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OSCILLATORINESS OF SOLUTIONS OF A NONLINEAR
SECOND ORDER DIFFERENTIAL EQUATION

PAVEL SOLTES

Consider a differential equation
x"+a()x"+ b)) (x)h(x")=0 €))

where a(t) € Co(to, ), b(t) €Ci(t, ©), f(x)eCi(— o, ®), A(y)eCo(— », ©),
xf(x)>0 for x+0, 2(y)>0 for all y e (— », ©), with #e(— o, »).

Put
F(x)= f Hs)ds,  H(y)= f ﬁ ds .

We have then the following

Theorem 1. (Theorem 4 of [2]): Suppose that aeC,(t,, ©) and that tke
following conditions hold for all t € (t,, ®) and x € (— %, ®):

1. a()=0, a'()<0, b()=0, b'()<0, f(x)=e>0;

2. fwa(s)dssA <o, J'wb(s)ds= + o,

If |llim H(y)=H< + o, then any solution x(t) of (1) such that
Ko=H(x'(to)) + b(t) F(x(2)) < H

is either oscillatory, or limx(¢)=0.

A similar statement can be proved also under weaker assumptions. Note that it is
the consequence of the hypotheses of Theorem 1 that 5(¢) >0 for all £ € (¢, ).
Throughout this paper we shall suppose that, for every 7=,

a()=0, b(£)>0, f{ib(—%}i ds=K<o,

where {5'(¢)}. =max {b'(¢), 0}.
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We have
Theorem 2. Suppose that

1. lima()—0, f'(x)=e>0 forall xe(— , )
2. Jb(s)ds=+°°, ja(s)ds<A<oo

If lim H(y)=H< + «, then ny olution x(t) of (1) such that
|yl—e .
[H(x'(2))+ b(t)Fx( ) Jexp K<H (2)

is either oscillatory or 1 mx(¢)— 0.
Proof. From the equation (1) we ha e

H(x'(0)+b(O)F( ())<H( '(£))+b(L)F(x(2)) +

+[ ot as

and hence

H(x'(6)) + b()F(x()) <K + ,’ % [H(x'(s)) + b(s)F(x(s))]ds .

an using this in conjuction with Bellman s 1 mma, we get

H(x (1)< xpf % ds,

where K,-=H(x'(£:,))+b(t)F( () .

Suppose that the solution x(¢) exst on (¢, ¢) Usmng (2) and the last derived
relation, we see that x'(¢) 1 bound d on (¢, 7). Now if #< + o, then x(¢) is also
bounded on (z, r) and therefore x(¢) exi t on (¢, ).

Suppose that x(z)isnoto cill t ,1e th tthere exists £,=¢, uch that x(¢)#0
for all =1,. Suppose e.g that x(7)>0 (th proof is quite analogous for x(#) <0)
By methods similar totho eu din[ ]Jit1 po 1blet show th tthereex tss,=¢
such that for r>=1¢,

(1) _
K h(a)f b(s)ds .

therefore

x'(2)

7x) r )
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so that x(¢) is a decreasing function. We shall now prove that limx(¢)=0. It is

a consequence of (3) that for any k>0 there exists #,=¢, such that for any = ¢, we
have

o
ey~ k-

Integrating this from ¢ to ¢r=1¢,, we have

fxX(s) L

o)

“ dr
funi@<reo. @

and therefore lim x(#) =0, since f(x) is continuous.

Obviously, we also have

Theorem 3. Suppose, in addition to the assumption of Theorem 2, that for x >0

. *ds . -* ds
ip [7<e m [ e ®

Then any solution x(t) of (1) satisfying (2) is oscillatory.

Proof. It is necessary to prove the impossibility of lim x(¢#) = 0. This is a direct

consequence of (4). In fact, if (5) holds, then the left part of (4) is bounded,

yielding a contradiction.
Remark 1. If a(r)=0, it is sufficient to replace the assumption of Theorem 2

that f'(x)=e>0 by the weaker assumption that f'(x)=0.

Theorem 4. Suppose that the following assumptions hold :
1. f(x)=e>0 forall xe(— o, »)
2. f sa(s)ds<sA<o, J-msb(s)ds= + o0,
and that, for every x>0,

= ds = ds

xm<°°, . m<°°. (6)

Then any solution x(¢t) of (1) satisfying (2) is either oscillatory or lim x(¢) = 0.

If, in addition to this, (5) holds, then any solution satisfying (2) is oscillatory.
Proof. By methods similar to those of [2] we show that a solution x(#) of (1)
which satisfies (2) exists on (4, ) and that x’(¢) is bounded. Suppose that it is not
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oscillatory and that ¢,=1¢, is a number such that x(¢#) #0 for all r=¢,. We shall
assume that x(¢) >0, since the method of proof is similar if x(¢)<O.
Then

x"(¢) +ta(t)x'(t)=

Sx()  fx(2))

Integrating this from ¢, to t=1¢,, we get
x'(f) [ _x'(s) *sf(x(s))x"(s) ‘sa(s)x'(s) o _

oy 7y o | oy o+ ] oy o

g [

—th()h(x'(2)) .

so that

x'(1) ¢ sx'(s) Lx'(4)

o) ), Pty V' FE) m2 @l ds <

+f(:%+z j s”(’)ds'fl sb(s)h(x'(s))ds .

x In 0

Since |x'(f)] <M< and A(y) is continuous, there exists a such that, for all
t=t, h(x'(t))=h(a) . A further consequence of the assumptions of the Theorem

is that lim a(¢) =0; hence there exists #,=¢, such that, for all t=1¢,,

fx()—1a()=0.
Because of (7), we have, for all 1=1,,

' (1)

f(x(2))

where K, is a constant, and therefore

<K,—-h(a) f' sb(s)ds ,

'(t) o
f(x(2))

Now we note the following two consequences of (8): first, x(#) is a monotonic

for t— o, (8)

decreasing function, so that lim x(¢) exists ; second, for any & >0 there exists £,=1,

t—>o0

such that, for all 1=4¢,,

x' (1)

ey K

so that
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== ()] ©

Hence lim x()=0.

If (5) holds as well as (9), then evidently x(#) is oscillatory. This completes the
proof.

Remark 2. It is evident from the proof of Theorem 4 that the conclusion of the
Theorem will also hold if assumption 2 is replaced by the assumption that

a(t)—0, %f sa(s)ds—cf sb(s)ds— —o for (-
1 0
with ¢ >0 an arbitrary constant.
A theorem analogous to that concerning the oscillatoriness of solutions of the
equation (1) is also true for the equation

x"+a(®)g(x, x )+ b(@)f(x)h(x')=0 (10)

where a(r), b(?), f(x) and A(y) are the same functions as in (1) and g(x, y) is
continuous for all (x, y) e (— %, ©)x, x(— %, ©). Namely we have

Theorem 5. Suppose that the following assumptions hold:

1. g(x, y)y=0, yf'(x)=g*x,y) forall
(x7y)e(_°°a°°)x(_°°’°°)

2. %f saz(s)ds—cf sb(s)ds— —o for t— o,
with ¢ >0 an arbitrary constant.
If (6) holds, then any solution x(t) of (10) satisfying (2) is ezther oscillatory or

lim x(¢)=0.

If, in addition to this, (5) holds, then any solution x(t) satisfying (2) is
oscillatory.

Proof. The existence of a solution x(¢) on (#, «) and the boundedness of x'(¢)-
are proved in a way similar to that of Theorem 2. Let the solution x(#) be

oscillatory and suppose e.g. that x(¢)> 0 for all = ¢, t, £,> 0. The proof is similar
“for the case x(#)<0. Equation (10) yields

D) [ 20 [
) ) ey ), TG
‘sa(s)g(x(s), x'(s)) , _ux'(t) [’ ,

+ [ TP ds = S~ [ shn(r s
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hence

A+ [ oy O ) =1 #(s), ¥ ()] ds <

<K,+1 f sa*(s)ds — h(a) f sb(s)ds

L1

where K, is a constant.

The rest of the proof is similar to that of Theorem 4.

Remark 3. Results similar to those stated as Theorem 4 and 5 are stated in
Theorems 1 and 2 of [1] which concern solutions of the equation (1) for a(z)=0
and A(y)=1.
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KOJIEBATEJIbHBIE CBOVMICTBA PEIIEHUM HEJIMHEWHOI'O
IUPPEPEHLIMAIBHOTO YPABHEHMSI BTOPOTO TTOPSIIKA

ITaBen WlonTec
B pa6oTe pemaroTcs BOMPOChI KONEOATENLHOCTH PELICHUM HENMUHEHHOro AuddEpEeHIHANBEHOTO
ypaBHEHUS BTOPOrO MOpSiIKa
x"+a()x'+b()f(x)h(x')=0. (1)
Ha ocuoBauuu cBoiicts yuxumi a(?), b(¢), f(x), A(x') npuBeneHsl AOCTAaTOYHBIE YCIOBMS, MPH

EBINIOTHEHHUH KOTOPBIX WIIM pelenue x(¢) ypasHenus (1) kone6netcss wium lim x(r)=0.

Toxe mnpuBENeHbl AOCTATOYHbIE YCIOBHS, MPH KOTOPBIX BCE PELIEHHS, KOTOPHIE BBLIMOIHSIHUT
ycnosue (2), Kone6nroTcs.
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