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OSCILLATORINESS OF SOLUTIONS OF A NONLINEAR 
SECOND ORDER DIFFERENTIAL EQUATION 

PAVEL SOLTES 

Consider a differential equation 

x" + a(t)x" + b(t)f(x)h(x') = 0 (1) 

where a(t)eC0(t0, <*), i(OeC,(r„,oo), / (x)eC,(-oo, oo), h(y)eC0(- », oo), 
xf(x)>0 for *=£0, h(y)>0 for all y e ( - o o ( oo), with t0e(-«>, °°). 

Put 

ғW=/;/(í)d,, Я ÙO-J Г ^ * . 

We have then the following 

Theorem 1. (Theorem 4 of [2]): Suppose that aeCx(t0, oo) and t/zat t/?e 
following conditions hold for all te( t0, oo) and x e (- oo, oo): 

1. a(t)^0, a'(t)^0, b(t)^0, b'(t)^0, f'(x)^e>0; 

2. | a(s)ds^A<oo , J b(s)ds= +*> . 
Jt0 Jt0 

If lim H(y) = H^ + oo, then any solution x(t) of (1) such that 
M-»-° 

tfo = H(jr'(.-0)) + 6(/0)F(x(/0)) < H 

is either oscillatory, or limx(t) = 0. 
t—»oo 

A similar statement can be proved also under weaker assumptions. Note that it is 
the consequence of the hypotheses of Theorem 1 that b(t) > 0 for all t e (t0, oo). 

Throughout this paper we shall suppose that, for every t^t0, 

a(t)^0, b(t)>0, [{b'£$+
 ds = K<™, 

where {b'(t)} + = max {b'(t), 0}. 
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We have 

Theorem 2. Suppose that 

l- l ima( t)-0, f'(x)^e>0 for all xe(- , <*) 

2. b(s)ds=+oo? a(s)ds<A<°° 
Jt0 Jt< 

If lim H(y) = H^ + <»- then ny olution x(t) of (1) such that 
|y|-»oo 

[H(x'(t0)) + b(t0)Fx( )]expK<H (2) 

is either oscillatory or 1 mx(t) - 0. 
t—* 

Proof. From the equation (1) we ha e 

H(x'(t)) + b(t)F( (/))</*( '(t)) + b(t0)F(x(t>)) + 

+ j ' {b'(s)}+F(x(s))ds 

and hence 

H(x'(t)) + b(t)F(x(t))< A + f {b

b{
S

s)
}+ [H(x'(s)) + b(s)F(x(s))]ds , 

an using this in conjuction with Bellman s 1 mma, we get 

H(x(t))< xpj { b

b ^ + ds , 

where K0-= H(x'(t0)) +b(t0)F( ( ) . 
Suppose that the solution x(t) ex st on (t, t) Using (2) and the last derived 

relation, we see that x'(t) 1 bound d on (t, /). Now if t< + oo, then x(t) is also 
bounded on (t0, t) and therefore x(t) exi t on (t, oo). 

Suppose that *(/) is not o cill t , 1 e th t there exists tx > t0 uch that x(t) + 0 
for all t^tx. Suppose e.g that x(t)>0 (th proof is quite analogous for x(t)<0) 
By methods similar to tho e u d in [ ] it I po lble t show th t there ex ts t2 > tx 

such that for t > U 

therefore 
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•^Щ<Kt h(а)j b(s)ds, 

f(x(t) ( > 



so that x(t) is a decreasing function. We shall now prove that \imx(t) = 0. It is 
t—»oo 

a consequence of (3) that for any k > 0 there exists t3 ^ t2 such that for any t ̂  t3 we 
have 

f(x(t)) 

Integrating this from t3 to t^t3, we have 

[' x'(s) . f-<*> dr 

and therefore lim x(t) = 0, since /(*) is continuous. 
t—»°o 

Obviously, we also have 

Theorem 3. Suppose, in addition to the assumption of Theorem 2, that for x > 0 

lim T A < ° ° , lim T A < ° ° • (5) 
--0+ J, / ( j ) r-O- J, / ( s ) 

77ze/i any solution x(t) of (1) satisfying (2) is oscillatory. 

Proof. It is necessary to prove the impossibility of lim x(t) = 0. This is a direct 
t—»oo 

consequence of (4). In fact, if (5) holds, then the left part of (4) is bounded, 
yielding a contradiction. 

Remark 1. If a(t) = 0, it is sufficient to replace the assumption of Theorem 2 
that f'(x)^e>0 by the weaker assumption that f'(x)^0. 

Theorem 4. Suppose that the following assumptions hold: 

1. f'(x)^e>0 forall xe(-°o9<x>) 

2. J sa(s)ds^A<™ , I sb(s)ds= + °o 9 
Jt0 Jt0 

and that, for every x>0, 

f°° ds ^ [— ds ^ , , x 

I / (s )< 0 0 ' J-,7w<0°- (6) 

77ze/i any solution x(t) of(\) satisfying (2) is either oscillatory or lim x(t) = 0. 
t—K» 

//, iii addition to this, (5) Ao/cb, tAe/i any solution satisfying (2) is oscillatory. 
Proof. By methods similar to those of [2] we show that a solution x(t) of (1) 

which satisfies (2) exists on (t0, °°) and that x'(t) is bounded. Suppose that it is not 
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oscillatory and that t^to is a number such that x(t)±0 for all t^t,. We shall 
assume that x(t)>0, since the method of proof is similar if *( t)<0 . 

Then 

_____ + ta(_xV)__ 
•f(x(t))+ f(x(t)) ta{tmx(t)). 

Integrating this from tx to t^ti, we get 

jx_t)__ (• x'(s) r sf'(x(s))x'*(s) rsa(s)x'(s) 
f(x(t)) ),J(x(s))as + l r(x(s)) as + J„ f(x(s)) /( 

^f(x(tò) 
Л * ' < Л ) Гsb(s)h(x'(s))ds , 

Jt, 

so that 

L*'(t) ^ (' sx'2(s) rrt/ 1 ^t_x'(t_) , 

7wo) + i Fwsl)[/ <*<'»-*«<'>! d^7w7o)+ 

+ i*" TT^ + i {' sa(s)ds- í' sb(s)h(x'(s))ds . 
JxVl) f(r) J'i J', 

Since |jt'(t)|^Af <a> and h(y) is continuous, there exists a such that, for all 
t^t,, h(x'(t))^h(a) . A further consequence of the assumptions of the Theorem 

is that lim a(t) = 0; hence there exists t2^ti such that, for all t^t2, 
t—>oo 

f'(x(t))-ia(t)^0. 

Because of (7), we have, for all t^t2, 

tx'(t) 
Kг-Ңa) í' sb(s)ds , 

Jt7 f(x(t)) 

where K} is a constant, and therefore 

/ R o T - for '-00- (8) 

Now we note the following two consequences of (8): first, x(t) is a monotonic 

decreasing function, so that lim x(t) exists; second, for any k > 0 there exists t3 ̂  t2 

such that, for all t^t3, 

tx'(t) 
fШ)* *• 

so that 
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íMHZ^mi 
Hence lim .r(t) = 0. 

If (5) holds as well as (9), then evidently x(t) is oscillatory. This completes the 
proof. 

Remark 2. It is evident from the proof of Theorem 4 that the conclusion of the 
Theorem will also hold if assumption 2 is replaced by the assumption that 

a(t)-*0, \ I sa(s)ds-c sb(s)ds-
Jt0 Jt0 

oo for Ѓ—>oo 

with c > 0 an arbitrary constant. 
A theorem analogous to that concerning the oscillatoriness of solutions of the 

equation (1) is also true for the equation 

x" + a(t)g(x, x') + b(t)f(x)h(x') = 0 (10) 

where a(t), b(t), f(x) and h(y) are the same functions as in (1) and g(x, y) is 
continuous for all (x, y)e(-°°, <*)x, x(— oo, oo). Namely we have 

Theorem 5. Suppose that the following assumptions hold: 

1. g(x,y)y^0, y2f'(x)^g2(x,y) for all 
(x,y)e(-™, oo)x(-oo, oo) 

sа2(s)ds-c sb(s)ds~* -°° for 
Jt0 Jt0 

í ^ o o , 

with c > 0 an arbitrary constant. 
If (6) holds, then any solution x(t) of (10) satisfying (2) is either oscillatory or 

lim.*(t) = 0. 

If, in addition to this, (5) holds, then any solution x(t) satisfying (2) is 
oscillatory. 

Proof. The existence of a solution x(t) on (t0, oo) and the boundedness of x'(t) 
are proved in a way similar to that of Theorem 2. Let the solution .r(t) be 
oscillatory and suppose e.g. that x(t) > 0 for all t^t^ t0, tx > 0. The proof is similar 
for the case *( t)<0. Equation (10) yields 

t*'(t) f' x'(s) rsx'2(s)f'(x(s)) 
f(x(t)) itj(x(s))as^)tl f(x(s)) 

f'sa(s)g(x(s),x'(s)) t,x'(tl)_ f< sb(s)h(x.(s))ds 

k f(x(s)) aS f(x(tx)) J / ^ W W ^ ; 
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hence 

7w»)+1 fofe) w w ' » " l g2(x(s)> x'(s))] ds * 
^K2 + § I sa2(s)ds-h(a) sb(s)ds 

jtx hx 

where K2 is a constant. 
The rest of the proof is similar to that of Theorem 4. 
Remark 3. Results similar to those stated as Theorem 4 and 5 are stated in 

Theorems 1 and 2 of [1] which concern solutions of the equation (1) for lj(/)sO 
and h(y) = l. 
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КОЛЕБАТЕЛЬНЫЕ СВОЙСТВА РЕШЕНИЙ НЕЛИНЕЙНОГО 

ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА 

Павел Ш о л т е с 

В работе решаются вопросы колебательности решений нелинейного дифференциального 

уравнения второго порядка 

х" + а(()х' + Ь(()/(хЩх') = 0. (I) 

На основании свойств функций а((), Ь((), /(*), Н(х') приведены достаточные условия, при 

выполнении которых или решение х(() уравнения (1) колеблется или \\тх(1) = 0. 

Тоже приведены достаточные условия, при которых все решения, которые выполнЯит 

условие (2), колеблются. 
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