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TWO CONSTRUCTIONS OF GEODETIC GRAPHS 

JAN PLESNIK 

1. Introduction 

The main purpose of this paper is to present two constructions of geodetic 
graphs. A graph is geodetic if two arbitrary points are connected by a unique 
shortest path. The problem of characterizing all geodetic graphs was first proposed 
by O r e [6, p. 105]. 

There are several results concerning geodetic graphs. We shall mention some of 
them. A graph G is strongly geodetic if any two points of G are connected by at 
most one path of length not exceeding the diameter of G. These graphs were 
studied by Bosak, Kotz ig and Z n a m [2]. Every connected strongly geodetic 
graph is obviously geodetic and it is either a tree or a Moore graph [2]. A Moore 
graph can be defined as a graph with a diameter d and girth 2d+ 1. Such a graph 
must be regular [2, 7]. Hoffman and S ing l e ton [5] have shown that there are at 
most 4 possible degrees of Moore graphs with the diameter 2, namely 2, 3, 7, and 
57. For each of the first three degrees there is the only Moore graph, but the 
existence or uniqueness of a Moore graph with degree 57 is an open question. 
B a n n a i a n d l t o [1] and independently Darner ell [3] have proved that any Moore 
graph with diameter greater than 2 is an odd cycle. 

The class of planar geodetic graphs was characterized by S t e m p l e and 
Wat k ins [10]. Some of their results will be mentioned in the sequel. 

Skala [8] has investigated in fact a special class of geodetic graphs with the 
diameter 2. The last graphs were studied by S t e m p l e [9] and Z e l i n k a [11]. 

In this paper, except as otherwise indicated, the notation and terminology are 
based on H a r a r y [4]. Given a graph G, V(G) and E(G) denote its point set and 
line set, respectively. The distance between the points u, veV(G) is denoted by 
dG(u, v). A shortest u — v path is called geodesic. The supremum of all distances 
in G is the diameter of G and is denoted by d(G). Given an even cycle Z of G (i.e., 
Z has an even length), we say that points x, ye V(Z) are Z-opposite if dz(x, y) = 
d(Z). Let u, v e V(Z), u^v. There are exactly two paths in Z joining u and v. 
One of them (in our figures usually the right-hand segment of Z ) is denoted by 
Z[u, v] and the other by Z[v, u]. 

There are only few general results on geodetic graphs. Two of them are the 
following lemmas. 
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Lemma 1 (Stemple and Watkins [10, Th. 2|). A connected graph G is geodetic 
if and only if G contains no even cycle Z such that for some Z-opposite pair of 
points x, y, d(,(x, y) = d(Z). 

This lemma is simple, but as we shall see, a useful criterion. 
Since the block-cutpoint graph of any nontrivial connected graph is a tree 

[4, Th. 4.4], the following lemma follows immediately. 

Lemma 2 (Stemple and Watkins [10, Th. 3|). A connected graph G is geodetic 
if and only if every block of G is geodetic. 

Thus it is often sufficient to study the geodetic blocks only. 

2. Two constructions 

Sometimes, it is convenient to have several examples of geodetic graphs. In this 
section, we give two classes of such examples. 

Firstly, for a given integer t1^1,we construct a graph WPd (widespread Petersen 
graph) with diameter d as follows (see Fig. 1): 

u12 

_^22_ 

_^32_ 

___£_ 

^ L 

Fig. I 

V(WP_) = {«,, | / = 1, 2, .... 5 ; / = 1, 2, .... d} , 

E(WPd) = {unun | i-j=\ (mod 5)} u {uiduid \ i -j = 2 (mod 5)} u | J {uiiuLi+x \ 
i - I 

j=\,2,...,d-\). 

Note that the graph WP2 is the Petersen graph and WP, is the complete graph 
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Theorem 1. For any integer d^\ the WPd is a geodetic graph with diameter d. 
Proof. One can easily verify that WPd has the diameter d and contains no even 

cycle with a length less than 2d+ 1. Then the proof follows from Lemma 1. 
Now we shall describe the second construction. We say that a graph Gx is an 

extension of a graph G at a point v e V(G) if Gx is formed from G by subdividing 
each line incident with v into two through insertion of one new point. We also say 
that G was extended at v to form Gx. Given a complete graph Kn (n^2), its points 
will be called basic points. We say that a graph Gx is of the type Kn

n, where /^0 is 
an integer, if either / = 0 and Gx = Kn or / ^ 1 and there is a graph G of the type 
K(

n~
l) and a basic point v of G such that G, is the extension of G at v. The graph 

Gx has the same basic points as G. In general, a Kn

l) has n basic points and i(n — 1) 
nonbasic points. Obviously, any Kn

l) and Kn are homeomorphic. Further, we see 
that the number / does not determine a Kn

() uniquely. 

Theorem 2. Any Kn

n with n^2 and /^0 is a geodetic graph. 
Proof. Let J be a given Kn

l). According to Lemma 1, it is sufficient to verify 
that for any even cycle Z and any pair of Z-oppositepointsx, y, dG(x, y)<d(Z). 
Note that any even cycle contains an even number of basic points (at least 4). There 
are two cases to consider. 

Fig.2 Fig.З 

Case 1. Z[x,y] or Z[y,x] contains at least 3 basic points. Then dG(x, y)< 
d(Z). This can be easily seen with the aid of Fig. 2, where we have drawn the .case 
when Z[x, y] contains at least 3 basic points. (In the Fig. 2 as well as in Figs. 3 and 
4, the full or the empty small circles mean basic or nonbasic points of G, 
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respectively. The capitals denote how many times the complete graph Kn was 
extended at a respective basic point. The letters a, b, c, d denote the situation of x 
and y with respect to basic points.) As the path x — v1- v^-y has the length 
a + A + 1 +C+c and Z[x, y] has the length at least a + A + \+2B + \ + C + c, 
the assertion follows. 

Case 2. Both the paths Z[x, y] and Z[y, x] contain less than 3 basic points. Since 
Z contains at least 4 basic points, both the Z[x, y] and the [y, x] contain exactly 2 
basic points. Owing to the symmetry, it is sufficient to consider only the two 
subcases illustrated in Figs. 3 and 4 . 

Fig. 4 Fig.5 

In the first subcase (Fig. 3) we assert that at least one of the paths x — u, — v2 — y 
and x — v, - u2 — y has length less than d(Z) (d(Z) = a + A + \+B + b = A—a + 
\+2C+\+2D+\+B-b). Otherwise it would bea + A + \+2D+\ + B-b> 
a + A + \+B + b and A -a + 1 + 2 C + 1 +B + b> 
A— a + \+2C+\ + 2D + \+ B — b, because the equalities are excluded by the 
different parities. Summing up the last two inequalities, we obtain a contradiction. 

In the second subcase (Fig. 4) at least one of the paths x — ul — v2 — y and 
x - vx - u2 - y has length less than d(Z) (d(Z) = A-a + \+2C+\+D + d = a + 
A + \+2B + \+D-d). In the opposite case it would be a + A + \+D + d> 
A-a + \+2C+\+D + d and A -a + 1 + 2 C + 1 +2B + 1 +D- d> 
a + A + 1 + 2B + 1 + D — d. Summing up these two inequalities, we get a contra­
diction. This completes the proof. 
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3. Planar geodetic graphs 

In this section we reformulate a result of Stemple and Watkins [10]. At first we 
give some necessary notions. 

Let G be a graph homeomorphic to K4. Let ux, u2, uy, and u4 be the four points 
of degree 3 and let Ax, A2, Bx, B2, C,, and C2 be lengths of the 6 segments, i.e., 
Ui — uf paths corresponding to the 6 lines of K4, in accordance with Fig. 5. Then G 
is said to be a canonical wheel if the following conditions are satisfied : 

(i) Each of the 6 segments is a unique geodesic of G joining its ends. 
(ii) A , + ^ 2 = H, + H2 = C, + C2. 

(iii) Each cycle consisting of 3 segments is odd. 

Lemma 3 (Stemple and Watkins [10, Th. 1]). A planar connected graph G is 
geodetic if and only if each block of G is one of the following: 

(a) K2, 
(b) an odd cycle, 
(c) a canonical wheel. 

This result fully characterizes the planar geodetic graphs. We shall show that it 
can be expressed as follows. 

Theorem 3. A planar connected graph G is geodetic if and only if each block of 
G is a K^ with 2^n^4. 

Proof. According to Lemma 3 and Theorem 2, it is sufficient to prove that any 
canonical wheel is a K4\ 

Let G be a canonical wheel different from K4. We shall prove that there is a 
canonical wheel 3 ' and its point v of degree 3 such that 3 is the extension of G' at 
v. Then the proof will follow immediately by induction on the number of points of 
degree 2. In other words, we have to find a point w, at which 3 can be reduced to 
receive a canonical wheel. Obviously, such a point w, needs to be incident only with 
segments of length at least 2. Suppose that each point w, is incident with some 
segment of length 1. Then at least one of the following two possibilities occurs. 

1. There is a point, say, ux such that all segments incident with it are of length 1, 
i.e., Ax =BX = C2= 1. Then (i) implies A2 = B2 = CX = \, consequently, G is K4 

which contradicts our assumption. 
2. There are two independent segments (say those corresponding to Ax and A2) 

of length 1. Then by (ii) G is K4, a contradiction. 
Thus there is a point, say, ux such that all segments incident with it are of length 

at least 2 (Ax, Bx, C 2 ^ 2 ) . Then we can reduce G at ux (i.e., we shorten each 
segment at w, by 1) to obtain a graph G' homeomorphic to K4. The corresponding 
parameters of G' are related to those of G as follows: A\ = AX — 1, A'2 = A2, 
B\ =BX - 1, B'2 = B2, C\ = C , C2 = C 2 - 1. It can be easily verified that G' fulfills 
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the conditions (ii) and (iii). Now we are going to consider the condition (i). Instead 
of (i), it is sufficient to verify "the strict triangle inequality" for each "triangle". 
(E.g., if C2<AX + B2 and C2<A2 + BX, then by (ii) also C2<AX + CX + A2 and 
C2<BX + C, + B2, hence the ux — u?t segment of length C2 is the unique ux — u^ 
geodesic.) By the assumption, C2<AX + B2 and C2<BX + A2. This implies C 2 < 
A\ + B'2 and C'2<B\ + A'2. Analogously, we see that B\<A'2+C2 and H;< 
A\ + C\, A\<B\ + C\ and A\<B'2+C2. Also C\<A'2 + B'2, B'2<C\ + A'2, A'2< 
C\ + B'2. 

Nevertheless, it can happen that some of the other three desired strict triangle 
inequalities is not true. Without a loss of generality, we can suppose that 
C\>A\ + B\, i.e., Cx^Ax + Bx-2. By the assumption (i) on G, we have C , ^ 
Ax + Bx-\. By (iii) Ax+Bx + Cx is odd, so Cx = Ax + Bx-\. Using (ii), the last 
inequality implies 

(1) Ax + Bx + C2 = m + \., 

where m = Ax+ A2 = Bx+ B2= C, + C2 (see(ii)). Thus we have proved that if the 
reduction at a point w, results in a graph which is no canonical wheel, then the sum 
of the lengths of the three segments at u< gives m + \. 

Now we shall prove that if we had no success with the reduction of G at w,, then 
the reduction of G at u2 results in a canonical wheel. 

Firstly, we have to show that A2, Bx, C , ^ 2 . By the assumption on ux, Bx^2. If 
A2=\, then by (ii) Ax = m — \, which being substituted into (1) gives Bx = C2= 1, a 
contradiction. Analogously, the assumption Cx = \ implies that Ax = BX = 1, a 
contradiction again. 

The reduction of G at u2 gives a graph G" homeomorphic to K4. If G" is a 
canonical wheel, then there is nothing to prove. In the opposite case, we can (as 
above on G') prove that 

(2) A2 + Bx + Cx = m + \ . 

Summing up (1) and (2) and using (ii), we obtain Bx = \, which is impossible. 
This completes the proof of Theorem 3. 

4. Problems 

1. We conjecture that any geodetic graph homeomorphic to Kn (n^2) is a Kn\ 
This conjecture is true for n^4 (see Theorem 3). 

2. It would be interesting to find a geodetic block with the diameter at least 3 and 
different from any WPd and Kn\ Note that there are such graphs with 
diameter 2 (see [8] or [9]). 
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ДВЕ КОНСТРУКЦИИ ГЕОДЕЗИЧЕСКИХ ГРАФОВ 

Ян Плесник 

Резюме 

Неориентированный граф называется геодезическим графом если для каждых двух вершин 
существует единственная кратчайшая цепь между ими. Автор давает две конструкции этих 
графов. Первая (рис 1) представляет натяжение графа Петерсена. Вторая состоит в натяжении 
полного графа при каждой из выбранных вершин на единицу или больше. Такой граф 
гомеоморфен полному графу. Тоже показывается (теорема 3), что эта конструкция охватывает 
геодезические плоские графы (охарактеризованные в [10]). Автор предлагает гипотезу: Вторая 
конструкция охватывает каждый геодезический граф, который гомеоморфен полному графу. 
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