normal to the common interface epq and oriented from p to q. In the simple case of a
uniform grid we can take xp just as a center of the pixel. Let xpq be the intersection of
the line segment epq and the segment xpxq. Then we define transmitivity coefficients

Tpq :=
m(epq)
|xq − xp|

. (12)

Now, we are ready to write the fully discrete finite volume scheme for solving the
segmentation problem (1) – (3):

Let 0 = t0 ≤ t1 ≤ · · · ≤ tNmax = T denote the time discretization with tn = tn−1 +k,
where k is the time step. For n = 0, . . . , Nmax−1 we look for un+1

p , p ∈ τh satisfying

un+1
p − unp

k|∇Gσ ∗ ũnp |ε
m (p) =

∑

q∈N(p)

Tpq g(|∇Iρ(xpq)|)
(
un+1
q − un+1

p

)

|∇Gσ ∗ ũnpq|ε
. (13)

Applying the Dirichlet boundary conditions (3), the scheme (13) gives the system
of linear equations with coefficients given by the following equivalent form


m(p)

k

1
|∇Gσ ∗ ũnp |ε

+
∑

q∈N(p)

Tpq
g(|∇Iρ(xpq)|)
|∇Gσ ∗ ũnpq|ε


un+1

p

−
∑

q∈N(p)

Tpq
g(|∇Iρ(xpq)|)
|∇Gσ ∗ ũnpq|ε

un+1
q =

m(p)
k

1
|∇Gσ ∗ ũnp |ε

unp . (14)

One can easily see that the system matrix is an M -matrix, so the linear system is

Finite–Volume Level Set Method . . . 513

uniquely solvable and its solution fulfils discrete minimum-maximum principle (L∞-
stability) at every discrete scale step. We start the computations by u0

p, p ∈ τh,
corresponding to given values of the initial point-of-view surface. In the scheme we
work with two types of gradients: ∇Gσ ∗ ũnpq and ∇Iρ(xpq) computed on the control
volume boundary ∂p and ∇Gσ ∗ ũnp computed on the control volume p. Here, ũn is
a mirror extension of the data computed in the nth discrete time step and ũnp , ũnpq
denotes its approximate values inside p and along ∂p, respectively.

Remark 1. Computing the gradients on ∂p

Since we consider piecewise constant approximations, we can replace the convo-
lution (integral) by a weighted average over the neighbouring pixels. The convolved
gradients of u along the boundary ∂p are approximated by values in xpq, q ∈ N(p)
and then the corresponding vector ∇Gσ ∗ ũnpq is evaluated using the following prop-
erty of convolution

∂(Gσ ∗ ũ)
∂x

(xpq) =
(
∂Gσ
∂x
∗ ũ

)
(xpq) .

In such way we get

∇Gσ ∗ ũn (xpq) =

(∑

r

unr

∫

r

∂Gσ
∂x

(xpq − s) ds,
∑

r

unr

∫

r

∂Gσ
∂y

(xpq − s) ds

)
. (15)

The previous sum is evaluated over the control volumes r which surround the point
xpq. If we choose a compactly supported smoothing kernel with the support in a ball
Bσ(0) with radius σ, then the sum is restricted only to control volumes contained in
Bσ(xpq), the ball centered at xpq. In our experiments with FVM we use the function

Gσ(x) =
1
Z

e
|x|2

(|x|2−σ2) ,

where the constant Z is chosen so that Gσ has a unit mass. Coefficients of the sum
(15), namely

∫
r
∇Gσ (xpq − s) ds can be precomputed in advance using a computer

algebra system, e. g. Mathematica. In our numerical experiments we used exclusively
2D square and 3D cubic grids with cells of unit size and σ = 1. We use weights
given by Figure 2, the more exact values of weights for various values of σ in 2D and
3D can be found e. g. in [6].

Remark 2. Computing the gradients on control volume p
Using idea of Walkington [17], for approximation of the convolved gradient inside

finite volume we use simple averaging given (in case of regular square grids) by

|∇Gσ ∗ ũnp | ≈
1

card(N(p))

∑

q∈N(p)

|∇Gσ ∗ ũnpq| (16)

514 Z. KRIVÁ

3. DISCUSSION ON THE BASIC LEVEL SET MODEL (9)
AND ITS SOLUTION BY THE FV SCHEME

Aim of this subsection is to compare the work of the scheme (13) adjusted for (9)
with a known exact solution.

Let u0 in 2D be given by

u0(x, y) = 1−
√

(x− sx)2 + (y − sy)2

r(0)
.

The level line for u0(x, y) = 0 is a circle of a radius r(0) centered in (sx, sy). For
this u0, the exact solution obtained by applying the level set equation (9) is known
to be a circle with the radius

r(t) =
√
r(0)2 − 2t, t ∈ (0, T), T = r(0)2/2. (17)

Let us set g ≡ 1 in (1) and apply the finite volume scheme (13) to u0. We compare
the numerical solution obtained in this way with (17). The setting of parameters for
FV scheme for this example was as follows: the size h of a square control volume was
set to 1, u0 was created over 256×256 control volumes, ε = 10−8 and the size of time
step k is 65. The radius r(0) is set to 102, sx = sy = 128. In this example and all the
computations introduced in this paper σ was set to 1. Then we have three different
weights (see Figure 2) and six neighbors involved in computing |∇Gσ ∗ ũnpq|. The
Figure 3, on the left, shows the exact solution at chosen time steps t0, t1, t2, t3, t4, t5,
where ti =i ∗ 65, drawn with dashed lines and the solution obtained by (13) drawn
with solid lines.

In 3D,
r(t) =

√
r(0)2 − 4t, t ∈ (0, T), r(0)2/4. (18)

If we set σ again to 1, for each sum of the gradient we have 18 mutually rotated

Fig. 2. Precomputed weights for σ = 1 used in computations. L1, L2 and L3

are horizontal layers of voxels involved in computation of the gradient.

weights [6]. Some of these weights are zeroes, some can be neglected and some were

Finite–Volume Level Set Method . . . 515

set to the same value, though they slightly differ. At the end we got three different
weights and reduced the number of multiplications to 9 for a gradient and to 3 to
compute its magnituded. The visual results are presented in Figure 3 on the right
for t = 100, 200 . . . , 500.

Fig. 3. On the left, the comparison with the exact solution for σ = 1 (dashed lines)

in 2D, on the right, the spheres of the similar experiment in 3D.

4. ADAPTIVE FVM SCHEMES

The aim of the adaptive algorithm is to reduce the number of unknowns (i. e. control
volumes) in the resulting linear system. First we describe the way, in which the
adaptive grid is created and then, how an nonadaptive algorithm is modified into
the adaptive one. We try to stress the main ideas used for creating the adaptive
grid.

First, the criterion saying when the cells can be merged into bigger ones, is based
on comparing the intensities: cells can be merged into a bigger one, if all subcells’
intensities are within a prescribed tolerance. We created a square “balanced” grid.
i. e. such grid, where every cell is a square and for any two neighboring cells it holds,
that ratio of their sides’s sizes is 1 : 1, 1 : 2 or 2 : 1. For adjacent cells of nonequal
size, the “hanging point” is always in the middle of the bigger one. Such a grid
can be easily obtained by a quadtree technique. In more details, this technique is
described e. g. in [4, 5, 6]. Examples od adaptive grids are depicted un Figure 12
and 13. Modification of a nonadaptive scheme into an adaptive one has been done
with help of in transmisivity coefficients Tpq. We can set the distnace, over which we
compute the gradient and which is in the denominator of Tpq, to the average length
of sides of two neighboring cells. Since the grids are balanced, in 2D we have

Tpq := 1 if two inspected adjacent cells p, q are of equal size

Tpq :=
2
3

otherwise. (19)

516 Z. KRIVÁ

The second possibility how to modify the nonadaptive algorithm into an adaptive
one is such, that working on the same grid as described above, we make the diffusion
faster in regions with greater size of cells. We can achieve this by making the distance
for gradients smaller (now we mean the gradient, which is involved in Tpq, equal to
the size h of cells on the basic level. If lp and lq denote lengths of sides of control
volumes p and q, in 2D we come to a formula

Tpq = min
{
lp
h
,
lq
h

}
. (20)

Scheme 1

 l2p
k

1
|∇Gσ ∗ unp |ε

+
∑

q∈N(p)

Tpq
gσ,npq (uh,k)

|∇Gσ ∗ unp (xpq) |ε


un+1

p

−
∑

q∈N(p)

Tpq
gσ,npq (uh,k)un+1

q

|∇Gσ ∗ unp (xpq) |ε
=
l2p
k

1
|∇Gσ ∗ unp |ε

unp (21)

with Tpq defined by (19) and

Scheme 2

 lp
k

1
|∇Gσ ∗ unp |ε

+
∑

q∈N(p)

Tpq
gσ,npq (uh,k)

|∇Gσ ∗ unp (xpq) |ε


un+1

p

−
∑

q∈N(p)

Tpq
gσ,npq (uh,k)un+1

q

|∇Gσ ∗ unp (xpq) |ε
=
lp
k

1
|∇Gσ ∗ unp |ε

unp (22)

where Tpq modifies into

Tpq := 1 if two inspected adjacent cells p, q are of equal size (23)

Tpq :=
1
2

otherwise. (24)

The 3D schemes can be obtained in a similar manner [6]. The second scheme gives
usually a better visual effect, because diffusion on cells with size greater than 1 is
faster than if we use the scheme 1. Anyway, both schemes lead to the “staircase
effect”, caused by the fact, that greater cells have zero curvature and isolines stop
moving. Though this problem is just visual – the aim is to extract isolines or
isosurfaces – it can be surpressed in two ways: we can impose another demand on
the adaptive grid – to merge cells into a bigger one, also the adjacent cells of a half
size must have their intensities within a prescribed tolerance (not necessarily the
same as the threshold) or we can use ideas described in experiment 5.

5. NUMERICAL EXPERIMENTS

In all algorithms used for these experiments, we use unit square grids and the size
of scale step k is set to 60. In all experiments except of 3D ones, the size of pictures

Finite–Volume Level Set Method . . . 517

was set to 256 × 256. For the Perona–Malik function g we use the function g(s) =
1

1+Ks2 with K > 0. We run computations until the change in the segmentation
function is below a certain threshold determining stopping criterion tol, usually set
to 0.5. For u0 we use the function u0(x, y) = 1/

√
(x− sx)2 + (y − sy)2 + height.

The coefficients in linear system (14) were adjusted so that the diagonal term is equal
to 1. The algorithms are controlled by following parameters: ε in regularization term
(10), height in u0, K in Perona–Malik function g and σ in convolution term is set to
1 with weights from Figure 2. The adaptive algorithms use a parameter threshold
to set the coarsening criterion.

Experiment 1. This experiment is a simple example of segmentation and is de-
picted in Figure 4. An object – a circle – is given by its boundary, which is properly
closed and there is no noise in the image. During the evolution all the level lines
of the function u shrink with the speed depending on their curvature, except of
the level lines in the vicinity of the image edges, where, due to the function g, the
speed is slowed down. The “steady” state of a particular level line corresponds to a
boundary of a segmented object.

Fig. 4. a) the initial “peak” function b) 10 scale steps of the algorithm

c) 60 scale steps of the algorithm.

Fig. 5. Experiment 2. Segmentation of an object with an open boundary.

Experiment 2. If the boundary of a segmented object is not closed, the algorithm
is still able to detect the object and complete the missing part of the boundary with a

518 Z. KRIVÁ

line segment. If there is a missing part of the boundary of the segmented object, the
intensity function is “spilled out”, but the isolines are straightened by the mechanism
of the mean curvature motion (9). To achieve this behavior of the algorithm, ε must
be set to be small (10−8) (see Figure 4).

Experiment 3. In 3D, we present examples showing completion of missing parts
of the boundary for a sphere and for a cube (Figure 6 and Figure 7). Parameter

Fig. 6. Experiment 3. The original data and the result after 45 scale steps.

Fig. 7. Experiment 3. The original data and the result after 40 scale steps.

ε for (10) was set to 10−12, height in u0 equals 1, K in Perona–Malik function g is
set to 800 and ω for Gauss–Seidel SOR to 1.7. In these 3D examples, size of data
was 60× 60× 60.

Experiment 4. This experiment demonstrates, that the model (1) – (2) is well
suited for segmentation of noisy images as well, even for objects having oclusions
in their boundaries. Figure 8 shows the original object, which is disturbed by the
additive noise. The segmentation function obtained by the model is in the middle
and the extracted boundary on the right of the picture.

Experiment 5. The Figure 9 demonstrates, that in segmentation both principles
(levelset and mean curvature for graphs) can be used. Let us have an initial image
for segmentation whose boundary is not closed. Let us process the problem with
(14) first for ε = 10−12 (Figure 9 a)) and then for ε = 1 (Figure 9 b)). The case
a) shows, that though missing boundary is completed rather well, the segmentation
function is not flat and e. g. thresholding using histogram would be problematic.
In the case b) the segmentation function is more flat, but it spills out through the

Finite–Volume Level Set Method . . . 519

Fig. 8. The segmentation of noisy image.

hole in the boundary. However, if we look at the corresponding isolines, we can
observe, that switching to the level set principle, i. e. making ε small, leads to their
straightening and thus to the Figure 9 c).

Fig. 9. Meaning of ε. a) Segmentation function after 20 scale steps with ε small,

b) 50 scale steps with ε =1, c) switching to ε small – result after 150 scale steps.

On the other hand, we can start with ε = 10−12 for a certain number of steps
necessary to form shocks on the part of the missing boundary (coming to Figure 9 a)).
Then, to make the segmentation function flat, we use the following model:

∂tu√
(g(|∇u|))2 + |∇u|2

= ∇.
(

∇u√
(g(|∇u|))2 + |∇u|2

)
, (25)

where g is the following function:

g(v) = 10−6 for 0 ≤ t ≤ T1

g(v) =
1

1 +K ∗ v ∗ v for T1 < t ≤ T.

Figure 10 displays the following experiment: the image on the left depicts the
result at T1 (T1 = 40 ∗ k, k = 60), when shocks are developed. Then ε in the

520 Z. KRIVÁ

Fig. 10. Model (25). a) forming the shock, b) and c) flattening

f the segmentation function.

Fig. 11. a) Data for experiments 6 and 7, b) staircase effect of the adaptive algorithms.

algorithm changes according to the gradients: this parameter stays small on the
highest gradients and is greater for smaller gradients. Images b) and c) show the
evolution in the middle and final steps.

Experiment 6. In this example we use adaptive algorithm I to process the data
depicted in Figure 11 a) on the left. In the adaptive algorithm, the threshold is set
to 0.005. The linear system is solved by Gauss–Seidel SOR with relaxation factor
ω set to 1.75, ε is set to 10−4. For tol = 0.1 the nonadaptive algorithm achieved
the time 21,2 s. The adaptive algorithm I achieved time 8.1 s ending with 4867 grid
elements (the initial number of elements is 65536). The visual result, the decrease
of elements and the final grid are depicted in Figure 12.

Experiment 7. It processes the data from Figure 11 a) on the right. The time
achieved by corresponding nonadaptive algorithm was 52,8 s. In this experiment,
adaptive algorithm 2 is used in two ways. First we set the stopping criterion to 0.01
and ε is set to 0.0005 for all the scale steps.The algorithm needed 412 scale steps
and ended with 12 562 control volumes of 65536 initial and needed 25.5 s (case 1).
The similar visual and time result could be achieved, if we set stopping criterion
to 0.005 and after achieving change less then 0.1 we change eps to 0.02. If we had
set stopping criterion only to 0.01 the achieve time would be 19 s but with slightly
worse visual result. The final number of grid elements is 6139. If we decreased the
stopping criterion to 0.005, we would achieve better visual result and the time 24.5 s

Finite–Volume Level Set Method . . . 521

Fig. 12. The visual result of the experiment 6, the decrease of elements

and the final grid.

in 640 scale steps, which is twice better than the nonadaptive algorithm. The final
number of grid elements is 6106 (case 3). The visual result, decrease of grid cells
resp. resulting grids are depicted in Figure 13

Fig. 13. The visual result of the experiment 7, the decrease of elements

and the final grid.

ACKNOWLEDGEMENT

This work was supported by grant APVT-20-040902.

(Received March 13, 2006.)

R E F E R E N C E S

[1] L. C. Evans and J. Spruck: Motion of level sets by curvature I. In: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science.
Cambridge University Press, Cambridge 1999.

[2] A. Handlovičová, K. Mikula, and F. Sgallari: Semi–implicit complementary volume
scheme for solving level set like equations in image processing and curve evolution.
Numer. Math. 93 (2003), 675–695.

[3] G. Kanizsa: Organization in Vision. Hardcover 1979.

522 Z. KRIVÁ

[4] Z. Krivá and K. Mikula: An adaptive finite volume scheme for solving nonlinear
diffusion equations in image processing. J. Visual Communication and Image Repre-
sentation 13 (2002), 22–35.

[5] Z. Krivá and K. Mikula: An adaptive finite volume scheme in processing of color im-
ages. In: Proc. ALGORITMY 2000, Conference on Scientific Computing, Podbanské
2000, pp. 174–188.

[6] Z. Krivá: Adaptive Finite Volume Methods in Image Processing. Ed́ıcia vedeckých
prác, STU Bratislava, Stavebná fakulta 2004.

[7] Z. Krivá: Segmentation combining approaches based on mean curvature. In:
Mathematical Modelling and Analysis 2005, Proc. 10th International Conference
MMA2005&CMAM2, Trakai 2005, pp. 433–441.

[8] K. Mikula, A Sarti, and F. Sgallari: Co-volume method for Riemennian mean curva-
ture flow in subjective surface multiscale segmentation. Comput. Visual Sci. 9 (2006),
1, 23–31.

[9] K. Mikula, A. Sarti, and F. Sgallari: Co-volume level set method in subjective sur-
face based medical image segmentation. In: Handbook of Biomedical Image Analysis,
Kluwer Academic/Plenum Publishers, Dordrecht 2005, pp. 583–626.

[10] K. Mikula and A. Sarti: Parallel co-volume subjective surface method for 3D medical
image segmentation. In: Deformable Model (J. Suri, ed.), Springer–Verlag, Berlin
2006, to appear.

[11] S. Osher and J. A. Sethian: Front propagating with curvature dependent speed: al-
gorithms based on the Hamilton–Jacobi formulation. J. Comput. Phys. 79 (1988),
12–49.

[12] A. Sarti, R. Malladi, and J. A. Sethian: Subjective surfaces: A method for completing
missing boundaries. Proc. Nat. Acad. Sci. U.S.A. 12 (2000), 97, pp. 6258–6263.

[13] A. Sarti and G. Citti: Subjective surfaces and Riemannian mean curvature flow graphs.
Acta Math. Univ. Comenianae 70 (2001), 1, 85–104.

[14] A. Sarti, R. Malladi, and J. A. Sethian: Subjective surfaces: A geometric model for
boundary completion. Internat. J. Computer Vision 46 (2002), 3, 201–221.

[15] J. A. Sethian: Numerical algorithm for propagating interfaces: Hamilton–Jacobi equa-
tions and conservation laws. J. Diff. Geom. 31 (1990), 131–161.

[16] J. A. Sethian: Level set methods and fast marching methods. In: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science.
Cambridge University Press, Cambridge 1999.

[17] N. J. Walkington: Algorithms for computing motion by mean curvature. In: SIAM J.
Numer. Anal. 33 (1996), 6, 2215–2238.

Zuzana Krivá, Department of Mathematics, Faculty of Civil Engineering, Slovak Uni-

versity of Technology Bratislava, Radlinského 11, 813 68 Bratislava. Slovak Republic.

e-mail: kriva@math.sk

		webmaster@dml.cz
	2012-06-06T18:56:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

