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MATHEMATICA SLOVACA 

VOLUME 27 1977 NUMBER 2 

THREE POINT VALUE PROBLEM FOR THIRD-ORDER 
LINEAR DIFFERENTIAL EQUATION 

JOZEF ROVDER 

1. Introduction 

In this paper we shall be concerned with the existence of the solution of the 
three-point value problem for the differential equation 

(A) y'" + B(x, T)y' + C(x, r > = 0, 

C^FHY T\ 
where B(x, r), C(x, T) and B'(x, T) = —;. are continuous functions in the 

ox 
interval D = (0, oo) x (/, F). The results of this paper generalize the results of the 
papers [1] and [4]. 

A solution of (A) is said to be oscillatory in (0, oo) iff it has an infinity of zeros in 
each interval (a, oo), a >0. The differential equation (A) is said to be oscillatory iff 
it has at least one (nontrivial) oscillatory solution, and nonoscillatory if it has no 
(nontrivial) oscillatory solution. 

2. Preliminary results 

We shall need the following two theorems which were proved in [2]. 

Theorem (i). Let us consider the differential equations 

(1) y"' + B(x)y' + C(x)y = 0, 

(2) z"' + b(x)z' + c(x)z = 0, 

where B'(x), C(x), b'(x)y c(x) are continuous functions in (0, oo). Suppose that 
the coefficients of (I) and (2) satisfy the following assumptions 

B(x)zzb(x),2C(x)-B'(x)^2c(x)-b'(x),2C(x)-B'(x)^0. 
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Let a, (5 be two consecutive zeros of a solution z(x) of (2). Let a be a double zero 
of z(x). Then the solution y(x) of (1) with a single zero at f5 has a zero in the 
interval (a, (}]. 

Theorem (ii). If the coefficients of (I) satisfy the conditions 

2C(x)-B'(x)^0 and B(x)^p, 

where p is a positive constant, or the conditions 

2C(x)-B'(x)^q>^-=\-p\* and B(x)^p, 

where p, q are constants, then the equation (1) 15 oscillatory. 
If the coefficients of (I) satisfy the conditions 

0^2C(x)-B'(x)^^(-pf and B(x)^p^0, 

where p, q are constants, or the conditions 

0^2C(x)-B'(x)^^-3(l-pf and B(x)^j-2, 

where p^l is a constant, then the equation (I) is nonoscillatory. 

Definition 1. A solution of (I) is said to be of class D(k) in an interval [a, oo) iff 
the distance between any two consecutive zeros of y(x) in [a, oo) is less than the 
number k. 

Theorem 1. Let 2C(x)-B'(x)^0 in (0, oo). Suppose that there exists an 
oscillatory solution of (1) which is of class D(k) in an interval [a, oo), a > 0 . Then 
there exists a number Ksuch that every solution of(1) is ofclass D(K) in [a, oo). 

Proof. Let y(x) be a solution of (1) which is oscillatory and of class D(k) in 
[a, oo). Let a be a zero of y(x). Suppose that a is a single zero of y(x). Let z(x) be 
a solution of (1) with a double zero at the point a. Because of Theorem 1 in [2], 
every solution of (1) with a zero is oscillatory, therefore z(x) is an oscillatory 
solution of (1). Let a^xt <x2<x3 be consecutive zeros of y(x). Then the solution 
z(x) must have a zero in (xu x3]. Indeed, if z(x) is positive in (xu x3], then it is 
positive in [jt2, x3]. Then there exist numbers c and r e (x2, x3) (see Lemma 2 in [2]) 
such that the solution w(x) = z(x) — cy(x) of (1) has a double zero at r and a single 
zero at a which contradicts the identity 

(3) [ww"-\w'2 + \Bw2]x
a= - \ il[2C(x)-B'(x)]w2dx. 

Thus z(x) has a zero in (xu x3]. Since JC,, X2, *3 are three arbitrary consecutive zeros 
of y(x), the solution z(x) is of class D(3k) in [a, oo). 
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Now let u(x) be a solution of (1) with a single zero at a. It follows from Theorem 
(i) that the zeros of u(x) and z(x) interlace in (a, o°) in the sense that if a, /? are 
two consecutive zeros of z(x), than u(x) has a zero in [a, /?]. From this fact it 
follows that the solution u(x) of (1) is of class D(6k) in [a, °°). 

At the beginning we assumed that y(x) had a single zero at a. If y(x) has 
a double zero at a, then by a method analogous to the one used before we find that 
every solution of (1) with the zero at a is of class D(6k) in [a, o°). 

Now let v(x) be a solution of (1) with a zero at a point 6, and let b be different 
from the zeros of y(x). Then there is a solution w(x) of (1) such that 
w(a)= w(b) = 0. Since w(x) and >>(*) have one common zero a, then w(x) is of 
class D(6k) in [a, °°). However, v(x) has the common zero b with VV(JC), therefore 
the solution v(x) of (1) is of class D(36k) in [a, o°). If we put 36k = K, then 
Theorem 1 is proved completely, since every solution of (1) with a zero is 
oscillatory. 

Lemma 1. Let p, q^O be numbers. Let the equation 

(4) z"'+pz'+^z = 0 

ísan be oscillatory. Then every solution of (4) is of class D (—) in [a, °°), where a h 

arbitrary positive number, K is a number indepedent of p and q, and 

(5) P = (-q + d)> + (q + d)K where d = (q2 + £p*)K 

Proof. If the equation (4) is oscillatory, then the auxiliary equation associated 
with (4) has the roots 

V3 
xx = u + v, x2^ = a±fi' — i, 

m --
where 

" = {-i? + [G*)2 + G P m \ 

" = {-W-[G?)2 + GP)W 

and a= -^(u + v), ft' = u-v. Since ( ^ ) 2 + GP)v>0, the numbers w, v, a,/?' are 
real ones. Denote d = (q2 + £p*)~2. 
Then we can rewrite f5' in the form 

p'=^-[(-q + di> + (q + di>\. 
V4 
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If the number in the bracket is denoted by /?, then for the roots x2^ it yields 

V6 
x2У = a± — ß\. 

Then one solution of (4) is y(x) = c, e(XX sin (— /ftc + c2 J. From the form of y(x) it 

follows that for every positive number a there exists a solution of (4) of class 

D ( —J in [a, oo). Because of Theorem 1, every solution of (4) is of class 

^jMf)-!•••* <rJ 

3. Oscillation theorems 

Theorem 2. Assume that (A) satisfies the conditions: 
(i) There exists a number p such that 

B(x, r)^p for every (x, r)eD and 

lim [2C(x, T)-B'(X, r)] = oo uniformly in xe(0, oo), or 
x—*T 

(ii) 2C(x, T)-B'(X, r ) ^ 0 for every (x, r)eD and 

lim B(x, r) = oo uniformly in x e (0, oo). 
r—*T 

Let [a, b] cz (0, oo) be an arbitrary interval. Let y(x) be a solution of (A) with the 
property y(a, r) = 0. Then with the increasing r—> T also the number of zeros of 
the solution y(x, r) in [a, b] increases to infinity and at the same time the distance 
between every consecutive zeros of y(x, r) converges to zero. 

Proof, (i). Let the conditions (i) be valid. Then for every q > 0 there is a number 
T0 such that r>r0 implies 

2C(x, T)-B'(X, r)>q forali xe(0, oo). 

Let q be such that the differential equation (4) is oscillatory. Then the solution z(x) 
of (4) with the properties z(a) = z'(a) = 0, z"(a) =£ 0 is oscillatory by Theorem 1 in 

[2]. From Lemma 1 it follows that z(x) is of class D f--r J in [a, oo), where f3 is 
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defined by (5). If 2C(x, T)-B'(X, T) diverges to infinity uniformly in JCG(0, °°), 
then q—> o° and because of (5), /S—> oo. So the the number of zeros of the solution 
z(x) in [a, b] increases to infinity and at the same time the distance of every two 
neighbouring zeros of z(x) converges to zero. 

Let y(x, T) be a solution of (A) with a single zero at the point a. Let a<xx be 
two consecutive zeros of the solution z(x) of (4). Since all (x, r ) e (0, oo) x (r0, T) 
satisfy 

B(x, T)^p, 2C(x,T)-B'(x,T)*zq>0, 

then, by- Theorem (i), the solution y(x, r) of (A) has a zero a, in the interval 
(a, xx]. Then for the distance of the zeros a and ax of y(x, r ) yields 

\a-ax\^\xx-a\<-. 

Now let Z\(x) be a solution of (4) such that Zi(ax) = Zi(ax) = 0, zf{(al)40. Let 
a, <x 2 be two consecutive zeros of ZI(JC). Then again, by Theorem (i) we have that 
the solution y(x, r ) of (A) has a zero a2 in (ax, x2]. For the distance between ax and 

K 
a2 there follows \ax - a2\ ̂  \ax -x2\ ^ - ~ . By induction we obtain that the distance 

j£ 
between every two consecutive zeros of y(x, r) is less than —. 

P 
Let us note that if a is a single zero of the solution y(x, r ) of (A), then the 

condition 2C(JC, r) -B'(x, r ) ^ 0 results in every zero of y(x, r ) in (0, oo) is being 
a single one, and therefore Theorem (i) is applied to each zero of y(x, r ) . If y(x, r ) 
is a solution of (A) with the property y(a, r ) = y'(a, r ) = 0, then from Lemma 1 it 
follows that the distance between every two consecutive zeros of y(x, r ) is less than 
K 

-gjT, -Ki = 6K. 

Consequently the distance between every two consecutive zeros of the solution 

y(x, T) of (A) with the property y(a, r ) = 0, a>0 is less then - ~ . From this fact 
P 

and from the condition 
lim [2C(JC, r ) - B'(x, r)] = oo uniformly in (0, oo) 

we have /?—• oo and so with the increasing r—> T also the number of zeros of the 
solution y(x, r ) of (A) in [a, b] increases to infinity, and at the same time the 
distance between every consecutive zeros of y(x, r ) converges to zero. 

(ii) Let 2C(X,T)-B'(X,T)**0 and lim B(x, r) = oo 

uniformly in (0, oo). Then for every p>0 there is a number ib such that r > i b 
implies B(x, T)>P for all xe(0, oo). Then the equation 
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(6) z"'+pz' = 0 

is oscillatory and for p—> oc the distance between every two consecutive zeros of the 
solution z(x) of (6) with the properties z(a) = z'(a) = 0, z"(a)±0 converges to 
zero. Then in a way analogous to that in part (i) we show that the solution y(x, r) 
of (A) such that y(a, r) = 0 has the property that with the increasing r—> T the 
number of zeros of y(x, r) in [a, b\ increases to infinity and at the same time the 
distance of every two neighbouring zeros converges to zero. 

R e m a r k . The part (i) of Theorem 2 generalizes Gregus's oscillatory theorem in 
[1], in which the assumption \B(x, r ) | ^ K , , \B'(x, T)\^K2 in D, K,, K2 are 
constants, are required in addition. 

The part (ii) of Theorem 2 generalizes Sansone's oscillatory theorem in [4], in 
which the assumption B(x, r ) < 0 is required in addition. 

Theorem 2 is included in the following more general theorem. 

Theorem 3. Let for every Te(t, T) the function B(x, r) be bounded below in 
(0, oo). Let 2C(x, T)-B'(X, r ) ^ 0 in D. Denote 

P(T)= inf B(x, T), q(T)= inf [2C(x, r ) - B'(x, r ) ] , 
x e (<). ^ ) x e ((). ~ ) 

(7) d(T) = q2(T) + £p\T) 

(8) P(t) = [-q(T) + d(T))^ + [q(T) + d(T)]K 

U 

lim /?(г) = э°, 

then the conclusion of Theorem 2 is valid. 

Proof. From the assumption lim /3(T) = oo it follows that there is r(,G (t, T) such 
r—»T 

that re(r<„ T) implies /?(r)>0. From this fact it follows that d(r)>0 in (r(„ T) 
because * / ( r ) ^ 0 implies /S(r)^0 by definition (8). Then from the condition 
d(T)>0 in (r(„ T) it follows that the differential equation 

(9) zf"+p(T)z,+^f-z = 0 

is oscillatory in (0, oo) for every r e ( r „ , T). Since lim /J(r) = oo, then the distance 
T—»T 

between every two consecutive zeros of z(x, r) of (9) with the properties 
z(a, T) = z'(a, r) = 0, z"(a, r)=£0, converges to zero if r—>T. 

From the definition of I?(r) and q(T) it follows 

B(x, T)^P(T), 2C(x, T)-B'(X, T)^q(T)^0. 
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Then the assumption of Theorem (i) are fulfilled, therefore every solution of (A) 
with the properties y(a, r) = y'(a, r) = 0, y"(a, r)^=0 has a zero in (a, .*,], where 
JC, is another zero of z(x, r). The proof continues in the same way as in Theorem 2. 

The following lemma gives a class of functions which satisfy Theorem 3 and the 
function B(x, r) is unbounded below in D. 

Lemma 2. Let P(T), q(T) be continuous functions in (t, T) and satisfy the 
conditions 

(10) • l im^(r)=-oo, <7(r)^0, d(T) = K\ -P(T)\2^, 

where K is a positive constant and d(r) is defined by (.7). Then there exists 
r()e(t, T) such that for every re(r0, T) the equation 

(11) r3 + p(T)r + ^ = 0 

V6 
has the complex roots a ( r ) ± — /8(r)i, where P(T) is defined by (8) and 

lim/5(r) = oo, if e>0, 
r—»T 

limtf(r) exists,if e^O. 
T-*T 

Proof. From the assumption lim/?(r) = — oo it follows that there is a number 
T—>r 

T0 e (t, T) such that r e (tb, -D implies p(r) < 0 and so because of (10), the equation 
(11) has complex roots for every r e (ib, 7"). Now we calculate lim@(T) for r-» T. 

In order to obtain a simple notation we put 

q(T) = a(T), [||p3(r)]' = 6(r), k = Ki$f*. 

Then from the conditions (7) and (10) we obtain 

6(r)-»-oo, tf(r)-»-oo, if r - * r and 

(12) a2(T)=-b3(T) + k\b(T)\2+\ k>0. 

In a simpe way we can rewrite (i(x) in the form 

2[a2(r) + 63(r)]*  
ß(r) = [ - a(т) + (a2(т) + b3(т)Уf -b(т) + [a(т) + (a2(т) + b3(т)УГ' 
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Substituting here a(r) because of (12), and multiplying the dividend and divisor by 
[-b(T)]~l~f"2 we obtain 

[ / J ( r ) , " , " ^ " I " * ( r ) , " S = 

= ^ ^ ^ - ^ ( r ) r > + 2 ^ t - ^ W ] " , " : - 2 V k ( [ - 6 ( r ) ] - , + k[-^(r)r ->-

•[-b(T)\-'^ + ̂ k{[-b(T)]-^+2k[-b(T)\-^- + 

+ 2^~k[-b{T)Yi + k[-b{T)\-2)![-b{T)Y'y. 

Let f > 9 . Since lirn [ — b(T)] =», then from the last equlity we obtain 
r—.r 

lim [P(T)]~1=0 and so lim/S(r) = oc, because /S(r)>0 in (r(), F). If £ = 0, then 
T — T T—*T 

hm/5(r) = —-—. 

Now let e <0. The sum of the expressions which are on the right-hand side of the 

last equality is positive for all re(r0 , F). Therefore lim (3(T) = 0, if £<0. 

Corrolary 1. Let P(T) and q(T) be defined as in Theorem 3. Let lim P(T)= — oo, 
r—*T 

R(T) ** fif [ - IKr)]3 + K[ - p(r)]2+e}12, w/?ere K, £ are positive numbers. Then the 
conclusion of Theorem 2 is valid. 

4. Boundary value problem 

In this section we need the following lema proved in [1]. 

Lemma 3. Let y(x, r) be a solution of (A) with the property y(a, r) = 0, a > 0. 
Then the zeros of y(x, r) lying to the right of a are a continuous function of the 
parameter r. 

Theorem 4. Let the coefficients (A) satisfy the assumptions: 
(i) B(x, T) is bounded below in D, and 

lim [2C(x, T) -B'(X, T)] = oo uniformly in x e (0, oo), or 
T—T 

(ii) lim B(x, r) = oo uniformly in x e (0, oo), and for all r e (/, T), 
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2C(x, T) - B'(x, r ) ^ 0 in (0; o°) where the sign of equality does not hold in any 
subinterval of (0, QO), or 

(iii) lim/?(r) = oo, and for all re (t, T), 2C(x, T)-B'(X, r ) ^ 0 in (0, *>), where 
T — 7" 

the sign of equality does not hold in any subinterval of (0, oo). 
Assertion: (a) There exists a nonpositive integer 6 and a sequence of the 

parameter r 

^•>+i- Tfy + 2, . . . , Tfy + n, . . . 

tending to T for which the boundary value problem 

y(a,r) = 0 

( 1 3 ) a>y(b,T)-ay'(b,T) = 0, |a.| + |a |=*0, 

(5xy(c,T)-f3y'(c,T) = 0 |ft| + |/?|*0' 

of equation (A) has a solution determined up to a multiplicative constant. 
(b) The corresponding solutions y(x, rA+„) have exactly <5 + >* zeros in the 

interval (a, c). 
Proof. We note that under the assumptions of this, theorem there exists 

a parameter r„e(f, T) such that 2C(x, T) — B'(X, r ) ^ 0 for all r e ( r „ , T) and the 
sign = does not hold in any subinterval of (0, o°). From now on we shall consider 
only r e (r„, T). For those values of parameter r every solution of (A) with double 
zero at a point a has no zeros in (0, a). Also, the assumptions of this theorem give 
that oscillatory theorems 2 and 3 hold. 

Let yt(x, r) be solutions of (A), which satisfy the initiaj conditions 
y(k)(a, r) = 6ik, i, k = 0, 1, 2, ditk is the Kronecker <5. Let y(x, r ) be a solution of 
(A) which satisfies the condition y(a, r) = 0. Then y(x, r) [see [1], Teorem 2] can 
be expressed in the form 

y(x, r) = cxyx(x, T) + c2y2(x, r) , 

where cx, c2 are arbitrary numbers. Choose the constants cx, c2 such that 

aly(b,T)-ay'(b,T) = 0, b>a, 

which can be written as 

Ciyx(b, T) + c2y2(b, r) = ca 
(14) 

ci y!(b, r ) - c2y2'(b, r) = ca, , c £ 0 arbitrary. 

The determinant of the system (14) is w(b, T) = yA(b, T)y2(b, r ) — 
— y'i(b9 t:)y2(b, r ) . The function w(x, r ) is a solution of the adjoint equation to 
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(A). From the properties of the adjoint equations it follows that w(x, r) has no 
zero in (a, oo), since w(x, r) has the double zero at the point a. Then w(b, r)^0 
and so the system (14) has a unique solution. Thus the solution y(x, r) is unique up 
to a multiplicative constant, and we may assume c=\. If a = b, we put 
y(x, T) = y2(x, T). 

For r = r0 the solution y(x, r„) of (A) has exactly 8 zeros in (a, c), c>a and 8 is 
a nonpositive integer (8=0, if y(x, r) has no zeros in (a, c)). For (8 + l)st zero of 
y(x, r„) there follows 

C<X6+X(T»). 

From the oscillatory Theorems 2 and 3 it follows that there is f > r„ such that 
x6+'x(f)<c and there is no r > f such that X6+X(T) = C. 

Because of Lemma 3, X6+{(T) is a continuous function of r, so there is the largest 
parameter f<*e(r„, f) for which y(c, f6) = 0 and y(x, f6) hjas exactly 8 zeros in 
(a, c). For the parameter T = f6 it follows 

x6+x(f6) = c<x6+2(f6). 

From the Theorems 2 and 3 it follows that there is r*>fd such that .rd+2(r*)<c 
and there is no r>r* such that X6+2(T) = C. 

Since X6+2(T) is a continuous function of r, then there is the greatest parameter 
f6+xe(f6, r*) for which y(c, f6+{) = 0 and y(x, f6+x) has exactly 6 + 1 zeros in 
(a, c). For the parameter T = f6+X it follows 

X6+2(f6 + i) = C<X6+2(T6 + i). 

By induction we obtain that there exists a sequence of values of the parameter r 

t * » ^5 + l> ^ 6 + 2 - •••» ^ S + n - 1 - ••• 

such that the corresponding solutions y(x, f6+n-x) of (A) satisfy the condition 
y(c,f6+n-x) = 0 and y(x, f6+n-i) have exactly <5 + / i - l zeros in (a, c), 8^0, 
n = \,2,... 

If P = 0 in the third condition of the boundary value problem (13), then it is 
sufficient to put 

T6 + \ = T6+\, T6+2=T6+2, . . . , T6+n = T6+„, 

and so the corresponding solutions y(x, T6+n) satisfy the conditions (13) and have 
exactly 8 + n zeros in (a, c), 6^0, n = l,2, ... 

If P±0, then from the relations 
,. y'(c, T) .. y'(c, r) 
hm 7 , v = o ° , hm ^ / / = - oo 

r-.^-^t y(c, 7) T_Tff+n y ( c , r) 

it follows that for the number Q there are the numbers T6+n € (f«+„-i, rd+fl) such 
P 

t h a t /̂ \ a 
y'(c,T6+n) ^fr 

y(c, T6+H) (S ' 
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i.e. the third condition of (13) holds and at the same time the corresponding 
solutions of (A), y(x, T6+n) have exactly d + n zeros in (a, c), where 6 is 
a nonpositive integer and n is a positive one. Theorem 4 is proved completely. 

Lemma 4. Suppose the coefficients of (A) satisfy 2C(x, T) — B'(X, r ) ^ 0 and 
the sign = does not hold in any interval, and B(x, r ) ^ 0 . Let equation (A) be 
oscillatory. Then the solution y(x, r) of (A), for which y'(a, r) = 0, ory"(a, r) = 0, 
is oscillatory. 

Proof. Let y(x, r) be a solution of (A) such that y'(a, r) = 0. Suppose on the 
contrary that y(x, r) is not oscillatory. Because of Theorem 15 in [2], y(x, r) is 
without zeros and it is positive and nonincreasing. Let y(a, r) = d>0, 
y'(a, r) = 0, y"(a, r) = b^0. The solution yx(x, r) of (A) such that yx(a, T) = 0, 
y[(a,r)=\, y'[(a, r) = 0 is oscillatory since it has a zero. Then there exists 
a number y > a and a number c > 0 such that y(x, r ) - cyx(x, r) has a double zero 
at Y an(- a single zero at a, which contradicts the identity (3). 

Similarry we prove that y(x, r) with the property y"(a, r) = 0 is oscillatory in 
(0, oc). 

Because of Theorem 4.11 in [5], there are between two consecutive zeros of any 
solution of (A) at most two zeros of any other solution. From that fact and 
Lemma 4 we obtain. 

Theorem 5. Suppose the assumption (i) or (iii) of Theorem 4 hold. Let 
B(x, r)^OinD.Lety(x, T) be a solution of (A) such thaty(i)(a, r) = 0,/ = 0,1,2. 
Then the conclusion of Theorem 2 holds. 

Theorem 6. Suppose the assumptions (i) or (iii) of Theorem 4 hold. Let 
B(x, r ) ^ 0 and C(x, r ) ^ 0 . Then there exist a nonpositive integer <5 and 
a sequence {r6+n} of values of r tending to Tfor which the boundary value problem 

y(i\a,T) = 0, i = 0,1,2, 

(15) axy(b,T)-ay'(b,T) = 0, |a,| + | a | > 0 , 

(5xy(c,T)-Py'(c,T) = 0, |ft| + |0 |>O 

has a unique solution up to a multiplicative constant The corresponding solution 
y(x, T6+n) has exactly d + n zeros in the interval (a, c). 

Proof. For / = 0 the conclusion of this theorem follows from Theorem 4. If / = 1, 
then every solution of (A) which satisfies the first condition of (15) can be 
expressed in the form y(x, r) = Coy0(x, r) + c2y2(x, r). Applying Theorem 7 in [1] 
it follows that w(b, r) = y0(b, r)-yi(b9 T)-y0'(b, T)y2(b, r)=¥0, if B(x, r ) ^ 0 . 
Thus y(x, T) satisfying the first and second condition of (15) is unique up to 
a multiplicative constant. 

If / = 2, then every solution of (A) which satisfies the first condition of (15) 
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can be expressed in the form y(x, r) = ci)y)(x, r) + cxyx(x, r). Since 
w(b, r) = y0(b, T)yl(b, r)-y(>'(*, r)yx(b, T)40 if B(x, r ) ^ 0 and C(x, r ) ^ 0 , 
then y(x, r) satisfying the first and the second condition of (15) is unique up to 
a multiplicative constant. 

The next step of the proof to satisfy the third condition of (15) is the same as in 
Theorem 4. 

5. Disconjugacy and existence of the number 
d = 0, resp. S = 1 in {t»+H} 

In this last section we show that under the additional assumptions for the 
coefficients of (A) we can choose 6 = 0, resp. 6 = 1 in Theorem 4, and so give 
a theorem which is an analogy to the Sturm oscillatory theorem for differential 
equations of the second order ([3], p. 168). 

For a linear equation with constant coefficients there holds. 

Lemma 5. A third order differential equation with constant coefficients is 
nonoscillatory in (0, oo) if and only if it is disconjugate, i.e. if its every solution has 
at most two single zeros, or one double zero in (0, oo). 

Simillary, there holds that the Euler equation 

8 

n ^~p 

z"'+£-2z'+----z = 0 
X X 

is nonoscillatory in (0, oo) // and only if it is disconjugate in (0, oo). 

Theorem 7. Suppose the coefficients of (A) satisfy 

1. B(x, T)^p, 0^2C(x,T)-B'(x,r)^q, 

4 3 

where p^O, q^—— ( — /?)* are constants, or 

2. B(x, r ) ^ 4 , 0^2C(X,T)-B'(X,T)^A;, 

4 3 

where p^l, e^—j= (1 —p)* are constants. 

Then the equation (A) is disconjugate in (0, oo). 
Proof. Because of Theorem (ii), the equation (A) is nonoscillatory. From the 

relations between p and q, resp. p and e, it follows that the equation (4), resp. the 
Euler equation is nonoscillatory and, by Lemma 5, disconjugate. Let a be an 
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arbitrary positive number. Let y(x, r) be a solution of (A) for which 
y(a, r) = y'(a, r) = 0, y"(a, r)=£0. This solution has no zero in (0, oo). Indeed, if 
y(b, T) = 0, b > a, then because of Theorem (i), every solution of (4), or the Euler 
equation with a single zero at a has a zero in (a, b]. This is a contradiction to the 
fact that there is a solution of (4), resp. of the Euler equation, which has a zero at a 
and has no zero in (a, oo). 

By the identity (3) it follows that every solution of (A) with a single zero at a has 
at most one zero in (0, oo). Since a is an arbitrary point of (0, oo), every solution of 
(A) has at most one double zero, or two single zeros in (0, oo). 

Theorem 8. Suppose the coefficients of (A) satisfy the condition 
2C(x, T) — B'(X, r)_=s0 and at the same time the sign = does not hold in any 
interval. Furthemore let 
a) there exist numbers Kx, K2 such that 

KX^B(X,T)^K2<0 forall (x,r)eD, 

lim [2C(x, T) - B'(x, r)] = oo uniformly in x e (0, oo), 
x—*T 

lim [2C(x, T)-B'(X, r)] = 0 uniformly in xe(0, oo), 
T—»/ 

or 

b) there exists a number p<0 such that 

B(x, r ) ^ 4 for all (x, r)e(a, oo) x (/, T), a>0, 

lim [2C(x, T) -B'(X, T)] = oo uniformly in x e (0, oo), 
T - » T 

lim [2C(x, T) - B'(x, T)]X3 = 0 uniformly in x e (0, oo), 
T—»/ 

or 

c) the assumptions (iii) of Theorem 4 hold, 

B(X,T)^K2<0 for all (x,r)eD, 

lim [2C(x, T) - B'(x, r)] = 0 uniformly in x e (0, oo). 
T—»/ 

Then the conclusions of Theorem 4 hold, where 6 = 0 iff! = 0, and 6 = 1 if/5^ 0. 
Proof. Since the assumptions of Theorem 4 are included in this theorem, the 

conclusion of Theorem 4 holds. Now we are to show that 6 = 0 if /3 = 0, and 6 = 1 it 
P^0 in (13). First of all we consider that the conditions a) and b) to be fulfilled. 
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Since 

lim [2C(JC, T) — B'(X, r)] = 0 uniformly in Jte(0, oo). 
T—•/ 

4 
then for e = — T = ( — K)2>0 there is r„ such that 

3V3 

0 ^ 2 C ( J C , T())-B'(X, T())<^(-K2)K 

where K2 is a number for which B(x, T)^K2. Because of Theorem 7, the equation 
(A) is disconjugate for r = r„. Since y(x, r„) is the solution of (A) having a zero at 
a, then this solution has at most one zero in (a, c). Because the zeros of y(x, r) are 
a continuous function of r, then 

lim [2C(JC, r) - B'(x, r)] = oo uniformly in x e (0, oo) 
T—»T 

implies that there is f such that y(x, f) has exactly one zero in (a, c). 
Now let the conditions b) hold. From the condition 

lim [2C(x, T) - B'(x, r)]jc3 = 0 uniformly in x e (a, oo) 
T—•/ 

it follows that for a number £ >0, satisfying 

there is a r„ such that 

0^[2C(x, T())-B'(X, T())]x"<s, 

i.e. 

0 ^ 2 C ( J C , T())-B'(X, r „ ) ^ - ; , where e^-^(l-p)'. 

Then, because of Theorem 7, the equation (A) is disconjugate for r=r„. The 
condition 

lim [2C(x, T) - B'(x, r)] = oo uniformly in x e (a, oo) 
T—*T 

implies that there is a number f such that the corresponding solution y(x, f) of (A) 
has the single zero at a and exactly one zero in (a, c). 

Hence we conclude that in each case; there is a number f such that y(x, f) has 
a zero at a and exactly one zero in (a, c). If we follow the proof of Theorem 4, we 
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obtain: If /? = 0, then there exists a sequence {r„}r=. of values r such that the 
corresponding solutions y(x, T„) of (A) have exactly n zeros in (a9 c). If /?=£ 0, then 
there exists a sequence {Tn}n=2 of values r such that the corresponding solutions 
y(x, Tn) of (A) have exactly n zeros in (a, c), n^2. 
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ТРЁХТОЧЕЧНАЯ ЗАДАЧА ДЛЯ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО 
УРАВНЕНИЯ ТРЕТЬЕГО ПОРЯДКА 

ЙосефРовдер 

Резюме 

При помощи теорем сравнения для дифференциального уравнения (1) доказаны теоремы 
о колебании для дифференциального уравнения (А). При помощи этих теорем доказано, что 
существует последовательность {т6+п} собственных значений, для которых краевая задача (13) 
имеет решение определенное с точностью до произвольного постоянного множителя. Решение 
у(х, т6+п) обращается в нуль на интервале (а, с) равно д + л раз. 

В последней части доказано, что при дальнейших предположениях о коэффициентах урав­
нения (А) существует <5 = 0 если /7 = 0, и 6 = 1 если (5Ф0. 
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