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ON THE TANGENTIAL VELOCITY ARISING
IN A CRYSTALLINE APPROXIMATION
OF EVOLVING PLANE CURVES

Shigetoshi Yazaki

In a crystalline algorithm, a tangential velocity is used implicitly. In this short note, it
is specified for the case of evolving plane curves, and is characterized by using the intrinsic
heat equation.
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1. INTRODUCTION

It is well known that the tangential velocity of evolution of plane curves causes
stability from a numerical point of view. In this short note, the tangential velocity in
a crystalline algorithm is specified, and it is compared with the one in other schemes
by using the intrinsic heat equation. Our goal is simple. In the crystalline algorithm,
the tangential velocity equals the quantity which is described as a negative of partial
derivatives of the normal velocity with respect to the arc-length and its division by
the curvature.

Following Mikula and Ševčovič [12], our target curves are defined as follows. We
consider an embedded, orientable and closed plane curve Γ which is parameterized
by a smooth function x : R/Z → R2 such that Γ = Image(x) = {x(u); u ∈ R/Z}
and |∂ux| > 0. Here and hereafter, we denote ∂ξ(·) = ∂(·)/∂ξ. The unit tangent
vector can be defined as T = ∂ux/|∂ux| = ∂sx, where s is the arc-length parameter
and ds = |∂ux|du, and the unit inward normal vector is defined by N = T⊥,
where (a, b)⊥ = (−b, a). The curvature in the direction N is denoted by k, and
the Frenet’s formulae are ∂sT = kN and ∂sN = −kT . Let ν be the angle of
T , i. e., T = (cos ν, sin ν) and N = (− sin ν, cos ν). Our problem is as follows:
For a given initial curve Γ0 = Image(x0) = Γ, find a family of curve {Γt}t≥0,
Γt = {x(u, t); u ∈ R/Z} which starts from x(u, 0) = x0(u) for u ∈ R/Z and evolves
according to the normal velocity

v = β(k, ν). (1)
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Information of β determines movement of curves, and in many physical phenomena
β includes k and ν. In general, β may also be a function of x and Lt, etc., other
than k and ν, where Lt =

∫
Γt
ds =

∫ 1

0
|∂ux|du is the total length of the curve Γt.

The normal velocity v is the normal component of the following evolution equation
of a solution x:

∂tx = βN + αT , x(·, 0) = x0(·). (2)

Our main result is that, in a crystalline algorithm, the tangential velocity α is
used essentially and implicitly such as:

α = −∂sβ
k
. (3)

This equation follows from the equality ∂tν = 0, where ∂tν is described as

∂tν = ∂sβ + αk, ν(·, 0) = ν0(·).

See [12, (3.8)].
In the crystalline algorithm, the class of polygonal curves is restricted to an

admissible class and this restriction corresponds to the equality ∂tν = 0. The ad-
missibility is a powerful concept which may handle singular anisotropic energy such
as crystalline energy (see references in the next section). We note that in the three
dimensional crystalline algorithm for mean curvature flow has not been successfully
constructed in the sense that the class of polyhedron is unclear. However, conver-
gence of crystalline algorithm for the three dimensional Gauss curvature flow has
been proved [16, 17].

In the next section, we will construct evolution of polygonal curves under the
assumption ∂tν = 0. In Section 3, the tangential velocity (3) will be compared with
the one in other known schemes. In the last Section 4, some remarks on numerical
scheme will be mentioned.

2. CRYSTALLINE ALGORITHM

A crystalline algorithm describes the motion of polygonal curves in an admissible
class, and the admissible polygonal curves are the polygonal curves with each tan-
gential angles belonging to a prescribed set. Let the prescribed set be T = {η1 <
η2 < · · · < ηJ < η1+2π}, where J is a natural number J ≥ 3 and ηj+1−ηj < π is sat-
isfied for all j = 1, 2, . . . , J (ηJ+1 = η1). On a smooth curve Γ = {x(u); u ∈ R/Z},
we distribute N points xi = x(ui) (u1 < u2 < · · · < uN < u1 + 1), which sat-
isfy two conditions: (1) the tangential angle νi = ν(ui) of xi belongs to T , i. e.,
(cos νi, sin νi) = ∂sx(νi) and νi ∈ T hold for i = 1, 2, . . . , N ; (2) For i = 1, 2, . . . , N ,
there exists j such that {νi, νi+1} = {ηj , ηj+1} holds (νN+1 = ν1). Let li be the
straight line passing through xi in the direction Ti = (cos νi, sin νi), and let yi
be the intersection point of li−1 and li for all i. Thus a closed polygonal curve
P =

⋃N
i=1[yi,yi+1] is constructed (yN+1 = y1). This P is called T -admissible

polygonal curve. The length of the ith edge di = |yi+1 − yi| is given by

di = (cot ξi + cot ξi+1)hi − hi+1 cosec ξi+1 − hi−1 cosec ξi (4)
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for i = 1, 2, . . . , N , where ξi = νi − νi−1 and hi = xi.Ni (ν0 = νN , Ni = T⊥i ). And
the ith vertex yi is given by

yi = hiNi +
hi−1 − hi cos ξi

sin ξi
Ti (5)

for i = 1, 2, . . . , N .
Crystalline algorithm is formulated as the following problem: For a given initial

T -admissible N -sided polygonal curve P0 =
⋃N
i=1[y0

i ,y
0
i+1] = P, find a family of

T -admissible polygonal curves {Pt}t≥0, Pt =
⋃N
i=1[yi(t),yi+1(t)] which starts from

yi(0) = y0
i for i = 1, 2, . . . , N and evolves according to the ith normal velocity

vi = β(ki, νi), i = 1, 2, . . . , N, (6)

where ki is the ith discretized curvature, which is called crystalline curvature if
ki = ci/di for some geometric quantity ci depending on T . Since the problem is
considered in the admissible class, the ith tangential angle νi does not depend on
time t, i. e., ∂tνi = 0 holds for all i. Moreover, from (4), we have the evolution
equations as a system of ordinary differential equations:

ḋi = (cot ξi + cot ξi+1)vi − vi+1 cosec ξi+1 − vi−1 cosec ξi (7)

for i = 1, 2, . . . , N , where vi = ḣi = ẋi ·Ni. Here and hereafter, we denote ˙(·) =
d(·)/dt. It is easy to check that (7) is equivalent to the evolution equations of
vertices:

ẏi = viNi +
vi−1 − vi cos ξi

sin ξi
Ti (8)

for i = 1, 2, . . . , N . Therefore, it is possible to interpret the crystalline approximation
as follows. Let si be the arc-length defined as si = s +

∫ ui
u
|∂ux| du. By putting

β(s) = β(k(s), ν(s)) and vi = β(si), we have vi−1 = β(si−ai) = vi−∂sβ(si)ai+o(ai)
(ai = si − si−1). Hence it holds that

vi−1 − vi cos ξi
sin ξi

= β(si)
1− cos ξi

sin ξi
− ∂sβ(si)

sin ξi
ai +

o(ai)
sin ξi

→ −∂sβ(si)
k(si)

as si−1 → si. Here we have used ∂sν = k and ξi = νi − νi−1 =
∫ si
si−1

k(s) ds. This
corresponds to (3) at s = si.

This crystalline algorithm was introduced by J. E. Taylor [13, 14] and S. Angenent
and M. E. Gurtin [1] at the end of 1980’s. Since then crystalline curvature flow
equation has been studied under various kinds of evolution law by several authors.
We refer the reader, other than the above pioneer works, to the surveys by Taylor,
Cahn and Handwerker [15] and the books by Gurtin [6] for a geometric and physical
background. Besides this crystalline strategy, other strategies by subdifferential and
level-set method have been extensively studied. See Giga [4] and references therein.
Recently, the admissibility is extended as an essentially admissibility. See, e. g.,
Hontani, Giga, Giga and Deguchi [8] and Yazaki [19].
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3. COMPARISON WITH OTHER SCHEMES

In this section, the tangential velocity (3) is compared with the one in other schemes
by using the intrinsic heat equation for a solution x:

∂tx = θ−1
1 ∂s

(
θ−1

2 ∂sx
)
, x(·, 0) = x0(·),

where θ1θ2 = k/β. Hence, the tangential velocity α is described as α = θ−1
1 ∂sθ

−1
2 .

We will sketch the known results. Dziuk [3] studied a numerical scheme for the
case β(k) = k with α = 0, i. e., θ1 = θ2 = 1. Kimura [10] proposed a uniform
redistribution scheme in the case β(k) = k by using a nontrivial tangential velocity
α which satisfies θ1θ2 = 1 and discretizes the conditions

∫ 1

0
α du = 0 and |∂ux| = Lt.

At this stage, the relation between these conditions and θ1, θ2 is not clear. Another
scheme for the case β(k) = k was proposed by Deckelnick [2], who used a nontrivial
α = −∂u(|∂ux|−1) which satisfies θ1 = |∂ux| = 1/θ2. Mikula and Ševčovič [11]
generalized these results for the case β(k) = |k|m−1k by putting α = ∂s|k|m−1/2
and θ1 = θ2 =

√
k/β(k). This result was improved in Mikula and Ševčovič [12]

for the general case v = β(k, ν). In this, θ1 and θ2 satisfy α = θ−1
1 ∂sθ

−1
2 and

∂sα = kv − kv, where f =
∫

Γt
f ds/Lt is the average of f .

Applying the crystalline case (3) for β(k) = |k|m−1k, we obtain α = −m̄∂s|k|m−1,
m̄ = m/(m− 1) if m 6= 1, and α = −∂s log |k| if m = 1; and θ1 = k/β2, θ2 = β.

4. REMARKS ON NUMERICAL SCHEMES

Discretizing (7) (or (8)) in time and using the adapted time step control, we obtain
a sequence of T -admissible polygonal curves P0 = P0,P1,P2, . . ., where Pj approx-
imates Ptj (0 = t0 < t1 < t2 < · · · ). The following figure is a numerical scheme in
the case β(k) = |k|m−1k with m = 0.1.

We can observe that vertices are concentrated at sharp corners. But scheme
does not break down, since the elimination of some edges and renumbering are
done. (In this figure, the last partition number is N = 36 starting with the initial
partition number N = 380.) In other words, the solution is extended in several
times while the solution curve keeps admissibility. However, in general, preservation
of admissibility is open problems. Indeed, in the case where β(k, ν) = a(ν)|k|m−1k,
there exist m ∈ (0, 1), a(·) and P0 such that the admissibility collapses in finite
time, i. e., we have the examples that admissible nonconvex polygonal curve becomes
nonadmissible in finite time. See, e. g., Hirota, Ishiwata and Yazaki [7]. This is
contrast result to the following: For any m ≥ 1, a(·) and P0 if the anisotropy is
symmetric, then the solution curve keeps admissibility. See Giga and Giga [5].
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We can also observe that no swallow tail occurs because of the adapted time
step control. Then we can continue the scheme until the maximal existence time.
Moreover several convergence results are known until the maximal existence time.
See, e. g., [5, 18] and references therein. At this stage, before the maximal existence
time, it is open whether Pt becomes convex or not. For instance, the following
non-convexified phenomenon is known: In the case where β(k, ν) = a(ν)|k|m−1k,
there exist m ∈ (0, 1), a(·) and P0 such that nonconvex solution curve shrinks
homothetically, i. e., there exists a nonconvex self-similar solution polygonal curve.
See Ishiwata, Ushijima, Yagisita and Yazaki [9].
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