
Mathematica Slovaca

Jerry R. Beehler; Arnold Johanson
Semigroups and the structure of categories

Mathematica Slovaca, Vol. 26 (1976), No. 3, 207--216

Persistent URL: http://dml.cz/dmlcz/136119

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136119
http://project.dml.cz


Math. Slovaca 26,1976, No. 3, 207—216 

SEMIGROUPS AND THE STRUCTURE OF CATEGORIES 

JERRY R. BEEHLER—ARNOLD JOHANSON 

§ 1. In this paper the algebraic structure of categories is examined with emphasis 
on those categories which have a finite number of arrows (or morphisms). The 
paper contains as an application the determination of the number and structure of 
all categories of orders four or less. The approach taken is to view a category as a 
special kind of semigroup with zero [2, p. 78] and first to establish results for 
semigroups and then apply these results to categories. 

§2. By a semigroup we understand a class S of elements together with an 
associative binary operation such that S contains a zero element 0 (i. e. Ox = xO = 0 
for all x in 5). This definition involves no loss of generality since if 5 is a semigroup 
with no zero element under the usual definition, then, of course, a unique 
semigroup 5° may be obtained by adjoining a zero. We use the term "class" rather 
than "set" because we wish to consider those cases in which, as in category theory, 
the class of elements is too large to form a set. A semigroup in which the class of 
elements is a set (in the sense of (say) von Neumanns's set theory) will be called an 
ordinary semigroup. By a homomorphism we understand a mapping /: A —> B of 
a semigroup A into a semigroup B such that /(0) = 0 and f(xy) =f(x)f(y) for all x 
and y in A. The category whose objects are.semigroups and whose arrows (or 
morphisms) are homomorphisms will be denoted by (Smgrp). [3]. 

We define two other categories whose objects are semigroups. A function 
/ : A -* B from a semigroup A to a semigroup B will be called a functor provided: 

1. /(x) = 0 if and only if x = 0, and 
2. if xy=£0, then f(xy)=f(x)f(y) for all x and y in A. The idea of functor is 

related both to the idea of functor in the category theory and the idea of partial 
homomorphism [1, p. 93]. It is apparent that not all functors are homomorphisms. 
For example, consider the semigroups {e, 0} and {ef, 0}, where e and ef are 
identity elements. Let 5 be the free product of {e} and {ef} and let U be the 
semigroup {e, ef, 0} defined by the Cayley table: 

e e' 
e e |o 
e' o| e' 

207 



Then the injection U—.> S° is a functor but not a homomorphism. On the other 
hand some homomorphisms are also not functors since they may map nonzero 
elements into zero. 

The category whose objects are semigroups and whose arrows are functors will 
be denoted by (Smgrp)0. 

A function /: A-*B from a semigroup A to a semigroup B will be called a 
partial functor provided: 

1. /(0) = 0 and 
2. if j ty^Othen a) f(xy)=f(x)f(y) and 

b) f(xy) = Q only if f(x) = 0 or f(y) = 0. 
(The name "partial functor" is adopted because the analogous concept in category 
theory is a functor defined on a subcategory. See §4.) The category whose objects 
are semigroups and whose arrows are partial functors will be denoted by (Smgrp)*. 

Since every functor is a partial functor it follows that (Smgrp)0 is a subcategory 
of (Smgrp)* and therefore not every partial functor is a homomorphism. Moreov­
er, the following example shows that not all homomorphisms are partial functors. 
Let A and B be the semigroups given by the tables: 

A 1 0 x y z B 1 0 a b 
0 | 0 0 0 0 0 | 0 0 0 

x \ 0 x x x a | 0 a 0 
y \0 x y x b \ 0 0 b 

z | 0 x x z 

and define /: A-+B by /(0) = 0, f(x) = 0, f(y) = a, and f(z) = b. Then / is a 
semigroup homomorphism but not a partial functor. 

§3. The ideals [1] in a semigroup 5* form a modular lattice under the operations 
of union and intersection. The zero element of the lattice is the semigroup 0 which 
contains only the zero element. The semigroup 0 is both an initial and terminal 
object in the categories Smgrp and (Smgrp)*; that is to say, for every semigroup 5 
there is a unique arrow 5—> 0 and a unique arrow 0—> S. Thus 0 is a zero or null 
object in these categories. The kernel of a homomorphism or partial functor 
f\A —> B is the subset of elements in A that map into 0. The kernel K of / is an 
ideal in A and if / is a partial functor, then K is a prime ideal [1, p. 40] in A, i. e. 
(A — K)° is a subsemigroup of A . The inclusion mapping K—• A is an equalizer of 

the pair of arrows A —> B in the respective categories (Smgrp) and (Smgrp)*. 

Now let I be an ideal of a semigroup S and let SI I be the Rees quotient of 5 with 
respect to I. The natural homomorphism p: S --> SI I is defined by 

P(x) = 
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If / is a prime ideal, then the homomorphism p is a partial functor. But p is not a 
functor unless / is trivial. Obviously, the kernel of p is / . If / - » 5 is the inclusion 

mapping, then p: 5—> SI I is a coequalizer of the pair of arrows / —> 5in (Smgrp) 
\.<v 

(and also/ in (Smgrp)* provided / is a prime ideal). 
Analogous to the internal direct product of two groups, we have the following: 

Definition. Let I and J be ideals in a semigroup 5. Then 5 is the direct union of I 
and J provided 5 = / u / and InJ = 0. We shall write S=I+J. (In Clifford and 
Preston, [2 p. 13], / + / is called a 0-direct union.) It should be noted that in the 
direct union ifx is in I and y is in J, then xy = yx = 0. The direct union is a coproduct 
in the categories (Smgrp)* and (Smgrp)o but not in (Smgrp). 

Clearly the ideals / and / in a direct union / + / of semigroups / and / are prime 
ideals in / + / . Moreover, we have two natural homomorphisms px\ 5—> I and 
p2: 5 —> / in which / = SI J and / = SI I, which is analogous to the situation in the 
direct product of groups. 

Definition. / / / is a prime nontrivial proper ideal in a semigroup 5, then 5 is an 
extension of S/I by I. [1, p. 137] 

We shall show in §5 that such extensions are not completely determined by SI I 
and / . 

If 5 is the extension of SI I by / and SI I is an ideal in 5, then 5 = 7 + 5 / 7 . 
Conversely, if 5 = 7 + / , then 5 is both an extension of / by / and of / by / . 

Definition. A semigroup is indecomposable ifS = I + J only if 1 = 0 or J = 0. 
The following theorem is the analog for semigroups of the Wedderburn-Remak 

Theorem on the decomposition of groups, and is a corollary of the corresppnding 
theorem of Ore on the decomposition of the elements of a finite-dimensional 
modular lattice. [5] 

Theorem 1. (Decomposition Theorem). Let S be a semigroup whose ideals form 
a finite-dimensional modular lattice. Then if 5 has two representations as the direct 
union of indecomposable ideals 

S = Ax + A2+...+Am 

and 
S = Bx+B2 + ... + Bn, 

it follows that m = n and every Af is replaceable by some Bj and the At 's and the B, 's 
are pairwise equal. 

Proof. The ideals of 5 form a modular lattice and the definitions of direct union 
agree, hence we may apply the theorem of Ore on the decomposition of the 
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elements of a finite-dimensional modular lattice. Now let-4,-= _4, + . . . + 
+ y4l-i + -4f-+, + . . . + - 4 w . Then if S = Ai + Ai and 5 = _?l- + _4/, 
it follows that At = SIAt and _?, = 5 / A and consequently the theorem is proved. 

§4. In this article we extend the results of §3 to categories. We also prove that 
for categories every ideal is a prime ideal. 

Definition. Let Cbe a semigroup with a zero element. A local left (right) identity 
in C is a nonzero element e such that for all x in C, if ex^O (xej=Q), then 
ex = x (xe = x). 

Definition. A semigroup Cis a category provided: 1. for every nonzero element 
a in C, there is both a left local identity e and a right local identity e' such that 
ea = ae' = a\ and 2. if a, b, and c are elements in C, then abc = 0 implies ab =0 or 
bc = 0. As usual, when there is no danger of misunderstanding, we shall refer to 
local identities in a category as simply identities. 

The second axiom in the definition of a category is called the categorical law. 
When the category is an ordinary semigroup Cl i f ford and P r e s t o n ([2 p. 78]) 
call it a small category with zero. Clearly the nonzero elements of a category C 
form a category in the usual sense, and every category C (in the usual sense) 
corresponds to a semigroup C° obtained by adjoining a zero arrow 0 such that for 
any arrows a and b, if ab is undefined in C, then ab = 0 in C°. Consequently all 
categories in the following discussion will be assumed to be semigroups unless 
otherwise specified. 

It is easily established that every left identity in a category is also a right identity 
and conversely. Distinct identities have a zero product, since ee'^0 implies 
e = ee' = e'. Of course, the left and right identities of an element are unique. 

In order to define the concept of subcategory we first define a subsemigroup 
(7V) of a semigroup 5 as a subclass T of the elements of 5 such that 0 e T and 
(T, •) is a semigroup under the operation • in 5. A subcategory 5 of a category C is 
a subsemigroup of C with the properties: 

1. 5 is a category. 
2. The local left and right identities of an element in 5 are the same as in C. 
The intersection of two subcategories of a category C is clearly a subcategory of 

C, but the following example shows that the union of two subcategories may fail to 
be a subcategory. 

C\e a c e' b e" A \ e a e' B \e' b e" 
e \ e a c 0 0 0 e \ e a 0 e' \e' b 0 
a | 0 0 0 a c 0 a \ 0 0 a b \0 0 b 
c | 0 0 0 0 0 c e' | 0 0 e' e" \0 0 e'[. 
e'\0 0 0 e' b 0 
b | 0 0 0 0 0 b 
e" | 0 0 0 0 0 e" 
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A and B are subcategories of C, but A u B is not a subcategory of C since the 
product ab = c will not be in A u 5 . 

A categorical functor from a category A to a category B is a functor f: A-+ B 
(see §2) such that if e is an identity in A, then /(e) is an identity in B. Thus, in 
addition to being a functor in the usual categorical sense we require that /(0) = 0. 
The category whose objects are categories and whose arrows are categorical 
functors will be denoted by (Cat). If A and B are categories, then by a functor 
/ : A —> B we shall always understand a categorical functor. 

We need to generalize the concept of functor in order to extend some of the 
results on semigroups to category theory. We speak of a "partial functor" when a 
functor in the usual sense is defined on a subcategory but not on the whole category 
itself. The existence of a zero allows us to define a partial func or on the whole 
category by stipulating that elements not in the domain of definition be mapped 
into zero. The category in which the objects are categories and the arrows are 
partial functors will be denoted by (Cat)*. 

The relationship among four of the categories discussed in this paper are given by 
the inclusion diagram: 

^(Smgrp)* 

(Smgrp)o (Cat)* 

^ ^ ^ ( C a t ) ^ 

The inclusion of (Cat) as a subcategory of (Smgrp)o is obvious. We shall prove 
below that (Cat)* is a subcategory of (Smgrp)*, and consequently results proved 
for (Smgrp)o and (Smgrp)* apply to categories. 

Definition. A partial functor f: C—> C from a category C to a category C is a 
mapping such that: 

1. /(0) = 0. 
2. Ifab^O thenf(ab)=f(a)f(b). 
3. For all identities e in C, if f(e) =£ 0, then f(e) is an identity in C. 

Theorem 2. (Cat)* is a subcategory of (Smgrp)*. 

Proof. We need only to show that a partial functor for categories is also a partial 
functor for semigroups. Let / : C—> C ; be a partial functor from a category C to a 
category C. Let a and b be elements of C such that db-h 0 and f(ab) = 0. We must 
show that f(a) = 0 or f(b) = 0. Let e be the right identity for a. Then we have 
aeb + 0, a=*e±0, and b = eb±0. It follows that f(a)=f(ae)=f(a)f(e), f(b) = 
f(eb)=f(e)f(b), and finally f(ab) =f(a)f(b)=f(a)f(e)f(b) = 0. Consequently, by 
the categorical law, f(a) = f(a)f(e) = 0 or f(b) = f(e)f(b) = 0. 

211 



Definition. An ideal I in a category C is a subcategory of C such that if a is in I 
and b is in C then ab and ba are in L 

Thus an ideal in a category is a semigroup ideal, but as the following example 
shows, not every subcategory that is a semigroup ideal in a category is also an ideal 
in the category. Let C and I be the monoids defined by the following tables: 

C\e a b I\q b 

e \e а Ь а 1 а b 
а 1 а а b b 1 ь а 
b 1 ь b а 

Then I is a category and a semigroup ideal of C but is not a subcategory of C since 
the identity a of I is not the identity of C. 

Analogous to the situation for semigroups, we have the following: 

Definition. An ideal I in a category Cis a prime ideal if (C —1)° is a subcategory 
of C 

Theorem 3. Every ideal in a category is a prime ideal. 

Proof. Let C be a category and let I be an ideal in C. First of all, the identities 
for each element in C— I must be in C— I since I is an ideal. Now let x and y be in 
C-^ I, and suppose that xy is in I and xy± 0. Then there is an identity e in / such 
that e(xy) £ 0. This means that ex £ 0; whence an element e in I is the left identity 
of the element x in C — I, which is impossible. Thus (C —1)° is a subcategory of C 
and the theorem is proved. 

Theorem 4. If A and B are subcategories of C such that C=AuB and 
AnB = 0, then C = A+B. Moreover, A+Bisa coproduct in (Cat) and (Cat)*. 

Proof. We must show that A and B are ideals. Suppose x is in A and y is in B. 
Then either xy is in A, or xy is in B. Suppose xy is in B and let e be the left identity 
for x. Then exy = xy and if xy + 0, it follows that e is an identity in B. Consequently 
xy = 0, since AnB = 0 and we conclude that xy is in A and that A is an ideal in C. 
Similarly B is an ideal in C and therefore C = A+B. The fact that C is a coproduct 
in (Cat) and (Cat)* follows almost immediately from the corresponding result for 
semigroups. 

Corollary 4.1. If lis ideal in a category C, then C/Iis an ideal and C=I+ C/L 
As a consequence of Theorem 3 or Corollary 4.1, given an ideal I in a category 

C, it follows that C is an extension of the category CI I by I. 

Definition. A category C is simple if its only ideals are C and 0. 
In view of Corollary 4.1, "simple" and "indecomposable" are equivalent 

conditions for categories. We note that the decomposition theorem (Theorem 1) 
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applies to categories. In addition, the analog for semigroups of the Jordan—Hold­
er—Schreier Theorem, which was stated and proved by Rees [6 p. 388] is also true 
for categories, as are several theorems analogous to the isomorphism theorems for 
groups. (Cf. [7 pp. 24—28]). 

§5. This article concerns extensions of categories by a semigroup ideal. 

Theorem 5. A finite monoid is either a group or an extension of a group by a 
semigroup ideal. 

Proof. Let Mbe a monoid with identity e and assume M is not a group. Let I be 
the set of noninvertible elements of M. To show that I is a semigroup ideal let a e I 
and b e M and suppose that ab is invertible. Then ab = c implies a(bc~l) = e. To 
show that a has a left inverse let the mapping / : M—> M be defined by f(x) = xa. 
Now / is injective and hence is surjective since M is finite. Thus a is invertible and 
ail, contrary to hypothesis: Consequently, I is an ideal and moreover I is a prime 
ideal since M— I is group. 

Definition. Let M and M' be monoids such that M n M ' = 0 and let a be an 
element not in M + M'. Let M-+ M' be the category obtained by adjoining a to 
M+M' in the following manner: for all x=f= 0 in M and y=/=0 in M' we define 
xa = ay = a and ax = ya = 0. We shall call M—> M' and M' —> M the simple 
extensions of M + M'. 

Simple Extension Lemma: The category M—> M' defined above exists and is 
unique up to isomorphism. Moreover, M^>M' is simple and M^>M' and 
M' —> M are the only simple categories C such that 

(1) C = ( M + M')u{a} 
and 

(2) M + M' is a subcategory of C 

Proof. If e and e' are identity elements in a category, we write [e, e'] for the set 
of all elements x in the category such that ex = xe' = x. (In other words [e, e'] is the 
Horn set together with zero.) Let e in M and e' in M' be the identities of M + M'. 
We construct M—> M' as follows: since a is not in M + M' we have a=h 0 and since, 
by definition, ea = ae' = a, it follows that we must put a in [e, e'] and we must 
define aa = 0. All other nontrivial products of a with elements of M + M' are given 
in the definition of M—> M'. It is routine to verify that M—> M' is a category. It 
follows that M—*M' is unambiguous up to isomorphism. 

To prove that M-*M' is simple, suppose I is a nontrivial ideal in M-* M''. 
Since I is nontrivial it contains a nonzero element x. If x is in M, then xa = a is in I 
and if x e M', then ax = a is in / . Hence a is in I and therefore the left and right 
identities (e and e') are in I; whence 1 = M—> M'. This establishes that M—> M' is 
simple. 
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Finally, suppose C is any simple category such that C = M + M ' u { a } and 
M+M' i a subcategory of C . Suppose a e [e, e]. Then [e, e] is a nontrivial ideal 
in C which is not qual to C since e' & [e, e] But this is impossible since C is 
simple. For the same rea on we cannot have a e [e', e']. If a is an identity in C, 
then ea = ae = ae' = e'a — 0 and consequently [a, a] is a nontrivial ideal in C not 
equal to C . This again contradicts the simplicity of C . Thus we have a e [e, e'] or 
a e [e', e]. 

Assume a e [e, e']. Then a is the only nonzero element in [e, e'] and [e', e] = 
{0}. Hence if x e M and y e M', we have xa = ay = a and ax = ya = 0. Thus 
C-M^M'. Smilarly C = M'^M if a e [e',e].ll 

Note that M—*M'i an extension ofM + M' by the semigroup ideal {0, a}. 
We hall adopt the convention that a nonzero element a in [e, e'] has the 

diagram e—> e'. This is con istent with the notation M—> M ' . Given a monoid M 

we shall refer to M—> / as the right extension of M and / —> M as the Ie/1 extension 
of M, where / i the monoid with one (non-zero) element. 

§6. In this article we determin all categories of order four or less. 
A category whi h contains n non-zero members will be called a category of order 

n. Clearly, the monoid / is the only category of order one. Note that every monoid 
is simple. 

We now establish that there are exactly three categories of order two. To prove 
this we first note that by the decomposition theorem the only nonsimple category of 
order two is the category / + /. Next, we claim that all simple categories of order 
two are monoids For if A is a category of order two which is not a monoid, then A 
contains two identities, whence A=l+1. The two monoids of order two will be 
denoted by M, and M2. 

We claim that there are eleven categories of order three. To prove this we shall 
show that there are eight imple categories of order three and three non-simple 
ones. To show that there are three non-simple ones let C be a non-simple category 
of order three. Then C mu t be factorable into imple categories whose orders add 
up to three * the only such factorizations po lbl are / + / + /, M, + /, and M2 + /. 

According to F o r s y t h e [4, p. 446] there are seven monoids of order three. 
Hence we ne d only to show that there is only one simple category of order three 
that I not a monoid. Now if C is of order three and simple and not a monoid, then 
it mu t have two id ntities. Thus it is a simple extension of / + /, whence C = /—> / 
Following L a w v e r e [8] we may regard /—> / as the ordinal number 2 and hence 
we shall d note it b 2 (to distinguish it from / + / ) . 

The re 6. There re IX simple categories of order four that are not monoids. 
Four of the e are the right and left extensions of the two monoids of order two. 

Proof. A simp e c egory of order four can have no more than three identities. 
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Suppose C is a category of order four with three identities and suppose a e C is not 
an identity. Let e and e' be the left and right identities for a. If e+e', then 
C = 2 + /, while if e = e', then C = Mx + l + l or C = M2 + l + l. Consequently 
simple categories of order four that are not monoids must have exactly two 
identities. 

Now let C be a simple category of order four with distinct identities e and e' and 
let a and b be the other nonzero elements in C. If a and be are in [e, e] or if a is in 
[e, e] and b is in [e', e'], it follows that C is not simple. Therefore one of the 
following situations prevails: 

1. a is in [e, e'] and b is in [e, e'] 
2. a is in [e, e'] and b is in [e', e ] 
3. a is in [e, e ] and b is in [e, e'] 
4. a is in [e, e ] and b is in [e', e ] 

Cases (1) and (2) each define a unique category. The category in case (1) is given 
by the Cayley table: 

I e a b e' 
e | e a b 0 
a | 0 0 0 a 
b | 0 0 0 b 
e' | 0 0 0 e' 

It has the diagram: 

a 
e^ e' 

The category in case (2) is given by: 

a 
e^ e' 

e a b e' 
e e a 0 0 
a 0 0 e a 
b b e' 0 0 
e' 0 0 b e' 

It may also be noted that the latter category is the only category of order less 
than or equal to four which is neither a group nor an extension of a subcategory by 
a semigroup ideal. 

The remainder of the theorem follows directly from cases (3) and (4) and the 
simple extension lemma. 
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Corollary 6.1. There are fifty-five categories of order four, of which thirty five 
are monoids, six are simple but not monoids, eight are of the form C+l where C is 
a simple category of order three, three are of the form C, + C2, where C, and C2 

are monoids of order two, two are of the form C+l + l, where C is a simple 
category of order two, and one is of the form / + / + / + /. 

Proof. It will follow that there are fifty-five categories of order four if we prove 
the other assertions in the corollary. The fact that there are thirty-five monoids of 
order four follows from [4, p. 446—447]. The next assertion is established by 
Theorem 6 and the rest of the assertions follows directly from the decomposition 
theorem together with our results on categories of order less than four 
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