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KYBERNET IK A — VOLUME 4 3 ( 2 0 0 7 ) , NU MB ER 6 , P AG E S 9 0 3 – 9 1 2

ASYMPTOTIC BEHAVIOR OF SOLUTIONS
TO AN AREA–PRESERVING MOTION
BY CRYSTALLINE CURVATURE

Shigetoshi Yazaki

Asymptotic behavior of solutions of an area-preserving crystalline curvature flow equa-
tion is investigated. In this equation, the area enclosed by the solution polygon is preserved,
while its total interfacial crystalline energy keeps on decreasing. In the case where the ini-
tial polygon is essentially admissible and convex, if the maximal existence time is finite,
then vanishing edges are essentially admissible edges. This is a contrast to the case where
the initial polygon is admissible and convex: a solution polygon converges to the boundary
of the Wulff shape without vanishing edges as time tends to infinity.

Keywords: essentially admissible polygon, crystalline curvature, the Wulff shape, isoperi-
metric inequality
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1. INTRODUCTION

The present paper is an extension of [12, Part I] in which it has been proved that the
solution admissible polygon of an area-preserving crystalline curvature flow equation
converges to the prescribed Wulff shape. In the present paper, the asymptotic be-
havior of solutions starting from essentially admissible polygons will be investigated.
This flow is a generalized version introduced by Yazaki [11] in which we discussed
the gradient flow of the total length functional of convex polygon keeping the area
enclosed by the polygon constant, and showed that any polygon which evolves by
this gradient flow converges to the circumscribed polygon of a circle; This result is
corresponding to a semi-discrete version introduced by Gage [3].

The so-called curvature flow equation is a general term which describes a motion
of curves in the plane (or surfaces in space) which change its shape in time and
depend on its bend, especially on its curvature. It has been investigated by many
scientists and mathematicians since the 1950’s. At the end of 1980’s, J. E. Taylor,
and S. Angenent and M.E. Gurtin focused on motion of polygonal curves by crys-
talline curvature in the plane, and since then crystalline curvature flow equation
has been studied under various kinds of evolution law by several authors. We refer
the reader to the pioneer works Taylor [8, 9] and Angenent and Gurtin [2], and the
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surveys by Taylor, Cahn and Handwerker [10] and the books by Gurtin [5] for a
geometric and physical background. Also one can find essentially the same method
of crystalline as a numerical scheme for curvature flow equation in Roberts [7]. See
Almgren and Taylor [1] for detailed history. Besides this crystalline strategy, other
strategies by subdifferential and level-set method have been extensively studied. See
Giga [4] and references therein.

Polygons. Let P be an N -sided convex polygon in the plane R2, and label the po-
sition vector of vertices pi (i = 1, 2, . . . , N) in an anticlockwise order: P =

∪N
i=1 Si,

where Si = [pi, pi+1] is the ith edge (pN+1 = p1). The length of Si is di = |pi+1−pi|,
and then the ith unit tangent vector is ti = (pi+1 − pi)/di and the ith unit out-
ward normal vector is ni = −t⊥i , where (a, b)⊥ = (−b, a). We define a set of
normal vectors of P by N = {n1, n2, . . . , nN}. Let θi be the exterior normal
angle of Si such as ni = n(θi) and ti = t(θi), where n(θ) = (cos θ, sin θ) and
t(θ) = (− sin θ, cos θ). We define the ith hight function hi = pi · ni = pi+1 · ni. By
using N -tuple h = (h1, h2, . . . , hN ), di is described as follows:

di[h] = −(cot ϑi + cot ϑi+1)hi + hi−1 cosec ϑi + hi+1 cosec ϑi+1, (1)

where ϑi = θi − θi−1 for i = 1, 2, . . . , N . Note that 0 < ϑi < π holds for all i.

Interfacial energy. In the field of material sciences and crystallography, we need
to explain the anisotropy: phenomenon of interface motion which depends on the
normal direction n. To explain the anisotropy, it is convenient to define an interfacial
energy on the interface or the curve which has line density γ(n) > 0. The function
γ(n) can be extended to the function x ∈ R2 by putting γ(x) = |x|γ(x/|x|) if x 6= 0,
otherwise γ(0) = 0. This extension is called the extension of positively homogeneous
of degree 1, since γ(λx) = λγ(x) holds for λ ≥ 0 and x ∈ R2. We will use the same
notation γ for the extended function. To observe the characteristic of γ, the following
Frank diagram is useful: Fγ = {n(θ)/γ(n(θ)); θ ∈ S1} = {x ∈ R2; γ(x) = 1}. If
the Frank diagram Fγ is a convex polygon, γ is called crystalline energy. When Fγ

is a J-sided convex polygon, there exists a set of angles {φi |φ1 < φ2 < · · · < φJ <
φ1 + 2π} such that the position vectors of vertices are labeled n(φi)/γ(n(φi)) in an
anticlockwise order (φJ+1 = φ1):

Fγ =
J∪

i=1

[
νi

γ(νi)
,

νi+1

γ(νi+1)

]
.

Here and hereafter, we denote νi = n(φi) for all i. In this case, the Wulff shape
Wγ =

∩
θ∈S1{x ∈ R2; x ·n(θ) ≤ γ(n(θ))} is also a J-sided convex polygon with the

outward normal vector of the ith edge being νi:

Wγ =
J∩

i=1

{
x ∈ R2; x · νi ≤ γ(νi)

}
.

We define a set of normal vectors of Wγ by Nγ = {ν1,ν2, . . . , νJ}.
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Admissibility. Following [6], we call P essentially admissible if and only if the
consecutive outward unit normal vectors ni, ni+1 ∈ N (nN+1 = n1) satisfy η/|η| 6∈
Nγ , where η = (1 − λ)ni + λni+1 for λ ∈ (0, 1) and i = 1, 2, . . . , N . Note that P
is an essentially admissible convex polygon if and only if N ⊇ Nγ holds. We call P
admissible if and only if P is an essentially admissible polygon and N = Nγ holds.
In other words, P is an admissible convex polygon if and only if ni = νi holds for
all i = 1, 2, . . . , N = J .

Gradient of the total interfacial energy. Let P be an essentially admissible
N -sided convex polygon with the N -tuple of hight functions h = (h1, h2, . . . , hN ).
Then the total interfacial (crystalline) energy on P is

Eγ [h] =
N∑

i=1

γ(ni)di[h].

For two N -tuples ϕ = (ϕ1, ϕ2, . . . , ϕN ), ψ = (ψ1, ψ2, . . . , ψN ) ∈ RN , let us define the
inner product on P as (ϕ,ψ)2 =

∑N
i=1 ϕiψidi[h]. Furthermore, we define the rate of

variation of Eγ [h] in the direction ϕ and the first variation δEγ [h]/δh as follows:

δEγ [h]
δϕ

=
d

dε
Eγ [h + ϕ]

∣∣∣∣
ε=0

= grad Eγ [h] · ϕ =
(

δEγ [h]
δh

, ϕ

)

2

.

Crystalline curvature. The first variation of Eγ [h] of P at Si is

δEγ [h]
δϕ

=
N∑

i=1

γidi[ϕ] =
N∑

i=1

di[γ]ϕi =
N∑

i=1

di[γ]
di[h]

ϕidi[h], γ = (γ1, γ2, . . . , γN ),

where γi = γ(ni) for all i. Hence we have (δEγ [h]/δh)i = di[γ]/di[h] for all i in this
metric (·, ·)2. This quantity is called crystalline curvature on the ith edge Si, and
we denote it by Λγ(ni) = di[γ]/di[h]. The numerator di[γ] is described as

di[γ] = lγ(ni),

where lγ(n) is the length of the jth edge of Wγ if n = νj for some j, otherwise
lγ(n) = 0. Therefore if P = Wγ , then the crystalline curvature is 1.

An area-preserving motion by crystalline curvature. The enclosed area A
of P is given by

A[h] =
1
2

N∑

i=1

hidi[h].

Then the rate of variation of A[h] in the direction ϕ is

δA[h]
δϕ

=
d

dε
A[h + ϕ]

∣∣∣∣
ε=0

=
N∑

i=1

ϕidi[h].
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By taking ϕi = −(δEγ [h]/δh)i = −Λγ(ni), we have δA[h]/δϕ = −∑N
i=1 Λγ(ni)di[h].

Hence by taking ϕi = Λγ − Λγ(ni), we have δA[h]/δϕ = 0. Here

Λγ =
∑N

i=1 Λγ(ni)di[h]
∑N

k=1 dk

=
∑N

i=1 lγ(ni)
L

is the average of the crystalline curvature, and L is the total length of P, i. e.,
L =

∑N
i=1 di. Thus we have the gradient flow of Eγ along P which encloses a fixed

area:
Vi = Λγ − Λγ(ni), i = 1, 2, . . . , N, (2)

where Vi(t) = ḣi(t) is the normal velocity on Si in the direction ni at the time
t. Here and hereafter, we denote u̇ by du/dt. From (1), the time derivative of
di(t) = di[h] is given by

ḋi = −(cot ϑi + cot ϑi+1)Vi + Vi−1 cosec ϑi + Vi+1 cosec ϑi+1 (3)

for i = 1, 2, . . . , N . Note that (2) and (3) are equivalent each other.

Problem 1. For a given essentially admissible closed curve P0, find a family of
essentially admissible curves {P(t)}0≤t<T satisfying (2) (or (3)) with P(0) = P0.
Since (3) are the system of ordinary differential equations, the maximal existence
time is positive T > 0.

Main results. What might happen to P(t) as t tends to T ≤ ∞? For this question,
we have the following three results. The first result is the case where motion is
isotropic and polygon is admissible.

Proposition A. Let the interfacial energy be isotropic γ ≡ 1. Assume the initial
polygon P0 is an N -sided admissible convex polygon. Then a solution admissible
polygon P(t) of Problem 1 exists globally in time keeping the area enclosed by
the polygon constant A, and P(t) converges to the shape of the boundary of the
Wulff shape ∂Wγ∗ in the Hausdorff metric as t tends to infinity, where γ∗(ni) ≡√

2A/
∑N

k=1 l1(nk) is constant. In particular, if P0 is centrally symmetric with
respect to the origin, then we have an exponential rate of convergence.

This proposition is proved by Yazaki [11] by using the isoperimetric inequality
and the theory of dynamical systems. We note that ∂Wγ∗ is the circumscribed
polygon of a circle with radius γ∗, and then this result is a semi-discrete version
introduced by Gage [3].

The second result is the case where motion is anisotropic and polygon is admis-
sible.
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Proposition B. Let the crystalline energy be γ > 0. Assume the initial polygon
P0 is an N -sided admissible convex polygon. Then a solution admissible polygon
P(t) of Problem 1 exists globally in time keeping the area enclosed by the polygon
constant A, and P(t) converges to the shape of the boundary of the Wulff shape
∂Wγ∗ in the Hausdorff metric as t tends to infinity, where γ∗(ni) = γ(ni)/W ,
W =

√
|Wγ |/A for all i = 1, 2, . . . , N and |Wγ | =

∑N
k=1 γ(nk)lγ(nk)/2 is enclosed

area of Wγ .

This proposition is proved in Yazaki [12, Part I] by using the anisoperimetric
inequality or Brünn and Minkowski’s inequality and the theory of dynamical systems
which is a similar technique as in Yazaki [11].

The last result is the case where motion is anisotropic and polygon is essentially
admissible.

Theorem C. Let the crystalline energy be γ > 0. Assume the initial polygon P0

is an N -sided essentially admissible convex polygon. If the maximal existence time
of a solution essentially admissible polygon P(t) of Problem 1 is finite T < ∞, then
there exists the ith edge Si such that limt→T di(t) = 0 and lγ(ni) = 0 hold. That is,
the normal vector of vanishing edge does not belong to Nγ , and inf0<t<T dk(t) > 0
holds for all nk ∈ Nγ .

For any essentially admissible convex polygon P0, is T a finite value? This is still
open. If the answer of this question is yes, then we have the finite time sequence
T1 < T2 < · · · < TM such that P(Ti) is essentially admissible for i = 1, 2, . . . ,M − 1
and P(TM ) is admissible. In the general case where Vi = g(ni,Λγ(ni)) for all i
under certain conditions of g, the answer of the above question is yes. See Yazaki
[13]. However, g does not include Λγ .

In the next section, we will prove this theorem.

2. PROOF OF THEOREM C

Suppose the assumption of Theorem C. From the general theory of ordinary differ-
ential equations, a solution of (3) exists uniquely and locally in time. Let T > 0 be
the maximal existence time.

Lemma 1. Assume that the maximal existence time is finite T < ∞. Then there
exists i0 ∈ {1, 2, . . . , N} such that lim inft→T di0(t) = 0 holds.

P r o o f . By the CBS inequality, the time derivative of the total interfacial energy
Eγ(t) = Eγ [h] is decreasing in time:

Ėγ =
δEγ [h]

δϕ

∣∣∣∣
ϕ=ḣ

=
N∑

i=1

Λγ(ni)ḣidi =
N∑

i=1

Λγ(ni)Vidi ≤ 0.
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Hence we have a finite upper bound of di(t), since

Eγ(0) ≥ Eγ(t) =
N∑

j=1

γ(nj)dj(t) ≥ min
1≤k≤N

γ(nk)L(t) ≥ min
1≤k≤N

γ(nk)di(t) (4)

holds for all i = 1, 2, . . . , N and t ∈ [0, T ]. Therefore diameter of P(t) is finite for
t ∈ [0, T ]. To prove the lemma, we assume that the lower bound of di(t) is positive,
i. e., inf0<t<T di(t) > 0 holds for all i. Then from (3), we have sup0<t<T |ḋi(t)| < ∞
for all i. Therefore a solution polygon P(t) exists up to t = T , and P(T ) is an N -sided
essentially admissible convex polygon. Hence from the general theory of ordinary
differential equations, a solution polygon exists after T . This is a contradiction.
Therefore there exists at least one edge Si0 such that lim inft→T di0(t) = 0 holds. ¤

Lemma 2. Assume the same assumption as in Lemma 1. Then limt→T di0(t) = 0
holds.

P r o o f . If limt→T di0(t) = 0 does not hold, then there exists a positive constant
D > 0 such that lim supt→T di0(t) = D holds. Hence there exist time sequences
{tm} and {sm} converging to T as m → ∞ such that limm→∞ di0(tm) = D and
limm→∞ di0(sm) = 0 hold. Without loss of generality, we can assume that sm <
tm < sm+1 and that di0(sm) < D/2 < di0(tm). Put rm = sup{t < tm; di0(t) <
D/2}. Then rm ∈ (sm, tm) and di0 ≥ D/2 holds for t ∈ [rm, tm]. By mean value
theorem, there exists µm ∈ (rm, tm) such that di0(µm) ≥ D/2 and ḋi0(µm) =
(di0(tm)− di0(rm))/(tm − rm) hold. This yields limm→∞ ḋi0(µm) = ∞.

We will use repeatedly the following isoperimetric inequality:

L2

4cA ≥ 1, c =
N∑

j=1

tan
ϑj

2
. (5)

See e. g., Yazaki [11, Lemma 2.4] for the proof. From (3), we have

ḋi0(µm) ≤ alγ(ni0)
di0(µm)

+
b
∑N

k=1 lγ(nk)
L(µm)

≤ 2alγ(ni0)
D

+
b
∑N

k=1 lγ(nk)
2
√

cA
,

where a = 1/ sinϑi0 + 1/ sin ϑi0+1 and b = tan(ϑi0/2) + tan(ϑi0+1/2). This contra-
dicts to limm→∞ ḋi0(µm) = ∞. ¤

Lemma 3. Assume the same assumption as in Lemma 2. Put

Q =
{

ni ∈ N ; lim
t→T

di(t) = 0
}

.

Then Q ⊆ N\Nγ holds.

P r o o f . By the isoperimetric inequality (5), it holds that max1≤i≤N di(t) ≥
2
√

cA/N , and then there exists at least one k such that inf0<t<T dk(t) > 0. There-
fore Q 6= N holds.
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One can represent Q as a disjoint sum of Qk; namely Q =
⊕

k Qk, where Qk’s
are maximal subsets having mk consecutive elements nj of the form

Qk = {ni ∈ Q; i = jk, jk + 1, . . . , jk + mk − 1} ,

with the boundary ofQk: ∂Qk = {ni; i = jk−1, jk+mk}. By the definition, mk ≥ 1
holds for each k. Since Q 6= N , we have ∂Qk ⊆ N\Q, i. e., inf0<t<T di(t) > 0 holds
for ni ∈

⊕
k ∂Qk.

Let Li(t) be the straight line extending the ith edge Si of P(t) for ni ∈ N , and
let pi(t) be the intersection point of Li(t) and Li−1(t), i. e., pi(t) is the ith vertex
of P(t) and is described as follows:

pi = hini +
hi−1 − (ni−1 · ni)hi

ni−1 · ti
ti = hini +

hi cos ϑi − hi−1

sinϑi
ti. (6)

We denote p = jk − 1 and q = jk + mk for simplicity.
By the isoperimetric inequality (5), we have

Vi =
∑N

k=1 lγ(nk)
L − lγ(ni)

di
≤

∑N
k=1 lγ(nk)
2
√

cA
− lγ(ni)

di
, p < i < q.

Therefore there exists a constant δ ∈ (0, T ) such that supTδ<t<T Vi(t) < 0 for p <
i < q and Tδ = T − δ. Hence by the definition of Qk, vertices pp+1(t), . . . , pq(t)
converge to a point p∗ as t → T :

p∗ ∈
∩

Tδ<t<T

∩

p<i<q

{
x ∈ R2; (pi(t)− x) · ni ≥ 0

}
.

Note that the intersection is taken over p < i < q since the sign of Vp and Vq is
unknown. We denote |Qk| = |θp − θq|.

Claim: |Qk| ≤ π holds.
Suppose |Qk| > π. Without loss of generality, we may assume that π < θq− θp <

2π. Then we have

(pq − pp+1) · nq = (pq − pp) · nq − dp(tp · nq) ≥ − inf
Tδ<t<T

dp(t)S > 0,

since S = sin(θq − θp) < 0. Therefore infTδ<t<T (pq(t) − pp+1(t)) · nq > 0 holds,
which contradicts limt→T pi(t) = p∗ for i = p + 1, q. Hence assertion holds.

Claim: |Qk| < π holds.
Suppose |Qk| = π. By a geometric inspection, there exist exactly two sets Q1,Q2

such that Q =
⊕2

k=1Qk and N\Q = {θp, θq} hold. Then limt→T di(t) = 0 holds for
all i 6= p, q, and inf0<t<T di(t) > 0 holds for i = p, q. For any choice of nk ∈ Q1 and
nl ∈ Q2, one can construct a trapezoid surrounded by four lines Lp(t), Lk(t), Lq(t)
and Ll(t). Here we have assumed that θp < θk < θq = θp +π < θl < θp +2π, without
loss of generality. Then this trapezoid includes the enclosed region of P(t) at each
t. Let w(t) be the width between Lp(t) and Lq(t). Then the area of this trapezoid
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is greater than or equal to A, i. e., (Dp(t) + Dq(t))w(t)/2 ≥ A, where Di(t) is the
length of the edge of this trapezoid on the line Li(t). Let yij(t) be the intersection
point of Li(t) and Lj(t):

yij(t) = pi+1(t) + aij(t)ti, aij(t) =
(pj(t)− pi+1(t)) · (ti − µijtj)

1− µij
2

,

where µij = ti · tj = cos(θi − θj). Then we have

Dp = (ypk − ylp) · tp = (pp+1 − pl+1) · tp + apk − alpµlp.

Note that |µpk| < 1 and |µlp| < 1 hold. Since pj = pi +
∑j−1

k=i dktk, we have
|pj − pi| ≤ L for any j > i (mod N). Hence Dp ≤ CL and in the same way
Dq ≤ CL hold with a positive constant C depending only on N . By (4), we obtain
Di ≤ C for i = p, q with a positive constant C depending only on N , P0 and γ.
However, since limt→T w(t) = 0 and A is constant, limt→T Di(t) = ∞ holds for
i = p, q. This is a contradiction. Hence assertion holds.

Let y(t) be the intersection point of Lp(t) and Lq(t): y(t) = ypq(t). Note that
|µpq| < 1 holds since 0 < |θp − θq| < π, and that y(t) converges to p∗ as t → T .

By (6), the time derivative of the ith vertex is

ṗi = Vi−1ni−1 +
Vi − Vi−1 cos ϑi

sinϑi
ti−1, (7)

= Vini +
Vi cos ϑi − Vi−1

sinϑi
ti, (8)

for i = 1, 2, . . . , N . Note that (2), (3) and (7), (8) are equivalent each other. By
using ṗp+1 with (7) and ṗq with (8), we have

ẏ = Vpnp +
cos(θq − θp)Vp − Vq

sin(θq − θp)
tp.

Claim: Either np ∈ Nγ or nq ∈ Nγ hold.
Suppose that ni ∈ N\Nγ holds for i = p, q. Then we have Vi = Λγ for i = p, q

and

ẏ = Λγnp − Ctp, C = Λγ
1− cos(θq − θp)

sin(θq − θp)
.

Hence ẏ · np = Λγ > 0 and ẏ · tp = −C < 0 hold, and p∗ = y(T ) is in the
region {x ∈ R2; z · np > 0, z · tp < 0, z = x − y(Tδ)}. On the other hand,
ẏ · nq = Λγ > 0 and ẏ · tq = C > 0 hold, and p∗ = y(T ) is also in the region
{x ∈ R2; z · nq > 0, z · tq > 0, z = x − y(Tδ)}. This is a contradiction. Hence
assertion holds.

Since np,nq 6∈ Q, infTδ<t<T di(t) > 0 holds for i = p, q, and by the isoperimetric
inequality (5), supTδ<t<T |Vi(t)| < ∞ holds for i = p, q. Then there is a constant C∗
such that supTδ<t<T |ẏ(t)| ≤ C∗ holds.

Suppose that Q ⊆ N\Nγ does not hold. Then we may choose a k such that
Qk ∩Nγ 6= ∅. Hence there exists at least one normal vector, say nr ∈ Qk ∩Nγ , such
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that p < r < q holds, and supTδ<t<T Vr(t) < 0 and limt→T Vr(t) = −∞ hold. We
define

a(t) = (y(t)− p∗) · nr, b(t) = dist(p∗, Lr(t)) = (pr(t)− p∗) · nr.

Then a(t) ≥ b(t) holds for t ∈ (Tδ, T ) and limt→T a(t) = limt→T b(t) = 0 holds.
Therefore by ȧ(t) = −ẏ(t) · nr, |ȧ(t)| ≤ C∗ and ḃ = Vr < 0, for t ∈ (Tδ, T ) there

exists η ∈ (t, T ) such that

0 < −
∫ T

t

Vr(τ) dτ = −
∫ T

t

ḃ(τ) dτ = b(t) ≤ a(t) = −ȧ(η)(T − t) ≤ C∗(T − t).

This contradicts the fact Vr → −∞ as t → T .
Hence Qk ∩Nγ = ∅ for all k, i. e., Q ⊆ N\Nγ holds. ¤

P r o o f o f Th e o r em C. By Lemma 2, if the maximal existence time if finite
T < ∞, then there exists at least one edge Si such that limt→T di(t) = 0 holds.
Furthermore, Lemma 3 follows that if the ith edge Si disappears at T , then ni ∈
N\Nγ holds, and inf0<t<T dk(t) > 0 holds for all nk ∈ Nγ . ¤
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