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KYBERNET IK A — VOLUME 4 3 ( 2 0 0 7 ) , NU MB ER 4 , P AG E S 5 3 3 – 5 4 6

ON ONE APPROACH
TO LOCAL SURFACE SMOOTHING

Nikolay Dikoussar and Csaba Török

A bicubic model for local smoothing of surfaces is constructed on the base of pivot points.
Such an approach allows reducing the dimension of matrix of normal equations more than
twice. The model enables to increase essentially the speed and stability of calculations. The
algorithms, constructed by the aid of the offered model, can be used both in applications
and the development of global methods for smoothing and approximation of surfaces.

Keywords: data smoothing, least squares and related methods, linear regression, approx-
imation by polynomials, interpolation, computer aided design (modeling of
curves and surfaces), surface approximation

AMS Subject Classification: 93E14, 93E24, 62J05, 41A10, 65D17, 65D05

1. INTRODUCTION

Methods of 3D data approximation and smoothing, and the related problems are of
wide interest in theoretical and experimental sciences. The nature of dependence
between the variables and the level of the accuracy of the measurements determine
the tools and techniques the researchers can choose to treat data. To solve the
complexity of the problem one can combine and modify different approaches.

The majority of existing techniques were developed from the corresponding tech-
niques for 2D data with or without noise. The two main types of approximating
polynomial surfaces are the rectangular tensor product surfaces [3] and the triangu-
lar patches [8]. When smoothing noisy data, on one side there are the nonparametric
methods, such as kernel smoothers, wavelets and neural networks that do not result
in functional equations [10, 12, 13], and on the other side the parametric ones, such
as regression, interpolation and splines [2, 18], where e. g. the latter presents a fitting
method, where local approximating polynomials on appropriate minimal segments
are directly extended to splines. For a brief overview of the base approximating and
smoothing methods see [9, 11].

The paper proposes a new approach to the task of local polynomial smoothing
of surfaces of two variables by a bicubic model based on some pivot points of the
surface. It considers a regression model for computing the estimate F̂∗ of a smooth
function F (x, y) in a given point (x∗, y∗) using its measured points {F̃k} and special
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basis functions. Papers [4, 5, 16, 15] considered algorithms that used pivot points for
smoothing and approximation of one dimensional functions. The pivot (reference)
points originate from the discrete projective transformation [5]. As fixed parameters
of the model, they play a key role in the formulae. There are only two assumptions
about them: they must be mutually different and form a rectangular grid. Different
choice of pivot points can lead to models with different possibilities and properties.

It is well known that smoothing functions of two and more variables is character-
ized by enlarged complexity caused particularly by increasing the dimension of the
matrix of the system of the normal equations. This complexity can be well demon-
strated by comparing the interpolation of functions of one and two variables. It is
well known too, that there are hardships with the polynomial regression models of
order greater than 5 mainly for nets with equidistant step, where the matrix of the
regression model is not well determined [1, 14].

We propose to use a cubic model for both variables for the local surface smoothing,
in which one part (biquadratic) of the parameters is chosen on the surface as pivot
points and the other part (bicubic) contains free parameters. Such a construction of
a model enables to decrease the dimension of the matrix of the normal system more
then two times.

The basis functions of the proposed bicubic model depend on the coordinates
of 9 mesh points of a rectangle net and are expressed by one dimensional basis
functions of a 3-point cubic spline, defined in [4]. This way we get an incomplete
bicubic polynomial model (IBPM), in which the coefficient for x3y3 equals zero. The
pivot constrain of this model results in a simplification of the numerical hardships
connected with the solution to the normal system, when the approximating polyno-
mial is of higher order [14], and in speeding up the computation almost three times.
These qualitative characteristics seem to be valuable when using a model for solving
practical problems, mainly in real time systems.

Qualitative algorithms for approximating and smoothing surfaces are necessary
for many scientific and technical problems, when a complex functional dependence
is replaced by a more simple (polynomial) one as in smoothing experimental data,
partly in image processing, investigation of respond surfaces [14], analysis of mag-
netic structures etc. In [6] we suggested a new method to the analysis of complex 2D
dependence. The proposed auto-tracking piecewise cubic approximation (APCA) di-
vides the curve into segments of various lengths. In [17] we showed that APCA can
be used to increase the wavelet compression rate. One of the main future tasks is to
generalize APCA for global approximation of 3D data based on the IBPM model.

Section 2 is devoted to two cubic models with pivot constrains. The main in-
complete bicubic model is constructed in Section 2.1. Section 2.2 introduces a full
bicubic model. Section 3 demonstrates the qualitative properties of the IBPM in
surface smoothing. Section 3.1 describes the regression procedure based on IBPM.
The next section compares the numerical results of approximation of test functions
by the new incomplete bicubic model and the corresponding classic model. The last
section consists of conclusions.
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2. BICUBIC MODEL WITH PIVOT CONSTRAIN

2.1. IBPM-model with nine pivot points

We consider a representation of a surface, where the rectangle domain R : a ≤ x ≤
b; c ≤ y ≤ d is divided into rectangles Rij : xi−1 ≤ x ≤ xi, yj−1 ≤ y ≤ yj (i =
1, 2, . . . , N ; j = 1, 2, . . . ,M). A surface F (x, y) is defined on every such rectangle
the way that it coincides with one of the four given curves fi(x), gj(y) along the
four sides of the rectangle Rij [1].

We divide the Rij into four parts by intervals parallel to the coordinate axes and
construct a 9-point net (see Figure 1a), on which we will approximate the surface
F (x, y) with cubic functions fi(x), gj(y).

Fig. 1. The choice of mesh points and parameters of the net ∆λL (a) and the scheme of

the construction of the approximant on the surface z = φ(u, v) (b).

Now we give a construction of a local approximation C(u, v) of a function of two
variables F (x, y) on a 9-point net ∆λL = ∆Λu ×∆Λv of the rectangle

RλL : λu ≤ u ≤ Lu, λv ≤ v ≤ Lv, (1)

where ∆Λu : λu = xλ − x0 < x0 < xL − x0 = Lu, ∆Λv : λv = yλ − y0 < y0 <
yL − y0 = Lv, u = x − x0, v = y − y0 and xλ, xL, yλ, yL denote the edges of the
rectangle.

We suppose that in the mesh points of a net ∆λL the values of the function are
known Fij = F (xi, yj , ), i · j = 1, 2, 3. For simplifying the formulae we shift the
origin to the point F (x0, y0) and introduce

φ = F (x− x0, y − y0)− F (x0, y0) = φ(u, v).

We denote the set of function values in mesh points by {φij} (see Figure 1b), the
parameters of the net by Λuv : {Λu; Λv}, (Λu = [λu, Lu], Λv = [λv, Lv]), and the full
set of pivot points by R (mark).

Following [4] a local one dimensional three-point cubic spline of the variable τ
can be constructed on the pivot points {λτ , O, Lτ}, (τ = u, v)

S3(τ ; Λτ ) =
3∑

i=1

fidi(τ ; Λτ ) + αQ(τ ; Λτ ), (2)
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where {fi} are the function values in the pivot points, di(τ ; Λτ ) and Q(τ ; Λτ ) are
the basis functions and α is a free parameter. The basis functions are defined by the
parameters of the set ∆λL as follows

d1(τ ; Λτ ) = −(λτHτ )−1τ(τ − Lτ ),
d2(τ ; Λτ ) = (LτHτ )−1τ(τ − λτ ),
d3(τ ; Λτ ) = (λτLτ )−1(τ − λτ )(τ − Lτ ) and (3)
Q(τ ; Λτ ) = τ(τ − λτ )(τ − Lτ ),

where Hτ = Lτ − λτ (τ = u, v). The basic parameters of the pivot rectangle, that
defines the functions di(τ ; Λτ ) and Q(τ ; Λτ ), are shown in Figure 1a). The pivot
points {φij} of the surface in Figure 1.b) correspond to the mesh points ∆λL.

We write the six cubic parabolas passing through three points of the set {φij}
along the six lines of the net ∆λL in the form

Cj(u;R) =
3∑

i=1

φijdi(u; Λu) + αujQ(u; Λu),

Ci(v;R) =
3∑

j=1

φijdj(v; Λv) + αviQ(v; Λv), (i · j = 1, 2, 3). (4)

In these equations the values φij are fixed and the free coefficients αuj and αvi are
unknown. The formulae in (4) can be used for computing φ(u, v) in any point (u, v)
of the rectangle RλL: we choose one point (the fourth one, see φ14, φ34, φ24, φ41, φ43

and φ42 in Figure 1) on every curve and write the equation of the cubic parabola
C4u that passes through the corresponding three points and the actual one (u, v) in
correspondence with (2) as

C4u =
3∑

i=1

Ci(v,R)di(u; Λu) + αu4Q(u; Λu)

=
3∑

i=1

[
3∑

j=1

φijdj(v; Λv) + αviQ(v; Λv)]di(u; Λu) + αu4Q(u; Λu)

=
3∑

i=1

3∑

j=1

φijwij(u, v; Λuv) +
3∑

k=1

αvkωk(u, v; Λuv) + αu4Q(u; Λu)

= Sq(u, v;R) +
4∑

k=1

αukωk(u, v; Λuv),

where

Sq(u, v;R) =
3∑

i=1

3∑

j=1

φijwij(u, v; Λuv)

presents the biquadratic element C4u with the basis functions

wij(u, v; Λuv) = di(u; Λu)dj(v; Λv), (i · j = 1, 2, 3),
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and the bicubic element is presented by the convolution of the coefficients αuk and
the basis functions ωk(u, v; Λuv). An analogous formula can be written for the curve
C4v of variable v. Then we take for the approximation of φ(u, v) in the point (44)
the average of these two functions and get

φ44
∼= C(u, v;R) = [C4u + C4v]/2 = Sq(u, v;R) +

4∑

k=1

1
2
(αuk + αvk)ωk(u, v; Λuv),

where the basis functions ωk(u, v; Λuv) are expressed by the products

di(u; Λu)Q(v; Λv), di(v; Λv)Q(u; Λu) (i = 1, 2, 3)

and the functions Q(u; Λu), Q(v; Λv).
Taking into account the normalization property of the functions di and dj (d3 =

1− d1 − d2), we get after some arrangements for C(u, v;R)

C(u, v;R) =
3∑

i·j=1

φijwij(u, v; Λuv) +
6∑

m=1

θmωm(u, v; Λuv)

= Sq(u, v;R) + Sc(u, v; Λuv), (5)

where θm are the free coefficients. The functions Sq(u, v;R) and Sc(u, v; Λuv) present
the biquadratic and bicubic elements of C(u, v;R), respectively. One can easily check
that the surface (5) is a local bicubic spline over ∆λL, for the functions and their
derivatives are continuous in the mesh points.

Let us have a short look at the basic properties of the basis functions wij(u, v; Λuv)
and ωm(u, v; Λuv). For wij(u, v; Λuv) we have

wij(i′, j′) = δii′δjj′ =

{
1, if i = i′ and j = j′,

0, if i 6= i′ and j 6= j′,
(6)

3∑

i=1

3∑

j=1

wij(u, v; Λuv) = 1, (7)

since
∑3

i=1 di(τ ; Λτ ) = 1 (τ = u, v) and so

3∑

i=1

3∑

j=1

wij(u, v; Λuv) =
3∑

i=1

di




3∑

j=1

dj


 = 1

3∑

i=1

di = 1 · 1 = 1.

From (6) we get for one of the 9 points (i′, j′) of the net ∆λL

sq(i′, j′) =
∑

i·j
wij(i′, j′)φij =

∑

i·j
δii′δjj′φij = φi′j′ ,

i. e. Sq(u, v;R) coincides with φ(u, v) in every pivot point.
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Fig. 2. The basis functions w33(u, v; Λuv) and ω4(u, v; Λuv) for Λuv : {−1, 1;−1, 1}.

The basis functions ω(u, v; Λuv), as it was mentioned above, are defined by
di(u; Λu)Q(v; Λv), dj(v; Λv)Q(u; Λu) (i · j = 1, 2), the functions Q(u; Λu), Q(v; Λv)
and equal zero in the mesh points of ∆λL, i. e.

ωm(ui, vj) = 0 (m = 1, 2, . . . 6; i · j = 1, 2, 3).

The graphs in picture 2 correspond to two basis functions.
Since the element with the products u3v3 in the basis C(u, v;R) is absent, the

formula (5) presents an incomplete bicubic model of the surface, thus it corresponds
to the classic polynomial model of two variables with fifteen coefficients and a basis

{1, x, y, x2, xy, y2, xy2, x2y, x3, y3, xy3, x2y2, x3y, x2y3, x3y2}. (8)

The main feature of the IBPM construction is the fact, that nine of its parameters
(the coefficients by wij) coincides with the values φij of the considered surface and
the other parameters (θm) are free.

If the values of the pivot coordinates are given without errors, then the number
of unknown parameters in the model (5) is two and half times smaller (six instead
of fifteen) than in the classic model of the bicubic interpolation spline (CBM) or
simple double cubic spline with regards to the net ∆xy = ∆x ×∆y [1]:

s(x, y) =
3∑

α=0

3∑

β=0

aαβxαyβ , xi−1 ≤ x ≤ xi, yj−1 ≤ y ≤ yj . (9)

The polynomial s(x, y) interpolates the surface in the ijth cell of the net ∆xy and
depends on 16 free coefficients aαβ . The use of the model (5) for local approximation
of the function F (x, y) is preferable to s(x, y) in the case, when {φij} are given with
a higher precision and the pivot points lie in the mesh points of the rectangle net
∆λL. These constrains are not very strong in practice. They can be achieved by
an a priori choice of the mesh points of the pivot rectangle and by a more precise
measurement (or by repeated measurements) of the pivot values. These requirements
are the main limitation for the use of IBPM. Mention must be made that due to these
constrains the effectiveness of the smoothing procedure increases essentially, for the
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matrix dimension of the system of normal equations decreases more than twice. This
raises the stability and the speed of the calculations. The model C(u, v;R) from (5)
serves for the polynomial approximation of F (x, y) in the rectangle RλL as a proper
bicubic approximant, in which more than half of the coefficients (pivot points) may
be computed a priori with a high precision based on the values of the polynomials
F (x, y) in the mesh points.

2.2. Full bicubic model (BM)

We construct over the rectangle net of 16 mesh points (all points in Figure 1a) a full
bicubic model (BM) equivalent to (9), with a basis different from (8) and which is
parameterized by the 16 pivot coordinates of the considered surface z = F (x, y). We
denote the net by ∆λµν and take in its mesh points the pivot points {φij} (i · j =
1, . . . , 4). The geometric sense of the parameters is shown in Figure 3.

Fig. 3. The parameters of the net ∆λµν for mi(τ ; Λτ ) along of one axis.

We introduce the parameters λτ , µτ , ντ and construct four functions on the base
of Lagrange cubic interpolation polynomial in the form

m1(τ ; Λτ ) = (λτNτMτ )−1τ(τ − µτ )(τ − ντ ),
m2(τ ; Λτ ) = −(µτMτLτ )−1τ(τ − λτ )(τ − ντ ),
m3(τ ; Λτ ) = (ντLτNτ )−1τ(τ − λτ )(τ − µτ ),
m4(τ ; Λτ ) = −(λτµτντ )−1(τ − λτ )(τ − ντ )(τ − µτ ), (10)

where Lτ = ντ − µτ , Mτ = µτ − λτ , Nτ = ντ − λτ , (τ = u, ν) and Λτ denotes the
set of numbers Λτ ≡ {λτ , µτ , ντ , Lτ ,Mτ , Nτ}.

We define by the analogy with IBPM the basis functions wij as products
wij(u, v; Λuv) = mi(u; Λu)mj(v; Λv). Then the full bicubic model may be written
as

CBM =
4∑

i=1

4∑

j=1

φijwij(u, v; Λuv), (11)

where Λuv = {Λu, Λv} denotes the parameters of the net ∆λµν .
One can easily check by the analogy with the 9 point set that the basis functions

wij(u, v; Λuv) have the properties (6) and (7).
When the values {φij}(i · j = 1, . . . , 4) are given precisely the model (11) is an

interpolant of polynomial (9). When the pivot points {φ̃k}, k = 1, 2, . . . , N (N À
16) are unknown the BM for smoothing the parts of the surface on the base of
observed points {φ̃ij} is more stable than the classic model (9), since the determinant
of the normal system gets better by several orders and the computation of estimates
{φ̂k} gets more stable (see Section 3.2).
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3. BICUBIC SURFACE SMOOTHING

The least square procedure is considered in this section on the base of IBPM for
local smoothing (approximation) of surfaces with bicubic polynomials in a region
given by a rectangle RλL. The quality of processing the same samples by the model
C(u, v;R) and s(x, y) are compared on the base of numerical results when a33 = 0.

3.1. Regression procedure with IBPM

We consider the task of smoothing the measured points {F̃k}, k = 1, 2, . . . , n (n À
15) of the surface z = F (x, y) on the base of model (5). For this the sample {F̃k}
has to contain besides the measurements nine pivot points {F̃ij = Fij + eij} (eij ∼
N(0, σ2

e), i · j = 1, 2, 3, ) that lie around the basis point (0, 0, F̃0) in the mesh points
of a rectangle net ∆λL (1). We define wij(x, y; Λxy), ωm(x, y; Λxy) on the basis of
parameters Λxy and build the pivot surface S̃q(x, y;R) in the form

S̃q(x, y;R) =
3∑

i=1

3∑

j=1

F̃ijwij(x, y; Λxy) =
3∑

i=1

3∑

j=1

(Fij + eij)wij(x, y; Λxy). (12)

Let Z̃
T

= [F̃1 − S̃q1, . . . , F̃n − S̃qn] be a vector gained by subtracting from the
observations F̃1, F̃2, . . . , F̃n the values S̃qk, computed by the formula (12) with pivot
points {F̃ij} and values {wijk}. Then Z̃ = Z + eR + eF , where eF is the error
vector of the sample {F̃k} and the vector eT

R = [er1, er2, . . . , erm] is generated by
the convolution of errors {eij} of the pivot points and the values of the basis functions
{wijk = wij(xk, yk)}, k = 1, 2, . . . , n.

Let us examine the characters of the errors eR in more detail. Since
∑

ij wij = 1,
based on (12) and the properties of wij we get |eRk| ≤ er max (er max = maxij{|eij |}).
Additionally if the parameters Λxy are chosen symmetrically with respect to the basis
point (x0, y0), then for x, y ∈ RλL: 0.4 ≤ ∑

ijk w2
ijk ≤ 1. Therefore the variance of

eR will not be greater than σ2
e (the experimental estimation is σ2

R ≈ 1
2σ2

e .)
We consider the smoothing process of the sample {F̃k}, k = 1, 2, . . . , n, on the

base of (5) in the form

Z ≡ F − Sq = (Θ, B) + e, (13)

where ΘT = [θ0, θ1, . . . , θ6] - the vector of unknown parameters, BT = [1, ω1, . . . , ω6]
– the basis vector and e – the error. On the base of n (n À 15) measurements
on the surface within the rectangle RλL we get the vector Z̃, compute for every
measured point the basis functions ωmk = ωm(xk, yk; Λxy), construct the vectors
[1, ωm1, ωm2, . . . , ωmn]T and form the regression matrix Ωn×np with elements ωmk,
where k = 1, 2, . . . , n; m = 1, 2, . . . , np − 1. The rank of the matrix is np (np = 7)
due to the linear independence of ωm, m = 0, . . . , 6. We get a system of n equations

Z = ΩΘ + e
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and use the LS criterion for getting the optimal estimator
n∑

k=1

e2
k → min

Θ
,

that enables to write the solution in the form

Θ̂ = (ΩT Ω)−1ΩT Z̃. (14)

3.2. Numerical experiments

Example 1. We chose a fragment (see Figure 4) on the function Franke (see
Matlab 5)

Φ(x, y) = 0.75e(−(9x−2)2−(9y−2)2)/4 + 0.75e(−(9x+1)2/49−(9y+1)2/10)

+ 0.5e(−(9x−7)2−(9y−3)2)/4 − 0.2e(−(9x−4)2−(9y−7)2) (15)

for setting working characteristics of the smoothing process by the IBPM in the
form(13) and for their comparing with the working characteristics of the classic
model (CBM) (9). We generated a sample F̃k = {F (xk, yk)+ek}, k = 1, 2, . . . , n (n =
100, σ2

e = .01) in the rectangle RλL with parameters x0 = 0.62, y0 − 0.2;λx =
−0.15, Lx = 0.25;λy = −0.25, Ly = 0.25 and chose the coordinates of the pivot
points {F̃ij = Fij + eij} with the same parameters but different errors.

Fig. 4. The surface Φ(x, y) and its fragment on the net ∆ΛL with points {F̃k}.

The result of smoothing by IBPM were compared with the results of processing
the same samples by the CBM (9) with 15 parameters. The following characteristics
were computed for both models:

a) maximal bias rmax = maxx, y∈RλL
|F − F̂ |;

b) the determinant of the matrix of the normal equations det = det(ΩT Ω);

c) the global relative error re

re =

√√√√
n∑

k=1

(F̃k − F̂k)2
/√√√√

n∑

k=1

F̃ 2
k ;
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d) the time tR, needed for computation Θ̂ and {F̂k};

e) the distribution of residuals rk

rk = F̃k − (S̃qk + Ŝck), where Ŝck =
6∑

m=0

θ̂mωm(xk, yk), m = 0, . . . , 6.

The results of computations are in Figures 5, 6 and Table 1.

Fig. 5. The generated points (measurements) with the original and smoothed fragments

of the surface (left) and their difference (right) F (x, y)− F̂ (x, y), x, y ∈ RλL.

Fig. 6. The plots of residuals rk for IBPM (left) and CBM (right).

The IBPM polynomial estimation of Φ(x, y) in the rectangle RλL after rearrange-

Table 1. Computational characteristics of IBPM and CBM.

pmodel pC(u,v;R) ps(x,y) ps/pC

rmax 0.027634635 0.065944316 2.386
re 0.032342485 0.030555841 0.94476
tR 1.999 6.046 3.024
det 0.1124 10−20 0.2741 10−45 2.4 10−25
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Fig. 7. The histograms of residuals rk (top), their differences (left bottom)

and the generated input errors (right bottom).

ments equals
F̂ (x, y) = .4175140769x + .3960975192y + 153.7570490x3y2

+ 201.5982904x2y3 − 15.47776507x2y − 2.357156253xy2

− 21.61381719x3 − 7.664238316y3 − 31.29530791x2y2

+ 7.819547029xy − 18.19242050x3y − 68.64178532xy3

+ 3.374577403x2 − 1.424124687y2 + .3811368802.

Example 2. Table 2 and Figures 8 – 11 contain the results of smoothing the sphere

F (x, y) =
√

4− (x− 1)2 − (y − 1)2, x, y ∈ [−1, 1;−1, 1]

with the net parameters x0 = 1, y0 = 1; λx = −1, Lx = 1; λy = −1, Ly = 1 for
IBPM and CBM (n = 150, σ2

e = .03).

Fig. 8. The generated points (measurements) with the original and smoothed fragments

of the sphere (left) and their difference (right) F (x, y)− F̂ (x, y), x, y ∈ RλL (IBPM).

The IBPM estimation after rearrangement is given by
F̂ (x, y) = −.03073090818xy3 − .009867930550xy + .03826875230x2y3

− .03152597740x2y − .001729060898x3 + .003677417398x

+ .03811583823x3y + .06483166127x3y2 − .05410740427xy2

− .003670835986y3 + .006565254986y + 2.000586591

− .2724256710y2 − .04084875440x2y2 − .2603127485x2.
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Fig. 9. The generated points with the original and smoothed fragments

of the sphere (left) and their difference (right) (CBM).

Fig. 10. The plots of residuals rk for IBPM (left) and CBM (right).

Fig. 11. The histograms of residuals rk (top), their differences (left bottom)

and the generated inputs errors (right bottom).

Table 2. Computational characteristics of sphere smoothing.

pmodel pC(u,v;R) ps(x,y) ps/pC

rmax 0.03377820628 0.042366500 1.254255470
re 0.01662175319 0.016726239 1.006286103
tR 3.180 9.205 2.89465
det 0.76193 104 0.11439 1013 0.1501319 109
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We can conclude on the base of the quality of the residuals (Figures 6, 7, 10, 11)
and the numerical characteristics (Tables 1, 2) that the polynomial IBPM estimators
(16), (17) are adequate and may be used for the approximation of the surfaces in
RλL.

4. SOME REMARKS ON GLOBAL APPROXIMATION

Let us have a look at how to create global piecewise approximation based on the
local IBPM model presented above, as we see it today. Once one has an effective
local approximating tool, in global piecewise approximation the two principal tasks
are to get the appropriate number of segments and ensure their continuity. In solving
it every approach has its own pros and cons. In our case the benefits seem to be the
simplicity of the model, the speed and stability of the computation. The concerns
are the accuracy of the pivot points and the rectangle structure of their positions.

To use IBPM for global approximation we see several directions. The first naive
approach can leverage the base property of the model: selecting the pivot points on
the boundary of the neighbor local segments, the approximants will be continuous
in the pivot points.

In [6] we suggested a new global method for the analysis of complex 2D de-
pendence with relatively small errors. The proposed auto-tracking piecewise cubic
approximation (APCA) divides the interval/curve into subintervals/segments of var-
ious lengths, provides local cubic estimations for every segment (stage 1) and gives
a technique for obtaining integral cubic approximants (stage 2). Finding the break-
points, knots in an autotracking mode and the iterative computation schemes are
the two main features of the proposed method that uses an approximation model
that is the 2D counterpart of IBPM. One of the main tasks is to generalize APCA
for approximation of 3D data with surfaces. The main idea is clear: using 2D APCA
in both directions (x and y) by partitioning create rectangles, and construct local
surfaces over them. The paper [7] showed that this approach in combination with
splines works efficiently on real noisy data too.

5. CONCLUSIONS

The results presented above show that the proposed new approach to the construc-
tion of (an incomplete) bicubic model for the local surface approximation by pivot
points enables to raise the speed and stability of computations and reduce the di-
mension of the matrix of the normal system more then two times. The qualitative
characteristics of the model suggest that the IBPM can serve as a basic construction
for algorithms in global approximation and smoothing surfaces.

One of the main challenges is to generalize the presented IBPM model and APCA
for global approximation of 3D data with surfaces.
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