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UNIFORM A PRIORI ESTIMATES
FOR DISCRETE SOLUTION OF NONLINEAR TENSOR
DIFFUSION EQUATION IN IMAGE PROCESSING

Olga Drbĺıková

This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image
processing. First we provide some basic information on this type of diffusion including a
construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of
so-called diamond-cell method (see Coirier [2] and Coirier, Powell [3]). Further, we prove
existence and uniqueness of a discrete solution given by our scheme. The proof is based on
a gradient bound in the tangential direction by a gradient in normal direction. Moreover,
the proofs of L2(Ω) – a priori estimates for our discrete solution are given. Finally we
present our computational results.

Keywords: finite volume method, diamond-cell method, image processing, nonlinear
parabolic equation, tensor diffusion
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1. INTRODUCTION

The effort to gain processed image quicker and by a less computationally expensive
way leads to inventions of new diffusion models and also to their improvements. One
of them was introduced by Weickert (see, e. g., [10]) in the following form

∂u

∂t
−∇ · (D∇u) = 0, in QT ≡ I × Ω, (1)

u(x, 0) = u0(x), in Ω, (2)
〈D∇u, n〉 = 0, on I × ∂Ω, (3)

where u denotes an intensity of greylevel image and D is a matrix depending on the
eigenvalues and on the eigenvectors of the so-called (regularized) structure tensor J =
∇u(∇u)T (for details see next section). This modification is useful in any situation,
where strong smoothing in one direction and low smoothing in the perpendicular
direction are desirable. Owing to this property, tensor anisotropic diffusion has been
applied mainly for images with interrupted coherence of structures.

We derive our numerical scheme for this diffusion model by finite volume method.
We choose this modern discretization technique since it is well suited for a numerical
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solution of conservation laws. It has been successfully applied in image processing,
e. g., for solving the Perona–Malik equation [9] or curvature driven level set equa-
tion [8].

2. DERIVATION OF DIFFUSION TENSOR

2.1. Analyzing coherent structures

In order to enhance a coherence of structures, we need a reliable tool for analyzing
coherent structures.

A very simple structure descriptor is given, e. g., by the properties of ∇ut̃, where

ut̃(x, t) = (Gt̃ ∗ u(·, t))(x), (t̃ > 0). (4)

Let us note that t̃ of Gaussian kernel Gt̃ denotes the noise scale (the edge detector
ignore details smaller than O(t̃)). We can use, e. g., absolute value of ∇ut̃ for detect-
ing edges in some images (see [1]) but for images with line structures this descriptor
is not useful. We know that high fluctuations remain for small t̃, while larger t̃ leads
to entirely useless results. This is due to fact that for larger t̃ neighboring gradients
with same orientation but opposite sign cancel each other. One way how to gain
the structure descriptor invariant under sign changes is to replace ∇ut̃ by its tensor
product. Then we again average it by applying other convolution with Gaussian Gρ

Jρ(∇ut̃) = Gρ ∗ (∇ut̃∇uTt̃ ), (ρ ≥ 0) (5)

where ρ denotes the integration scale, which reflects the characteristic size of the
texture and in the most cases, it is large in comparison to the noise scale t̃. In
computer vision community the matrix

Jρ =
(
a b
b c

)

is well-known as structure tensor. This matrix Jρ is symmetric and positive semi-
definite and its eigenvalues are given as follows

µ1,2 =
1
2

(
a+ c±

√
(a− c)2 + 4b2

)
, µ1 ≥ µ2. (6)

The eigenvalues describe the average contrast in the eigendirections ṽ and w̃ .
The corresponding orthonormal set of eigenvectors (ṽ, w̃) to eigenvalues (µ1, µ2)

is given by

ṽ = (v1, v2), w̃ = (w1, w2), (7)
v1 = 2b, v2 = c− a+

√
(a− c)2 + 4b2,

w̃ ⊥ ṽ, w1 = −v2, w2 = v1.

The orientation of the eigenvector w, which corresponds to the smaller eigenvalue
µ2 is called coherence orientation. This orientation has the lowest fluctuations.
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2.2. Coherence-enhancing anisotropic diffusion

Since we have a tool for analyzing coherence, we draw our goals to enhance the
image coherence. One of possibilities, how to do it, can be done by embedding the
structure tensor analysis into a nonlinear diffusion filter.

For enhancing coherence, the diffusion tensor D must steer a filtering process
such that diffusion is strong mainly along the coherence direction w̃ and it increases
with the coherence (µ1−µ2)2. To obtain it, we require that D must possess the same
eigenvectors w̃ and w̃ as the structure tensor Jρ(∇ut̃) and we choose the eigenvalues
of D as

κ1 = α, α ∈ (0, 1), α¿ 1,

κ2 =

{
α, if µ1 = µ2,

α+ (1− α) exp
(

−C
(µ1−µ2)2

)
, C > 0 else.

The diffusion tensor D has a form

D = ABA−1 =
(
λ β
β ν

)
, (8)

where A =
(
v1 −v2

v2 v1

)
and B =

(
κ1 0
0 κ2

)
.

Due to the convolutions in (4) and (5), the elements of matrix D are C1 functions.

3. FINITE–VOLUME SCHEME FOR TENSOR ANISOTROPIC DIFFUSION
IN IMAGE PROCESSING

The aim of this section is to prove the existence of a unique discrete solution for
the model (1) – (3) which satisfies the semi-implicit finite volume scheme obtained
with the help of co-volume mesh. Let us consider a rectangular image domain
Ω = (0, n1h) × (0, n2h), h is a pixel size and let the image u(x) be represented by
a bounded mapping u : Ω → R. Our image is represented by n1 × n2 pixels (finite
volumes) such that it looks as mesh with n1 rows and n2 columns. We consider it
in a scaling (time) interval I = [0, T ]. Let 0 = t0 ≤ t1 ≤ · · · ≤ tNmax = T denotes
the time discretization with tn = tn−1 + k, where k is the time (scale) step. For
n = 0, . . . , Nmax we will look for un an approximation of solution at time tn.

We integrate equation (1) over finite volume K, provide a semi-implicit in time
discretization and use a divergence theorem to get

unK − un−1
K

k
m(K)−

∑

σ∈EK

∫

σ

Dn−1∇un · ñK,σ ds = 0, (9)

where unK , K ∈ Th represents the mean value of un on K, m(K) is the measure of
the finite volume K with boundary ∂K, σKL = K ∩L = K|L is an edge of the finite
volume K, where L ∈ Th is an adjacent finite volume to K such that m(K ∩L) 6= 0.
Let us note that only due to simpler notation, we will write in the sequel σ instead
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of σKL. EK is a subset of E such that ∂K =
⋃
σ∈EK σ, E =

⋃
K∈Th EK , where Th

is admissible finite volume mesh (see [6]). Υ is the set of pairs of adjacent finite
volumes, defined by Υ = {(K,L) ∈ T 2

h , K 6= L, m(K|L) 6= 0}. We will denote
Dn−1
σ as mean value of Dn−1 ≡ D(un−1) on σ, that is Dn−1

σ = 1
m(σ)

∫
σ
Dn−1 dx,

where m(σ) is the measure of edge σ, and ñK,σ is the normal unit vector to σ
outward to K. Let us define the discrete solution by

uh,k(x, t) =
Nmax∑

n=0

∑

K∈Th
unKχ{x ∈ K}χ{tn−1 < t ≤ tn}, (10)

where the function χ(A) is defined as

χ{A} =
{

1, if A is true,
0, elsewhere.

Due to theoretical reasons we have to extend such defined uh,k outside Ω. To that
goal we defined the set

Ωt̃ = Ω ∪Bt̃(x), x ∈ ∂Ω, (11)

where Bt̃(x) is a ball centered at x with radius t̃ and extension ũh,k in the follow-
ing way: outside Ωt̃, ũh,k ≡ 0. In Ωt̃ − Ω we define ũh,k by mirror reflexion and
periodization through sides of Ω (rectangular domain), where the number of such
mirror reflexions depends on the size of t̃ (see [7]). In order to get an approximation
of equation (9) we write it in the form

unK − un−1
K

k
− 1
m(K)

∑

σ∈EK
φnσ(unh,k)m(σ) = 0, (12)

where φnσ(unh,k) denotes an approximation of the exact flux 1
m(σ)

∫
σ
Dn−1
σ ∇un· ñK,σ ds

and unh,k(x) =
∑
K∈Th u

n
Kχ{x ∈ K}.

One possibility how to construct φnσ(unh,k) is obtained with the help of co-volume
mesh. The specific name (diamond-cell) of this method (see [2] and [3]) is due to the
choice of co-volume as a diamond-shaped polygon. The co-volume χσ associated to σ
is constructed around each edge by joining all four co-volume vertices (i. e. endpoints
of this edge and midpoints of finite volumes which are common to this edge) (see
Figure 1).

We denote the endpoints of an edge σ̄ ⊂ ∂χσ by N1(σ̄) and N2(σ̄) and ñχσ,σ̄ is
the normal unit vector to σ̄ outward to χσ. In order to have an approximation of
the diffusion flux, we first derive, using divergence theorem, an approximation of the
averaged gradient on σ

1
m(χσ)

∫

χσ

∇un dx =
1

m(χσ)

∫

∂χσ

unñχσ,σ̄ ds

and then we denote it by

pnσ =
1

m(χσ)

∑

σ̄∈∂χσ

1
2

(
unN1(σ̄) + unN2(σ̄)

)
m(σ̄)ñχσ,σ̄.
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Fig. 1. A detail of a mesh – a finite volume K, its boundaries σi, i = 1, 2, 3, 4 and

co-volume χσ3 corresponding to σ3.

The value at the centres xE and xW are uE and uW while the values at the vertices
xN and xS are computed as the arithmetic mean of values on finite volumes which
are common to this vertex (for general nonuniform meshes see [2]).

Since our mesh is uniform squared, for simplification, we can use the following
relations: m(χσ) = h2

2 , m(σ̄) =
√

2
2 h and after a short calculation we are ready to

write

pnσ =
unE − unW

h
ñK,σ +

unN − unS
h

t̃K,σ, (13)

where t̃K,σ is a unit vector parallel to σ such that (xN − xS) · t̃K,σ > 0. Although
such unN , u

n
W , u

n
E and unS correspond to particular edge σ, we should denote them

by unNσ , u
n
Wσ
, unEσ and unSσ , we use those simpler notations. Replacing the exact

gradient ∇un by the numerical gradient pnσ we get the numerical flux in the form

φnσ(unh,k) =
1

m(σ)

∫

σ

Dn−1pnσ · ñK,σ ds = Dσp
n
σ · ñK,σ, (14)

where

Dσ =
1

m(σ)

∫

σ

Dn−1 ds =
(
λ̄σ β̄σ
β̄σ ν̄σ

)

in the basis (ñK,σ, t̃K,σ). It means, if

D =
(
λ β
β ν

)
then Dσ2 = Dσ3 =

(
λσ βσ
βσ νσ

)
,

i. e. λ̄σ = λσ, β̄σ = βσ, ν̄σ = νσ. On the other hand,

Dσ1 = Dσ4 =
(

νσ −βσ
−βσ λσ

)
,

i. e. λ̄σ = νσ, β̄σ = −βσ, ν̄σ = λσ, where λσ = 1
m(σ)

∫
σ
λn−1 ds and βσ and νσ

correspondingly. Definition (14) can be also written in this form

φnσ(unh,k) =
(
λ̄σ β̄σ
β̄σ ν̄σ

)



unE − unW
h

unN − unS
h




(
1
0

)
= λ̄σ

unE − unW
h

+ β̄σ
unN − unS

h
, (15)
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since (13) in the basis (ñK,σ, t̃K,σ) can be for each edge written as

pnσ =




unE − unW
h

unN − unS
h


 (16)

and ñK,σ in the basis (ñK,σ, t̃K,σ) is equal to
(

1 0
)T for all edges.

In order to prove existence and uniqueness of unK , K ∈ Th, we estimate the
expressions unN − unS by means of unE − unW for all edges σ in the following form

∑

σ∈Eint

(
β̄σ
λ̄σ

)2 (
uN − uS

h

)2

λ̄σ ≤ γ
∑

σ∈E

(
uE − uW

h

)2

λ̄σ, (17)

where

0 ≤ γ < 1, γ = max
σ∈E

γσ, γσ =
(βσ)2

λσνσ
(1 +O(h)) (18)

for h sufficiently small (for details see [5]).
Let us now introduce the space of piecewise constant functions associated to our

mesh and discrete H1 norm for this space. This discrete norm will be used to obtain
some estimates on the approximate solution given by a finite volume scheme.

Definition 3.1. Let Ω be an open bounded polygonal subset of R2. We define
P0(Th) as the set of functions from Ω to R which are constant over each finite
volume of the mesh.

Definition 3.2. Let Ω be an open bounded polygonal subset of R2. For u ∈ P0(Th)
we define

|unh,k|1,Th =


 ∑

(K,L)∈Υ

(uL − uK)2

dK,L
m(σ)




1
2

, (19)

where dK,L is the Euclidean distance between xK and xL.

Remark that (19) can be rewritten into the following form

|unh,k|1,Th =

(
2

∑

σ∈E

(
uE − uW

h

)2

m(χσ)

) 1
2

(20)

for our uniform mesh. We can define discrete operator for (1) – (3) by

Lh(unh,k) = unKm(K)− k
∑

σ∈EK
φnσ(unh,k)m(σ), (21)
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such that unh,k is the solution in P0(Th) of

Lh(unh,k) = fh,k(un−1
h,k ), (22)

where fh,k(un−1
h,k ) = un−1

K m(K) and un−1
K is a value of the piecewise constant function

un−1
h,k in K. This equality is a linear system of N equations with N unknowns, namely
unK , K ∈ Th, where N = card(K). Multiplying Lh(uh,k) by unK , summing over K
and splitting into a part A and B leads to

∑

K∈Th
Lh(unh,k)unK = A+B, (23)

with

A =
∑

K∈Th
(unK)2m(K) = ||unh,k||2L2(Ω), (24)

B = k
∑

K∈Th
unK

∑

σ∈EK
−φnσ(unh,k)m(σ) = Q(unh,k). (25)

Then we bound Q(unh,k) as follows

Q(unh,k) ≥ λ̄min
1− γ

2
k

2
|unh,k|21,Th , (26)

where λ̄min = inf
σ∈E

λ̄σ ≥ C > 0. Subsequently, it yields

∑

K∈Th
Lh(unh,k)unK ≥ α

(
|unh,k|21,Th + ||unh,k||2L2(Ω)

)
(27)

with α = min (λ̄min(1− γ)k2 , 1), (for details of derivation of this inequality see [5]).

Theorem 3.3. For h sufficiently small, there exists unique solution uh,k given by
scheme (12) with (15).

P r o o f . Assume that uh,k satisfies the linear system (22) and let f = 0. Using
(27) and (22) we get

α
(
|unh,k|21,Th + ||unh,k||2L2(Ω)

)
≤

∑

K∈Th
Lh(unh,k)unK =

∑

K∈Th
funK = 0. (28)

Due to relation (28), we know that unK = 0, ∀K ∈ Th. It means that kernel of the
linear transformation represented by the matrix of the system (22) contains only
0̄ vector, which implies that the matrix is regular. And thus it implies that there
exists unique solution for any right hand side. ¤
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Lemma 3.4. (L2(Ω) – a priori estimates) The scheme (12) with (15) leads to the
following estimates.
There exists a positive constant C which does not depend on h, k such that

max
0≤n≤Nmax

∑

K∈Th
(unK)2

m(K) ≤ C, (29)

Nmax∑

n=1

k
∑

(K,L)∈Υ

(unK − unL)2

dK,L
m (σ) ≤ C, (30)

Nmax∑

n=1

∑

K∈Th

(
unK − un−1

K

)2
m (K) ≤ C. (31)

P r o o f o f L2(Ω) – a p r i o r i e s t i m a t e s. The scheme (12) can be written as

(unK − un−1
K )m(K) = k

∑

σ∈EK
φnσKL(unh,k)m(σ). (32)

We multiply (32) by unK , sum it over K ∈ Th and use the property
(a− b)a = 1

2a
2 − 1

2b
2 + 1

2 (a− b)2 on the left side of (32) to obtain

1
2

∑

K∈Th
(unK)2m(K)− 1

2

∑

K∈Th
(un−1
K )2m(K) +

1
2

∑

K∈Th
(unK − un−1

K )2m(K)

= k
∑

K∈Th

∑

σ∈EK
unKφ

n
σKL(unh,k)m(σ). (33)

We can rearrange
∑

K∈Th

∑
σ∈EK

into
∑

σKL∈E
and then we add a sum over n = 1, . . . ,m <

Nmax to get

1
2

∑

K∈Th
(umK)2m(K) +

1
2

m∑

n=1

∑

K∈Th
(unK − un−1

K )2m(K)

−k
m∑

n=1

∑

σKL∈E
unKφ

n
σKL(unh,k)m(σ) =

1
2

∑

K∈Th
(u0
K)2m(K). (34)

And from it using (25) and (26) we have

1
2

∑

K∈Th
(umK)2m(K) +

1
2

m∑

n=1

∑

K∈Th
(unK − un−1

K )2m(K)

+ᾱ
m∑

n=1

k|unh,k|21,Th ≤
1
2

∑

K∈Th
(u0
K)2m(K) (35)

with a positive constant ᾱ. Since u0
K ∈ L2(Ω), the right hand side is bounded by

a positive constant C. Using the first term of (35) we get the first L2(Ω) – a priori
estimate (29) and from the second term of (35) we have the third L2(Ω) – a priori
estimate (31). From strict positiveness of ᾱ in the third term of (35) and from
definition (19) we obtain the second L2(Ω) – a priori estimate (30). ¤
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4. NUMERICAL EXPERIMENTS

The aim of this section is to present behavior of the nonlinear tensor diffusion, using
our scheme (12) with the numerical flux given by (15).

In these experiments we use spatial step h = 0.01, time step k = 0.0001, C =
1, α = 0.001, t̃ = 0.00001 and ρ = 0.002. The arising sparse linear systems are
solved by Gauss–Seidel iterative method. For numerical implementation we use the
programming language C.

Fig. 2. Cell membranes. The image size is 100× 100 pixels. Top (left): original image.

Top (right): edge detection for the original image. Bottom (left): image after 4 filtering

steps. Bottom (right): edge detection for the image after 4 steps.

The images used for our computational experiments were obtained by multi-
photon laser scanning microscopy. They are chosen from series of images which
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depict cells of zebra-fish embryogenesis.

Fig. 3. Cells with nuclei and membranes as well. The image size is 240× 240 pixels. Top

(left): original image. Top (right): edge detection for the original image. Bottom (left):

image after 5 filtering steps. Bottom (right): edge detection for the image after 5 steps.

Our experiments are presented in two examples. Figure 2 shows cell membranes of
the embryo while in Figure 3 cell membranes and nuclei of the embryo are illustrated.
Both figures consist of four sub-figures. For each of these figures, we depict an
original noisy image at the top (left), a smoothed image at the bottom (left), an
edge detection which corresponds to the original image at the top (right) and an
edge detection which corresponds to the filtered image at the bottom (right). We
use Sobel method of edge detection.

We demonstrate an effect of smoothing and emphasizing of line structures in
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these figures. Even if filtered images (Figure 2 – 3 bottom (left))) are more blurred
compared with original images (Figure 2 – 3 top (left)), one can observe that line
structures (boundaries of membranes and nuclei) (Figure 2 – 3 bottom (right)) are
clearly detected compared with the original images (Figure 2 – 3 top (right)). This
enhancement of edge detection is useful for subsequent image processing, e. g., seg-
mentation. Human eye can see boundaries of membranes and nuclei of the original
images and filtered ones. However, the computer using edge detection ”is not able
to recognize” some boundaries of the original image, e. g., membranes of small cell
in the middle of the image and its left and right neighboring cells as well (see Fig-
ure 2 top). On the other hand, the computer ”can easy detect” these cells using
edge detection of the filtered image (see Figure 2 bottom (right)). The difference
between edge detection of the original and filtered images is even more expressive in
Figure 3. One is able to recognize only boundaries of cell nuclei in the edge detection
of the original image (see Figure 3 top (right)) while after filtering we can also see
boundaries of cell in the edge detection (see Figure 3 bottom (right)).

The satisfactory results were obtained after few time steps, so the denoising
method is really fast. In the presented experiments we do not observe any stability
problems which is a usual drawback of explicit schemes, (see [11]).
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Olga Drbĺıková, Department of Mathematics and Descriptive Geometry, Faculty of Civil

Engineering, Slovak University of Technology in Bratislava, Radlinského 11, 813 68
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