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THE TENSOR PRODUCT OF RIGHT GROUPS 

LADISLAV SATKO 

Let A, B and C be semigroups. A mapping oc: A X B -> C of the cartesian 
product A x B into the semigroup G is called a bilinear mapping (also a bi-
homomorphism) if a(a±a2, b) = oc(a±9 b)oc(a2, b) and oc(a, b±b2) = oc(a, b±)oc(a, b2) 
for every a±, a2,a eA and bi, 62, b e B. 

P. A. G r i l l e t defined in [1] a (noncommutative) tensor product A ® B 
of semigroups A, B as the max'mal bilinear image of the cartesian pro-
duc A xB. Maximal in the sense that there exists a bilinear mapping to: A x B -> 
-> A ® B with the following property: For every bilinear mapping oc: A X B -> 
-> (7 of the cartesian product A X B into any semigroup G, there exists a unique 
homomorphism tp: A ® B -> G such that oc = <p° co (Fig. 1). 

The existence theorem, which is equivalent to this definition says: The 
tensor product A ® B of semigroups A, B is the factor semigroup ^ ( J . X -6)/r, 
where !F(A X B) is the free semigroup on the cartesian product A x B and 
T is the smallest congruence on &'(A x B) such that (tia2, b)r(a\, b) (a2, b) 
and (a, b\b2)r(a, hi) (a, b2) for every a±, a2, a e A and b\,b2,b e B. We shall 
denote by a ® b the class of the factor semigroup IF (A X B)\r which contains 
the element (a, b) e A X B. The mapping co:AxB->A(x)B = !F(A x B)jr 
defined by co(a, b) = a ® b for every (a,b) e A x B has the universal property 
required in the definition of the tensor product. 

In this paper we shall treat the tensor product of: I. Right s mple semigroups; 
I I . Right groups. 

1. A semigroup S is called right simple if it contains no proper right ideal. 
A semigroup S is right simple if and only if for every a,b e S there exists 
x e S such tha t ax = b. 

Theorem 1. The tensor product S ®T of right simple semigroups S and T 
is a right simple semigroup. 

Proof . 1. Let S and T be right simple semigroups. For every a,b e S and 
c, d GT there exist x e S and y eTsuch that ax = b and cy = d. This implies: 
For a®c,b®deS<g)T there exists an element z = (x ® c) (b ® y) e S ® T 
such that (a ® c)z = [(a ® c) (x ® c)'\ (b ® y) = (b ® c) (b ® y) = b ® d. 

2. Let (<̂  ® £1) (s2 (x)t2) e S ®T. Then there exists x e S such that s2x = s\. 
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Hence (si ® h) \(s2 ® l2) (x ® t2)] = (sY ® li) (si ® l2) = (*i ® txt2). Repeating 
this procedure we obtain : Let 1c = (si ® h; (s2 ® t2) . . . (sn ® tH) be an element 
of S ® I7. Then there exists an element q e S ®T such that kq s x t for 
some s e S and t GT. 

3. Let k = (si ® fi) (s2 ®t2)... (sn ® tn) and / = (pi ® n) (p2 x r2) ... 
• • • (Pm ® rm) be elements of S ® T. According to 2. there exists q e S x T 
such tha t Jcq = s ® t for some s e S and l e T7. By 1 to the couple s ® t, 
pi ® ?i there exists a z e S ® T such that (s ® t)z = pi ® n . Nowr the element 
u = qz(p2 ® r2) ... (pm ®rm) has the property that leu I. This proves 
Theorem 1. 

Corollary. The tensor product of groups is a group. 

I I . A semigroup S is called a right group if it is right simple and left can­
cellable. Equivalently: To anyr elements a, b e S there exists a unique element 
r e S such that ax = b. 

Lemma 1. (Clifford, P r e s t o n [2] p. 38) The following assertions concerning 
a semigroup S are equivalent: 

a) S is a right group; 
b) S is right simple and contains an idempotent; 
c) S is isomorphic to the direct product [G X E] of a group G and a right zero 

semigroup E. 

R e m a r k . If S is a right group, its set of idempotents E is not empty and 
it is a right zero semigroup. Every element e e E is a left identity element of S. 
Let e be a fixed chosen element cf E. Then Se = G is a subgrotip of S and e is 
the id3ntity element of G. I t is known that S = GE. When considering the 
direct product [G x E], the mapping d: GE -> [G x E] defined by d(ge) 
= [g, e] is an isomoiphism of the semigroups S and [G X E]. In this case the 
group G and the semigroup E are a special subgroup and a special subsemi-
group of S. But it is easy to prove the next lemma. 

Lemma 2. Suppose that S = GE, where G is an arbitrary subgroup of S and E 
is a right zero subsemigroup of S. Let the identity element \G of the group G be 
an element of E. Then S is a right group and S is isomorphic to the direct product 
[G x E]. 

Note further: If A contains an idempotent e and B is any semigroup, then 
p ® b is an idempotent in A ® B for an. arbitrary b e B. Hence A ® B certainly 
contains an idempotent if one of the ..factors" contains an idempotent. 

Theorem 1 and Lemma 1 b) imply: 

Theorem 2. The tensor product of a right group and a right simple semigroup 
is a right group. 
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Let A — GE, B = HF be right groups. By Theorem 2 A ® B is also a right 
group. By Lemma ] A (x) B = KJ, where K is a subgroup of the tensor 
product A ® B and J is the set of all idempotents of A ® B. In the following 
we shall describe the group K and the right zero semigroup J by means of 
G, II, E and F. 

Lemma 3. If E, F are right zero semigroups, then the tensor product E ® F 
is a right zero semigroup which is isomorphic to the direct product [E x F]. 

Proof . 1) The direct product [E x F] of right zero semigroups E, F is 
a right zero semigroup. For [ei,f±] [e2,f2] = [eie2,fxf2] = [e2,f2]. 

2) Let E X F be the cartesian product of right zero semigroups E, F. 
The mapping i:E x F ^[E x F] defined by i(e,f) = [e,f] is a bilinear 
mapping, since i(exe2,f) = i(e2,f) = [e2,f] = [ei,f] [e2,f] = i(ei,f)i(e2,f) for 
every ex,e2,eeE and fi,f2,f eF . Similarly i(e,fif2) = i(e,fi)i(e,f2). 

Let a : K X F - > # b e a bilinear mapping of the cartesian product E x F 
into an arbitrary semigroup S. Define the mapping <p: [E X F] -> S in the 
following way: <p([e,f]) = a(e,f) for every [e,f] e [E x F]. (See Fig. 2.) We 
\mve:<p([eufi] [e2,f2]) = <p([e2,f2]) = oc(e2,f2) = a(de2,f2) = a(ei,f2)a(e2,f2) = 

*(ei, hh)oc(e2, f2) = a(e\, f\ )a(ei, f2)a(e2, f2) = a(ex, fi)a(e2, f2) = 
<p([ei,fi])<p([e2,f2]). Hence <p is a homomorphism of the direct product 

[E X F] into the semigroup # such that cp 0 i(e,f) = <p([e,f]) = a(e,f). Thus 
<p i — a. 

3) The mapping i and the direct product [E X F] have the universal pro­
perty required in the definition of the tensor product E (x) F. Hence [E x F] 
is the tensor product of the semigroups E, F (which is determined up to an 
isomorphism). This proves Lemma 2. 

AxB >A(x)B ExF 

Fig. 1 Fig. 

Theorem 3. Let A = GE and B = HF be right groups. Then A ® B is 
isomorphic to the direct product of the tensor product G (x) H and the direct product 
[E X F]. In formula: A ® B <^[(G ® H) x [E x F]]. 

Proof. 1) In order to distinguish between g®h in A ® B and g ®h 
in G ® H, we denote in the following by G ® H the tensor product of the 
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semigroups G and II and by g ®h its generating elements. The elements 
g ® h e A ® B with g eG, h e H generate in A ® B a subsemigroup. We 
denote this subsemigroup by ®(G,H). Similarly ®(E,F) will be the sub-
semigroup of A ® B, the elements of which are of the form (e\ ®f\) (e2 ®f2) . . . 
. . . (en ®fn), where ei eE, fi eF. I t is known that the semigroup ® (G, H) 
is a subgroup of A ® B. I t is further easy to see that the semigroup ® (E, F) 
is a right zero subsemigroup of the tensor product A ® B. 

2) The tensor product A ® B is a right group. An arbitrary element 
x e A ® B is of the form x = (gxe\ ® h\f\) ... (gnen ® hnfn), where gt e G, 
hi e H, ei eE, fi eF. Further we can write x = (g\ ® h\)(g2 ® h2) . . . 
••• (9n ®hn) (en ®fn) since the idempotents of the right group A ® B are 
left identity elements in A ® B. I t is clear that A ® B = (®(G, H))(®(E, F)) 
and by Lemma 2 the semigroup A ® B is isomorphic to the direct product 
of ®(G,H) and ®(E,F). 

We shall now prove that ®(G, H) is isomorphic to G ® H and ®{E, F) 
is isomorphic to E ®F. 

3) Let \G e G and lH e H be the identity elements of the groups G and II, 
respectively. We define a mapping ex: A x B -> G ® H hi the following way • 
oc(a, b) = (a\G ® blH). Then oc(a\a2, b) = (a^a2lG ® b\H) ~ (a\lGa2\G ® b\H) 
= (ai^G® blH)(a2lG ®blH) = oc(a\, b)oc(a2, b). Similarly oc(a,b\b2) 
= oc(a, b\)oc(a, b2) for every a\, a2, a e A,b\,b2, b e B. Therefore oc: A x B -> 
-> G ® II is a bilinear mapping. To the bilinear mapping a there exists a unique 
homomorphism cp: A ® B -> G ® II such that oc = cp 0 co (Fig. 3). 
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/ / / / 

cc \ • /* 
\ 7 

\ 7 

4 x 8 -
/ 

E®F 

Fig. 3 Fig. 4 

Let (g\ ® h\) . . . (gn ® hn) be an arbitrary element of ®(G,H). Then 
<p{(fIi ® h) ••• (gn ® K)} = cp(g\ ® h\) . . . (gn ® hn) = cp 0 co(g±, h\) . . . 
. . . cp o co(gn, hn) = oc(gu M) . . . oc(gn, hn) = (g\lG ®falH) ... (gnlG ® hnlH) 
= (Qi ® fa) • • • ($n ® hn). The restriction cp\ of the mapping cp to the semigroup 
®(6r, H) is a homomorphism of the group ®(G, H) onto the group G ® II'. 

On the other hand it is known that ®(G, H) is a homomorphic image of 
G ® H under the mapping ip defined as follows: ip(g ® h) = g ® h. Hence 

evidently cp\ 0 ip = iG^H and \p o cp\ ҖG.. H). Hereby iQ-H and ix{G,H) are 
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the identical mappings of the semigroups G ® H and ®(G, H) respectively. 
Therefore <ra : ® (G, H) -> G ® H is an isomorphism. 

4) Any element a e A can be written (in a unique way) in the form a = ge, 
with g E G, e e E. Similarly for any b e B we have b = hf, with h e H, f e F. 
Now we define a bilinear mapping fl: A x L> ->K ® F in the following way: 
fi(a, b) fi(ge, hf) = e ® f For the mapping /9 there exists a unique homo-
morphism tj:A(x)B->E(x)F such that /3 = | o co (Fig. 4). 

Similarly as in 3) it is easy to show that the restriction fi of f to the semi­
group x (E, F) is an isomorphism of the semigroups ®(K, F) and E ® F. 

5) According to Lemma 3 E ® F C\D [K x F]. HencB by 2), 3), 4) we obtain: 
A ® B <^ \(G (x) H) x [E x F]]. This proves Theorem 3. 
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