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THREE POINT VALUE PROBLEM FOR THIRD-ORDER
LINEAR DIFFERENTIAL EQUATION

JOZEF ROVDER

1. Introduction

In this paper we shall be concerned with the existence of the solution of the
three-point value problem for the differential equation

(A) y'""+B(x, 1)y '+ C(x, T)y =0,
where B(x, ), C(x, ) and B’(x, r)=% are continuous functions in the

interval D =(0, ) X (¢, T). The results of this paper generalize the results of the
papers [1] and [4]. ‘

A solution of (A) is said to be oscillatory in (0, o) iff it has an infinity of zeros in
each interval (a, «), a >0. The differential equation (A) is said to be oscillatory iff
it has at least one (nontrivial) oscillatory solution, and nonoscillatory if it has no
(nontrivial) oscillatory solution.

2. Preliminary results
We shall need the following two theorems which were proved in [2].
Theorem (i). Let us consider the differential equations
(1) y'""+B(x)y'+ C(x)y.=0,
. ) 2"+ b(x)z' +c(x)z=0,

where B'(x), C(x), b'(x), c(x) are bontinuous functions in (0, ). Suppose that
the coefficients of (1) and (2) satisfy the following assumptions ‘

B(x)=b(x),2C(x) — B'(x)=2c(x) = b'(x), 2C(x) - B'(x)=0.
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Let a, B be two cousecutive zeros of a solution z(x) of (2). Let a be a double zero
of z(x). Then the solution y(x) of (1) with a single zero at 8 has a zero in the
interval (a, ).

Theorem (ii). If the coefficients of (1) satisfy the conditions
2C(x)—B'(x)=0 and B(x)=p,

where p is a positive constant, or the conditions

‘ 4 N
2C(x)—B'(x)=g>——=|—-p|> and B(x)=p,
(x) (x)=q 3\/3! pl (x)=p

where p, q are constants, then the equation (1) is oscillatory.

If the coefficients of (1) satisfy the conditions

0<2C(x)—B'(x)< and B(x)sp=0,

\/—( p)

where p, q are constants, or the conditions

0<2C(x)- B'(x)< and B(x)<Z

\/— 3( _p)

where p<1 is a constant, then the equation (1) is nonoscillatory.

=

Definition 1. A solution of (1) is said to be of class D(k) in an interval [a, ») iff
the distance between any two consecutive zeros of y(x) in [a, ®) is less than the
number k.

Theorem 1. Let 2C(x)— B'(x)=0 in (0, ). Suppose that there exists an
oscillatory solution of (1) which is of class D(k) in an interval [a, ©), a>0. Then
there exists a number K such that every solution of (1) is of class D(K) in [a, «).

Proof. Let y(x) be a solution of (1) which is oscillatory and of class D(k) in
[a, ®). Let a be a zero of y(x). Suppose that a is a single zero of y(x). Let z(x) be
a solution of (1) with a double zero at the point a. Because of Theorem 1 in [2],
every solution of (1) with a zero is oscillatory, therefore z(x) is an oscillatory
solution of (1). Let a <x, <x,<ux, be consecutive zeros of y(x). Then the solution
z(x) must have a zero in (x,, x;]. Indeed, if z(x) is positive in (x,, x;], then it is
positive in [x;, x;]. Then there exist numbers ¢ and 7 € (x;, x;) (see Lemma 2 in [2])
such that the solution w(x) = z(x) — cy(x) of (1) has a double zero at 7 and a single
zero at a which contradicts the identity

3) : [ww”"—3w"?+3Bw’];= —3 [1[2C(x) — B'(x)]w’dx.

Thus z(x) has a zero in (x;, x;]. Since.x,, x,, x;-are three arbitrary consecutive zeros
of y(x), the solution z(x) is of class D(3k) in [a, ®).
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Now let u(x) be a solution of (1) with a single zero at a. It follows from Theorem
(i) that the zeros of u(x) and z(x) interlace in (a, ) in the sense that if a, f are
two consecutive zeros of z(x), than u(x) has a zero in [a, [)’] From this fact it
follows that the solution u(x) of (1) is of class D(6k) in [a, ®).

At the beginning we assumed that y(x) had a single zero at a. If y(x) has
a double zero at a4, then by a method analogous to the one used before we find that
every solution of (1) with the zero at a is of class D(6k) in [a, ).

Now let v(x) be a solution of (1) with a zero at a point b, and let b be different
from the zeros of y(x). Then there ‘is a solution w(x) of (1) such that
w(a)=w(b)=0. Since w(x) and y(x) have one common zero a, then w(x) is of
class D(6k) in [a, »). However, v(x) has the common zero b with w(x), therefore
the solution v(x) of (1) is of class D(364) in [a, ). If we put 36k =K, then
Theorem 1 is proved completely, since every solution of (1) with a zero is
oscillatory.

Lemma 1. Let p, g =0 be numbers. Let the equation

4) z”’+pz’+gz=0

be oscillatory. Then every solution of (4) is of class D (l—<> in [a, »), where a is an

B

arbitrary positive number, K is a number indepedent of p and q, and
(5) B=(—q+d)+(q+d), where d=(q*+5p").

Proof. If the equation (4) is oscillatory, then the auxiliary equation associated
with (4) has the roots

where
u={-iq+[Gq’ +Gp)F),
v={-4q-[Gq)’+Gp)F}

and a = —(u+v), B’ =u—v.Since (:¢g)*+ (3p) >0, the numbers u, v, a, B’ are
_real ones. Denote d=(q°>+35p").
Then we can rewrite 8’ in the form

B’ ———[( q+d)+(q+ady].
Va
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If the number in the bracket is denoted by f, then for the roots x,; it yields

3

Vo

xu=ai—4— Bi.

Then one solution of (4) is y(x)=c,e* sin (\/TE Bx + Cz)- From the form of y(x) it
follows that for every positive number a there exists a solution of (4) of class

4 \ . . .
D (—”l) in [a, ©). Because of Theorem 1, every solution of (4) is of class

Ve’

D (36-%%)=D (’@ in [a, ®).

3. Oscillation theorems

Theorem 2. Assume that (A) satisfies the conditions:
(i) There exists a number p such that
B(x, t)=p for every (x, 1) e D and

lirrTl [2C(x, 1) — B’(x, T)]= uniformlyin xe€ (0, ©), or
(ii) 2C(x, t)—B'(x, 1)=0 for every (x,t)eD and

11_13 B(x, 1)= uniformlyin xe€ (0, »).
Let [a, b] = (0, ©) be an arbitrary interval. Let y(x) be a solution of (A) with the
property y(a, t)=0. Then with the increasing t— T also the number of zeros of
the solution y(x, t) in [a, b] increases to infinity and at the same time the distance
between every consecutive zeros of y(x, T) converges to zero.
Proof. (i). Let the conditions (i) be valid. Then for every g > 0 there is a number
T, such that 7> 7, implies

2C(x, t)—B'(x, 1)>q forall xe(0, ).

Let g be such that the differential equation (4) is oscillatory. Then the solution z(x)
of (4) with the properties z(a) = z'(a) =0, z"(a) # 0 is oscillatory by Theorem 1 in

[2]. From Lemma 1 it follows that z(x) is of class D <%‘) in [a, ©), where g is
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defined by (5). If 2C(x, ) — B'(x, t) diverges to infinity uniformly in x € (0, ),
then g — » and because of (5), f— ». So the the number of zeros of the solution
z(x) in [a, b] increases to infinity and at the same time the distance of every two
neighbouring zeros of z(x) converges to zero.

Let y(x, 7) be a solution of (A) with a single zero at the point a. Let a<x, be
" two consecutive zeros of the solution z(x) of (4). Since all (x, 1) €(0, ) X (%, T)
satisfy

B(x,t)=p, 2C(x, t1)—B'(x, 1)=q >0,

then, by Theorera (i), the solution y(x, 7) of (A) has a zero a, in the interval
(a, x,]. Then for the distance of the zeros a and a, of y(x,t) yields
la—a,lslx.—a|<—g.

‘Now let z,(x) be a solution of (4) such that z,(a,)=z/(a)=0, z/(a,)+#0. Let
a, < x, be two consecutive zeros of z,(x). Then again, by Theorem (i) we have that
the solution y(x, 7) of (A) has a zero a, in (a,, x,]. For the distance between a, and

K . . . .
a, there follows |a, — a,| <|a, — x,] <—,. By induction we obtain that the distance

B

. . K
between every two consecutive zeros of y(x, 7) is less than = .

B

Let us note that if a is a single zero of the solution y(x, ) of (A), then the
condition 2C(x, 7) — B'(x, t)=0 results in every zero of y(x, t) in (0, «) is being
a single one, and therefore Theorem (i) is applied to each zero of y(x, 7). If y(x, 7)
is a solution of (A) with the property y(a, t)=y'(a, t) =0, then from Lemma 1 it
follows that the distance between every two consecutive zeros of y(x, 7) is less than
% , K,=6K.

Consequently the distance between every two consecutive zeros of the solution

B

y(x, 7) of (A) with the property y(a, T)=0, a>0 is less then L] . From this fact
and from the condition )
lin; [2C(x, T)— B’(x, )] = uniformlyin (0, )

we have f— ® and so with the increasing — T also the number of zeros of the
solution y(x, 7) of (A) in [a, b] increases to infinity, and at the same time the
distance between every consecutive zeros of y(x, t) converges to zero.

(ii) Let 2C(x,7)—B'(x,7)=0 and 11_.11; B(x,7t)=

uniformly in (0, »). Then for every p>0 there is a number %, such that 7> 1,
implies B(x, T)>p for all x € (0, ). Then the equation
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(6) 2"+ pz'=0 .

is oscillatory and for p — = the distance between every two consecutive zeros of the
solution z(x) of (6) with the properties z(a)=2z'(a)=0, z"(a)# 0 converges to
zero. Then in a way analogous to that in part (i) we show that the solution y(x, 1)
of (A) such that y(a, ) =0 has the property that with the increasing t— T the
number of zeros of y(x, t) in [a, b] increases to infinity and at the same time the
distance of every two neighbouring zeros converges to zero.

Remark. The part (i) of Theorem 2 generalizes Gregus’s oscillatory theorem in
[1], in which the assumption |B(x, 7)|<K,, |B'(x, 1)|<K, in D, K,, K, are
constants, are required in addition. '

The part (ii) of Theorem 2 generalizes Sansone’s oscillatory theorem in [4], in
which the assumption B(x, t)<0 is required in addition.

Theorem 2 is included in the following more general theorem.

Theorem 3. Let for every te(t, T) the function B(x, t) be bounded below in
(0, ©). Let 2C(x, t)— B'(x, t)=0 in D. Denote

p(D=_inf B(x,7), q(r)=_inf [2C(x,7)=B'(x, 7],

(7) ()= q*(7) + 5 p*(7)
8) B(t)=[—q(r)+d()]' +[q(z) + d(?)}.
If

lim f(z) = =,
then the conclusion of Theorem 2 is valid.

Proof. From the assumption lin} B(t) = = it follows that there is 7, € (¢, T) such

that 7 e(z,, T) implies 8(7)>0. From this fact it follows that d(t)>0 in (z,, T)
because d(7)<O0 implies B(t)<0 by definition (8). Then from the condition
d(t)>0 in (7, T) it follows that the differential equation

9) z'”+p(r)z'+—q(zr)z=0
is oscillatory in (0, «) for every t € (7, T). Since limr B(t) =, then the distance

between every two consecutive zeros of z(x,7) of (9) with the properties
zZ{a, t)=27'(a, t)=0, z"(a, ) #0, converges to zero if 7— T.
From the definition of p(7) and q(7) it follows

B(x, 1)=p(7), 2C(x,t)—B'(x, 1)=q(7)=0.
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Then the assumption of Theorem (i) are fulfilled, therefore every solution of (A)
with the properties y(a, 7)=y’'(a, t)=0, y"(a, t) #0 has a zero in (a, x,], where
x, is another zero of z(x, 7). The proof continues in the same way as in Theorem 2.

The following lemma gives a class of functions which satisfy Theorem 3 and the
~ function B(x, 7) is unbounded below in D.

Lemma 2. Let-p(7), q(7) be continuous functions in (t, T) and satisfy the
conditions

(10) ) !i_[frl_p(f)= — @, (I(f)?()s d(T)=K|_P(T)|2Ha

where K is a positive constant and d(t) is defined by (7). Then there exists
t.€ (¢, T) such that for every te (%, T) the equation

(11) | ' r’+p(‘r)r+l-(;—'2=01

3

\/g . .
has the complex roots a(t) 1—4— B(7)i, where B(t) is defined by (8) and

lim B(r) =, if £>0,
lin;ﬂ(t) exists, if €<0.

Proof. From the assumption lin; p(t)= — « it follows that there is a number

%€ (¢, T) such that 7 € (%, T) implies p(7) <0 and so because of (10), the equation
(11) has complex roots for every 7 € (%, T). Now we calculate lim 8(7) for t— T.
In order to obtain a simple notation we put

a(m)=a(®), BEP@OF=b(), k=K@
" Then from the conditions (7) and (10) we obtaﬁ
b(1)— ;w, a(t)»>—wo, if 7> T and
(12) A ‘ a(t)= - b’ @)+ k|b(D)**, k>0.
In a simpe way we can rewrite 8(7) in the form

2[a’(n) + O’}
[-a(0)+(a*(2) + 6°(2))F - b(z) +[a(r) +(a*(z) + b’(f))’]’

B(r)=
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Substituting here a(t) because of (12), and multiplying the dividend and divisor by
[—b(7)]”' ™" * we obtain

L -
[B(7)] 2\/7([ b(7)]

1 e TR CY T (1 _ -1 _ A
=m{(-bm]- +2k[ = b(7)] V([ = b(D)] ' +k[—b(D)] 7)
1

(=@ VS (= b + 2k = b))+

+2VK([ = b(D)] " + k[ = b(2)] )= b(1)] )

Let £>9. Since lin} [—b(t)]==, then from the last equlity we obtain
lirr} [B(7)]'=0 and so lirr} B(tr) ==, because B(7)>0 in (7, 7). If £=0, then
lim B(1) =M€ .

—T 3
Now let £ <0. The sum of the expressions which are on the right-hand side of the

last equality is positive for all te(z,, T). Therefore linl B(t)=0, if £<0.

Corrolary 1. Let p(7) and q(t) be defined as in Theorem 3. Let lin} p(t)= — oo,

q(v)=§65] —.p(r)]3 + K[ —p(0))*°}'7?, where K, ¢ are positive numbers. Then the
conclusion of Theorem 2 is valid.

4. Boundary value problem

In this section we need the following lema proved in [1].

Lemma 3. Let y(x, ) be a solution of (A) with the property y(a, t)=0, a>0.
Then the zeros of y(x, t) lying to the right of a are a continuous function of the

parameter T.

Theorem 4. Let the coefficients (A) satisfy the assumptions:
(i) B(x, 1) is bounded below in D, and

lin; [2C(x, T)— B'(x, t)]= uniformlyin xe€ (0, ®), or

(ii) lin; B(x,t)=c uniformly in xe(0,»), and for all te(s, T),
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2C(x, )= B'(x, )=0 in (0; ©) where the sign of equality does not hold in any
subinterval of (0, »), or

(iii) lm} B(t)=o, and for all te(¢t, T), 2C(x, t)— B'(x, t)=0 in (0, =), where

the sign of equality does not hold in any subinterval of (0, x).
Assertion: (a) There exists a nonpositive integer 6 and a sequence of the

parameter T

.
Tovts To+2s coes Totrny ---

tending to T for which the boundary value problem
y(a, t)=0
(13) ay(b, t)—ay'(b,7r)=0, |a]|+]|a|=#0,
By(c, )= By'(c,1)=0 |B|+]|B|+0

of equation (A) has a solution determined up to a multiplicative constant.

(b) The corresponding solutions y(x, 7,.,) have exactly & +n zeros in the
interval (a, c).

Proof. We note that under the assumptions of this. theorem there exists
a parameter 7,€ (¢, T) such that 2C(x, t)— B'(x, t)=0 for all 7€ (7, T) and the
sign = does not hold in any subinterval of (0, ). From now on we shall consider
only 7 € (7, T). For those values of parameter 7 every solution of (A) with double
zero at a point a has no zeros in (0, a). Also, the assumptions of this theorem give
that oscillatory theorems 2 and 3 hold.

Let y.(x,7) be solutions of (A), which satisfy the initia]l conditions
y®(a, t)=06,4, i, k=0,1,2, &, is the Kronecker 8. Let y(x, 7) be a solution of
(A) which satisfies the condition y(a, ) =0. Then y(x, 7) [see [1], Teorem 2] can
be expressed in the form

y(x, ) =cy(x, 1)+ oy.(x, T),

‘where ¢, ¢, are arbitrary numbers. Choose the constants ¢, ¢, such that

a,y(b, t)—ay'(b, 1)=0, b>a,
which can be written as

ay(b, 1)+ 6y.(b, T)=ca

(14)
cyi(b, T)—cyl(b, T)=ca,, ¢#+0 arbitrary.

The determinant of the system (14) is w(d, T)=y(b, 1) y:(b, T)—
= yi(b, 7): y»(b, 7). The function w(x, ) is a solution of the adjoint equation to
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(A). From the properties of the adjoint equations it follows that w(x, ) has no
zero in (a, ®), since w(x, t) has the double zero at the point a. Then w(b, 7)#0
and so the system (14) has a unique solution. Thus the solution y(x, 7) is unique up
to a multiplicative constant, and we may assume ¢=1. If a=5, we put
y(x, 7)=yi(x, 7).

For t = 1, the solution y(x, 1,) of (A) has exactly é zeros in (a, ¢), c>a and 9 is
a nonpositive integer (8 =0, if y(x, t) has no zeros in (a, c¢)). For (6 + 1)st zero of
y(x, 1,) there follows

€ <Xsri(W).

From the oscillatory Theorems 2 and 3 it follows that there is 7> 1, such that
Xs.i(f)<c and there is no 7> 7 such that x,.,(t)=c.

Because of Lemma 3, x,.,(7) is a continuous function of 7, so there is the largest
parameter 7, € (7, 7) for which y(c, 7;)=0 and y(x, %,) has exactly  zeros in
(a, c). For the parameter 7 =17, it follows

xon(fo) = C<x5+2(i'o)-

From the Theorems 2 and 3 it follows that there is 7*> 7, such that x,..(7*)<c
and there is no T> t* such that x,,,(7)=c.

Since x,.,(7) is a continuous function of 7, then there is the greatest parameter
%1 € (%5, T*) for which y(c, %5.,)=0 and y(x, 7.,) has exactly 6 +1 zeros in
(a, ¢). For the parameter t =75, it follows

x6+2(i6+l) = C<x6+2(i6+l) .
By induction we obtain that there exists a sequence of values of the parameter ¢

Tm 1"6+ly t6+23 ceey Té*n—l’ s

such that the corresponding solutions y(x, 7s..-,) of (A) satisfy the condition
y(c, Tsent)=0 and y(x, T5..—) have exactly § +n—1 zeros in (a,c), 6=0,
n=1,2,... ’

If B=0 in the third condition of the boundary value problem (13), then it is
sufficient to put

Tor1i = To+1s To+2=Ts42y o5 Toen = Ts+ns

and so the corresponding solutions y(x, ,.,) satisfy the conditions (13) and have
exactly é +n zeros in (a,c), 6=0,n=1,2, ... '
If 8+#0, then from the relations

y'(C, t)=°° li y'(c, r)=—oo

lim >
cwete,_, Y(C, T) s, Y(C, T)
it follows that for the number %’ there are the numbers 7s+n € (T54n—1, T6+.) Such

that
Y(C Tun) _ B

y(c, rd+n) ﬂ ’
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i.e. the third condition of (13) holds and at the same time the corresponding
solutions of (A), y(x, t»..) have exactly 6 +n zeros in (a,c), where & is
a nonpositive integer and 7 is a positive one. Theorem 4 is proved completely.

Lemma 4. Suppose the coefficients of (A) satisfy 2C(x, t)— B'(x, t)<0 and
the sign =does not hold in any interval, and B(x, t)<0. Let equation (A) be
oscillatory. Then the solution y(x, ) of (A), for which y'(a, ) =0, or y"(a, 7)=0,
is oscillatory.

Proof. Let y(x, t) be a solution of (A) such that y’(a, 7) =0. Suppose on the
contrary that y(x, ) is not oscillatory. Because of Theorem 15 in [2], y(x, ) is
without zeros and it is positive and nonincreasing. Let y(a, 7)=d>0,
y'(a, t)=0, y"(a, T)=b=<0. The solution y,(x, ) of (A) such that y,(a, 7)=0,
yi(a, t)=1, y'(a, T)=0 is oscillatory since it has a zero. Then there exists
a number y>a and a number ¢ >0 such that y(x, ) — cy,(x, 7) has a double zero
at y and a single zero at a, which contradicts the identity (3).

Similarry we prove that y(x, 7) with the property y"(a, t)=0 is oscillatory in
(0, »).

Because of Theorem 4.11 in [5], there are between two consecutive zeros of any
solution of (A) at most two zeros of any other solution. From that fact and
Lemma-4 we obtain. ’

Theorem 5. Suppose the assumption (i) or (iii) of Theorem 4 hold. Let
B(x, t)<0inD. Let y(x, t) be a solution of (A) such that y*’(a, t)=0,i=0,1, 2.
Then the conclusion of Theorem 2 holds.

Theorem 6. Suppose the assumptions (i) or (iii) of Theorem 4 hold. Let
B(x,7)<0 and C(x,t)=0. Then there exist a nonpositive integer ¢ and
a sequence {Ts..} of values of t tending to T for which the boundary value problem

y“a, t)=0, i=0,1,2,
(15) ay(b, t)—ay'(b,7)=0, |a|+]|a|>0,
ﬂl})(c’ T)_ﬂy.’(c’ T)=0, Iﬁl|+lﬂl>0

has a unique solution up to a multiplicative constant. The corresponding solution
y(x, Ts.,) has exactly 6 + n zeros in the interval (a, c).

Proof. For i/ =0 the conclusion of this theorem follows from Theorem 4. If i =1,
then every solution of (A) which satisfies the first condition of (15) can be
expressed in the form y(x, 7) = cyo(x, 7) + ¢;y.(x, 7). Applying Theorem 7 in [1]
it follows that w(b, t)=yo(b, 1) y:(b, T) — yi(b, 7)- y2(b, T) #0, if B(x, 7)<0.
Thus y(x, 7) satisfying the first and second condition of (15) is unique up to
a multiplicative constant. '

If i=2, then every solution of (A) which satisfies the first condition of (15)
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can be expressed in the form y(x, T)=cyo(x, T)+cy(x, 7). Since
w(b, ©)=yo(b, 1) yi(b, T) — yi(b, T)- y:(b, T) #0 if B(x, 7)<0 and C(x, 7)=0,
then y(x, t) satisfying the first and the second condition of (15) is umque up to
a multiplicative constant.

The next step of the proof to satisfy the tmrd condition of (15) is the same as in
Theorem 4.

5. Disconjugacy and existence of the number
=0, resp. 0=1in{1..}

In this last section we show that under the additional assumptions for the
coefficients of (A) we can choose d =0, resp. § =1 in Theorem 4, and so give
a theorem which is an analogy to the Sturm oscillatory theorem for differential
equations of the second order ([3], p. 168).

For a linear equation with constant coefficients there holds.

Lemma 5. A third order differential equation with constant coefficients is
nonoscillatory in (0, «) if and only if it is disconjugate, i.e. if its every solution has
at most two single zeros, or one double zero in (0, ).

Simillary, there holds that the Euler equation

£
5P

b4 z=0

III+£
X

is nonoscillatory in (0, ) if and only if it is disconjugate in (0, ).

Theorem 7. Suppose the coefficients of (A) satisfy
1. B(x,t)<p, 0<2C(x,7)—B'(x,7)<g,

where p <0, q< \/—( p)% are constants, or
2. B(x, r)s%, 0<2C(x, 7)- B'(x, 1)<5

where p<1, es— \/_ (1—-p): are constants.

Then the equation (A) is disconjugate in (0, «).

Proof. Because of Theorem (ii), the equation (A) is nonoscillatory. From the
relations between p and ¢, résp. p and &, it follows that the equation (4), resp. the
Euler equation is nonoscillatory and, by Lemma 5, disconjugate. Let a be an
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arbitrary positive number. Let y(x,7) be a solution of (A) for which
y(a, t)=y'(a, 7)=0, y"(a, v) #0. This solution has no zero in (0, »). Indeed, if
y(b, t)=0, b >a, then because of Theorem (i), every solution of (4), or the Euler
equation with a single zero at a has a zero in (a, b]. This is a contradiction to the
fact that there is a solution of (4), resp. of the Euler equation, which has a zero at a
and has no zero in (a, ). :

By the identity (3) it follows that every solution of (A) with a single zero at a has
at most one zero in (0, «). Since a is an arbitrary point of (0, ), every solution of
(A) has at most one double zero, or two single zeros in (0, «).

Theorem 8. Suppose the coefficients of (A) satisfy the condition
2C(x, r)—B'(x, 7)=0 and at the same time the sign=does not hold in any
interval. Furthemore let
a) there exist numbers K,, K, such that

K, <B(x,1)<K,<0 forall (x,t)eD,
lin} [2C(x, T)— B'(x, T)]=% uniformlyin xe€ (0, ),
lim [2C(x, 7)— B'(x, t)]=0 uniformlyin xe (0, »),

or

b) there exists a number p <0 such that

B(x, Z')S% forall  (x,t)e(a,©)x(t, T), a>0,
lin} [2C(x, )= B'(x, T)]= uniformlyin x¢€ (0, ©),

lim [2C(x, t©)— B’(x, ©)]x*=0 uniformlyin x e (0, ),
or
c) the assumptions (iii) of Theorem 4 hold,
B(x, 1)<K,<0 forall (x,t)eD,
lim [2C(x, T)— B’(x, t)]=0 uniformlyin x € (0, ).
Then the conclusions of Theorem 4 hold, where § =0 if=0,and 6 =1 if +0.
Proof. Since the assumptions of Theorem 4 are included in this theorem, the

conclusion of Theorem 4 holds. Now we are to show that 5 =0if =0, and 6 =1 if
B#0 in (13). First of all we consider that the conditions a) and b) to be fulfilled.

109



Since

lim [2C(x, t)— B'(x, )]=0 uniformly in xe (0, ©).

then for €= ) >0 there is 7, such that

\/_( K

0<2C(x, 1,)— B'(x, ro)<3\/—( K.)’,

where K is a number for which B(x, 7)< K. Because of Theorem 7, the equation
(A) is disconjugate for 7 = 1,. Since y(x, 1,) is the solution of (A) having a zero at
a, then this solution has at most one zero in (a, c¢). Because the zeros of y(x, ) are
a continuous function of 7, then

lim [2C(x, 1)~ B'(x, 7)] = uniformlyin x €(0, @)

implies that there is 7 such that y(x, 7) has exactly one zero in (a, c).
Now let the conditions b) hold. From the condition

lim [2C(x, 1) - B'(x, )]x’=0 uniformlyin x e (a, ©)
it follows that for a number £>0, satisfying
4 3
es——=(1-p),
Vs (1-p)

there is a 7, such that

OS[ZC(x,.t(,) -B'(x, n)|x*<e,

i.e.

£ 4
0<2C(x, ©)=-B'(x, T,))<—, where e<——=(1-p)-.
(x, %) (x, %) e 3\/5( p)

Then, because of Theorem 7, the equation (A) is disconjugate for 7=1, The
condition

lin} [2C(x, T)— B'(x, T)]= uniformlyin x € (a, )

implies that there is a number 7 such that the corresponding solution y(x, 7) of (A)
has the single zero at a and exactly one zero in (a, c).

Hence we conclude that in each case there is a number 7 such that y(x, 7) has
a zero at a and exactly one zero in (a, ¢). If we follow the proof of Theorem 4, we
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obtain: If =0, then there exists a sequence {7,}.-: of values 7 such that the
corresponding solutions y(x, z,) of (A) have exactly n zeros in (a, c). If B#0, then
there exists a sequence {7, }.-, of values 7 such that the corresponding solutions
y(x, 7,) of (A) have exactly n zeros in (a, c), n=2.
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TPEXTOYEYHAS 3ANAYA VI TIMHEVHOIO OTH®PEPEHIIMAIIBHOIO
YPABHEHHS TPETBEI'O ITOPSAIKA

Hloced PoBnep
Pe3omMe

IMpu nomoum TeopeM cpasHeHus 1ns auddepeHunanbHoro ypasHeHus (1) moxkasaHbl TeopeMbl
o kone6auuu 1 guddepeHunansHoro ypasHeuns (A). IIpu moMou 3THX TEOpPeM A0Ka3aHO, YTO
CYLECTBYET MOCNAEAOBATENBHOCTb {T5.,} COOCTBEHHBIX 3HAYEHMIA, ANl KOTOPLIX KpaeBas 3ajaya (13)
HMECT PCLUCHHE ONMPEACTICHHOEC C TOYHOCTBIO 10 NMPOHU3BOJIBHOIO NOCTOAHHOIO MHOXHTCAA. Peumieune
y(x, 7,.,) oOpauiaeTca B Hylb Ha WHTepBaie (a, ¢) paBHO 6 +n pas3.

B nocnemHei 4acTH KOKa3aHO, YTO NMPH JANbHEHLIMX NPEANONOXKEHHAX O KO3 duumeHTax ypas-
Henus (A) cymectByer d =0 ecu =0, u 6 =1 ecnu §#0.
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