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TWO CONSTRUCTIONS OF GEODETIC GRAPHS
JAN PLESNIK
1. Introduction

The main purpose of this paper is to present two constructions of geodetic
graphs. A graph is geodetic if two arbitrary points are connected by a unique
shortest path. The problem of characterizing all geodetic graphs was first proposed
by Ore [6, p. 105]. ‘

There are several results concerning geodetic graphs. We shall mention some of
them. A graph G is strongly geodetic if any two points of G are connected by at
most one path of length not exceeding the diameter of G. These graphs were
studied by Bosak, Kotzig and Znam [2]. Every connected strongly geodetic
graph is obviously geodetic and it is either a tree or a Moore graph [2]. A Moore
graph can be defined as a graph with a diameter 4 and girth 24 + 1. Such a graph
must be regular [2, 7]. Hoffman and Singleton [5] have shown that there are at
most 4 possible degrees of Moore graphs with the diameter 2, namely 2, 3, 7, and
57. For each of the first three degrees there is the only Moore graph, but the
existence or uniqueness of a Moore graph with degree 57 is an open question.
Bannaiand Ito [1] and independently Damerelil [3] have proved that any Moore
graph with diameter greater than 2 is an odd cycle.

The class of planar geodetic graphs was characterized by Stemple and
Watkins [10]. Some of their results will be mentioned in the sequel.

Skala [8] has investigated in fact a special class of geodetic graphs with the
diameter 2. The last graphs were studied by Stemple [9] and Zelinka [11].

In this paper, except as otherwise indicated, the notation and terminology are
based on Harary [4]. Given a graph G, V(G) and E(G) denote its point set and
line set, respectively. The distance between the points u, v € V(G)is denoted by
ds(u, v). A shortest u — v path is called geodesic. The supremum of all distances
in G is the diameter of G and is denoted by d(G). Given an even cycle Z of G (i.e.,
Z has an even length), we say that points x, y € V(Z) are Z-opposite if dz(x, y)=
d(Z). Let u,ve V(Z), u#v. There are exactly two paths in Z joining « and v.
One of them (in our figures usually the right-hand segment of Z) is denoted by
Z[u, v] and the other by Z[v, u].

There are only few general results on geodetic graphs. Two of them are the
following lemmas.
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Lemma 1 (Stemple and Watkins [10, Th. 2]). A connected graph G is geodetic
if and only if G contains no even cycle Z such that for some Z-opposite pair of
points x, y, da(x, y)=d(2).

This lemma is simple, but as we shall see, a useful criterion.

Since the block-cutpoint graph of any nontrivial connected graph is a tree
[4, Th. 4.4], the following lemma follows immediately.

Lemma 2 (Stemple and Watkins [10, Th. 3]). A connected graph G is geodetic
if and only if every block of G is geodetic.
Thus it is often sufficient to study the geodetic blocks only.

2. Two constructions

Sometimes, it is convenient to have several examples of geodetic graphs. In this
section, we give two classes of such examples.

Firstly, for a given integer d = 1, we construct a graph WP, (widespread Petersen
graph) with diameter d as follows (see Fig. 1):

Uy L2 Uid
Uy o2 Uyg
U 32 Y3d
Uit \ § e Usd
Usy =2 Usy

Fig. 1

VIWP)={u, | i=1,2,..,5; j=1,2,....d},
E(WP)={u,u, | i—j=1(mod 5)} U {tutty | i—j=2 (mod 5)} ulJ {u,ut, ;.1
i=1

j=1,2,....,d—1}.

Note that the graph WP, is the Petersen graph and WP, is the complete graph
K.
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Theorem 1. Forany integer d =1 the WP, is a geodetic graph with diameter d.

Proof. One can easily verify that WP, has the diameter d and contains no even
cycle with a length less than 2d + 1. Then the proof follows from Lemma 1.

Now we shall describe the second construction. We say that a graph G, is an
extension of a graph G at a point v € V(G) if G, is formed from G by subdividing
each line incident with v into two through insertion of one new point. We also say
that G was extended at v to form G,. Given a complete graph K, (n =2), its points
will be called basic points. We say that a graph G, is of the type K, where i=0 is
an integer, if either /=0 and G, =K, or /=1 and there is a graph G of the type
K{~" and a basic point v of G such that G, is the extension of G at v. The graph
G, has the same basic points as G. In general, a K¢ has n basic points and i(n — 1)
nonbasic points. Obviously, any K¢’ and K, are homeomorphic. Further, we see
that the number / does not determine a K’ uniquely.

Theorem 2. Any KY’ with n=2 and i=0 is a geodetic graph.

Proof. Let 5 be a given K\. According to Lemma 1, it is sufficient to verify
that for any even cycle Z and any pair of Z-opposite points x, y, ds(x, y)<d(Z).
Note that any even cycle contains an even number of basic points (at least 4). There
are two cases to consider.

Fig. 3

Case 1. Z[x, y] or Z[y, x] contains at least 3 basic points. Then ds(x, y)<
d(Z). This can be easily seen with the aid of Fig. 2, where we have drawn the case
when Z[x, y] contains at least 3 basic points. (In the Fig. 2 as well as in Figs. 3 and
4, the full or the empty small circles mean basic or_nonbasic points of G,
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respectively. The capitals denote how many times the complete graph K, was
extended at a respective basic point. The letters a, b, ¢, d denote the situation of x
and y with respect to basic points.) As the path x — v, —v,—y has the length
a+A+14+C+c and Z[x, y] has the length at least a+ A+ 1+2B+ 1+ C+c,
the assertion follows.

Case 2. Both the paths Z|x, y] and Z[y, x] contain less than 3 basic points. Since
Z contains at least 4 basic points, both the Z[x, y] and the [y, x| contain exactly 2
basic points. Owing to the symmetry, it is sufficient to consider only the two
subcases illustrated in Figs. 3 and 4.

Fig. 4 Fig. §

In the first subcase (Fig. 3) we assert that at least one of the paths x —u, —v,— y
and x — v, — u,— y has length less than d(Z) (d(Z)=a+A+1+B+b=A—-a+
1+2C+1+2D+1+ B—b). Otherwiseitwouldbea+A+1+2D+1+B—-bH>
a+A+1+B+b and A—a+14+2C+1+B+b>
A—a+1+2C+1+2D+1+ B - b, because the equalities are excluded by the
different parities. Summing up the last two inequalities, we obtain a contradiction.

In the second subcase (Fig. 4) at least one of the paths x —u, —v,—y and
x—uv,—u,— y haslengthless than d(Z) (d(Z)=A—a+1+2C+1+D+d=a+
A+1+2B+1+4+ D —d). In the opposite case it would be a+ A+1+D +d>
A—a+1+2C+1+D+d and A—a+1+2C+1+2B+1+D—-d>
a+A+1+2B+1+ D —d. Summing up these two inequalities, we get a contra-
diction. This completes the proof.
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3. Planar geodetic graphs

In this section we reformulate a result of Stemple and Watkins [10]. At first we
give some necessary notions.

Let G be a graph homeomorphic to K,. Let u,, u,, us, and u, be the four points
of degree 3 and let A,, A,, B,, B,, C,, and C, be lengths of the 6 segments, i.e.,
u; — u; paths corresponding to the 6 lines of K,, in accordance with Fig. 5. Then G
is said to be a ‘canonical wheel if the following conditions are satisfied:

(i) Each of the 6 segments is a unique geodesic of G joining its ends.
(ii) A\i+A,=B,+B,=C,+C..
(iii) Each cycle consisting of 3 segments is odd.

Lemma 3 (Stemple and Watkins [10, Th. 1]). A planar connécted graph G is
geodetic if and only if each block of G is one of the following:

(a) K,
(b) an odd cycle,
(c) a canonical wheel.

This result fully characterizes the planar geodetic graphs. We shall show that it
can be expressed as follows.

Theorem 3. A planar connected graph G is geodetic if and only if each block of
Gis a KY with 2<n<4.

Proof. According to Lemma 3 and Theorem 2, it is sufficient to prove that any
canonical wheel is a K¢

Let G be a canonical wheel different from K,. We shall prove that there is a
canonical wheel 7 ' and its point v of degree 3 such that 7 is the extension of G’ at
v. Then the proof will follow immediately by induction on the number of points of
degree 2. In other words, we have to find a point & at which 7 can be reduced to
receive a canonical wheel. Obviously, such a point «; needs to be incident only with
segments of length at least 2. Suppose that each point u; is incident with some
segment of length 1. Then at least one of the following two possibilities occurs.

1. There is a point, say, u, such that all segments incident with it are of length 1,
i.e., A,=B,=C,=1. Then (i) implies A,=B,=C, =1, consequently, G is K,
which contradicts our assumption. .

2. There are two independent segments (say those corresponding to A, and A,)
of length 1. Then by (ii) G is K,, a contradiction.

Thus there is a point, say, u, such that all segments incident with it are of length
at least 2 (A,, B,, C;=2). Then we can reduce G at u, (i.e., we shorten each
segment at u, by 1) to obtain a graph G' homeomorphic to K,. The corresponding
parameters of G' are related to those of G as follows: A{=A,—1, A;=A,,
Bi=B,—-1,B;=B,, C/=C,, C;=C,— 1. It can be easily verified that G’ fulfills
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the conditions (ii) and (iii). Now we are going to consider the condition (i). Instead
of (i), it is sufficient to verify “the strict triangle inequality” for each ‘“‘triangle™.
(E.g., if C;<A,+ B, and C,<A,+ B,, then by (ii) also C,<A,+ C,+ A, and
C,<B,+ C,+ B,, hence the u, —u, segment of length C, is the unique u, — u,
geodesic.) By the assumption, C,<A,+ B, and G, < B, + A,. This implies C;<
A1+ B; and Ci<B;+ A5 Analogously, we see that' Bi<A;+ Cj; and B|<
A1+ Cl, AI<B/+C}and A|<B;+Ci. Also C1<A;+B;, B;<C/+ Al A<
C\+ B..

Nevertheless, it can happen that some of the other three desired strict triangle
inequalities is not true. Without a loss of generality, we can suppose that
Ci>A+Bj, ie., C,=A,+ B,—2. By the assumption (i) on G, we have C,<
A,+B,—1. By (iii) A,+B,+C, is odd, so C,=A,+ B,— 1. Using (ii), the last
inequality implies

(N A+B+C=m+1,

where m=A,+ A,=B,+ B,=C, + G, (see(ii)). Thus we have proved that if the
reduction at a point «; results in a graph which is no canonical wheel, then the sum
of the lengths of the three segments at u; gives m + 1.

Now we shall prove that if we had no success with the reduction of G at u,, then
the reduction of G at u, results in a canonical wheel.

Firstly, we have to show that A,, B,, C,=2. By the assumption on u,, B,=2. If
A, =1, then by (ii) A, =m — 1, which being substituted into (1) gives B,=C,=1, a
contradiction. Analogously, the assumption C,=1 implies that A,=B,=1, a
" contradiction again.

The reduction of G at u, gives a graph G” homeomorphic to K,. If G" is a

canonical wheel, then there is nothing to prove. In the opposite case, we can (as
above on G') prove that

2) A,+B+Ci=m+1.

Summing up (1) and (2) and using (ii), we obtain B, =1, which is impossible.
This completes the proof of Theorem 3.

4. Problems

1. We conjecture that any geodetic graph homeomorphic to K, (n=2) is a K.
This conjecture is true for n<4 (see Theorem 3).

2. It would be interesting to find a geodetic block with the diameter at least 3 and
different from any WP, and K{’. Note that there are such graphs with
diameter 2 (see [8] or [9]).
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IOBE KOHCTPYKUUU FEOJE3UYECKUX T'PA®OB
Su MnecHuk

Pestome

HeopHeHTHPOBAHHDBIA Tpad Ha3LIBACTCA TEO/Ie3UYECKUM rPpadoM ecu s KaXAbIX ABYX BEPLUUH
CYILECTBYET €AMHCTBEHHAS KpAaT4YaWllas lUenb MEXJY MMH. ABTOP 4aBAE€T [IBE KOHCTPYKLUMH ITHUX
rpagos. TMepsas (puc. 1) npeacrasnsieT HaTsxxkeHnue rpacda INeTepcena. Bropas cocTONT B HATSAXEHUU
nosHOro rpada npu Kaxaoi u3 BbIGPAHHBIX BEpUWMH Ha cauMHully wanm Goablue. Takon rpad
romeoMopden nosHomy rpady. Toxe nokasbiBaeTcs (TeopeMa 3), 4TO 3Ta KOHCTPYKUUS OXBATBIBACT
reofesuueckue niockue rpadul (oxapaktepusosanubie B [10]). ABTop npeanaraet runotesy: Bropas
KOHCTPYKIMSI OXBATBIBAET KAXJIbIA reojie3sudecknit rpad, KOTopblit roMeomMopdeH nosHomy rpady.
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