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Math. Slovaca, 27,1977, No. 2,113—128 

DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS 
INTO FACTORS WITH GIVEN DIAMETERS 

ELlSKA TOMOVA 

Introduction 

The authors of paner [1] study the problem of the existence of decomposi t ions of 
the complete graph Kn into factors with given d iameters . In the present paper we 
study similar problem for the complete ^ -par t i t e graphs. Most of the results are 
concerned with the case q = 2 of bipart i te graphs . 

All graphs in the present paper are undirected, without loops and multiple edges. 
Let an integer q ^ 2 be given. A graph G with the vertex set V is called ^ -par t i t e if 
V can be part i t ioned into q mutually disjoint, nonempty subsets V,, V2, ..., Vq, 
which are called parts of G such that every edge of G joins vertices of two different 
par ts of G. If G contains every edge joining vertices of two different parts of G , 
then G is said to be a complete ^ -pa r t i t e graph and we write G = Kmim2 m</, 
where the cardinality |u, | = m, for / = 1 , 2, ..., q (2-par t i te graphs are called 
bipartite). 

By a factor of a graph G we mean a subgraph of G containing all the vertices of 
G. By a decomposition of a graph G into factors we mean a system 5̂  of factors of 
G such that every edge of G is contained in exactly one factor of Zf. The diameter 
d(G) of a graph G is the supremum of the set of all distances gG(x, y) between two 
vertices x and y of G. The diameter of G can be also equal to o°, i f G is 
disconnected or if there does not exist the maximum of the distances, which may 
occur in infinite graphs. The other terms are used in the usual sense [2, 3]. 

Let natural numbers ql^2, p and non-zero cardinal numbers m„ m2, ..., mq be 
given. Our aim is to determine the conditions for the existence of a decomposition 
of the graph Kmx%m. mq into p factors with the given diameters du d2,..., dp, where 
each di (i = 1, 2, ..., p) is a natural number or the symbol o°. 

1. The general case 

Let q\^2 and p be natural numbers, m, (/ = 1, 2, ..., q — 1) — cardinal numbers 
^ 1, dj (j = 1, 2, ..., p) — natural numbers or symbols °°. Denote by Bmt,m2 mtt_x 
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(du d2,..., dp) the smallest cardinal number mq such that the graph Kmx.m2, m<jcan 
be decomposed into p factors with the diameters du d2, ..., dp. If such a number 
does not exists, we shall write Bmx.m_ m<t_x (du d2, ..., dp)=°°. 

The importance of the function Bmxm2 mq_x is evident from the next theorem. 

Theorem 1. If the graph Kmtt m_ mq is decomposable into p factors with the given 
diameters du d2,..., dp (where d^2 fori = \, 2, ...,p), then the graph KMx.M2 Mq 

(where M, ^ mu M2 ̂  m2,..., Mq^ mq) is also decomposable into p factors with the 
diameters du d2, ..., dp. 

Proof. Let Kmx.m_ mqbe a complete q -partite subgraph of KMx.M_ Mq. Denote 
by V„ V2, ..., Vq the parts of Km„m2 mtt and by Wu W2, ..., Wq the parts of 
KMl,M2 Mq where V__WU V2__W2, ..., Vq cz Wq. Put A,•= W>- V for / = 1,2, 
..., q. Choose in each Vf an arbitrary vertex, denote it by vt. Decompose in some 
way the graph Km„m2 mq into p factors FUF2,..., Fp with the diameters du d2, ..., 
dp it can be done by the assumption. Decompose the graph KMx,M_ Mq into p 
factors Gu G2, ..., Gp withthe same diameters as follows: The factors G(

k
q)= Gk 

(where k= 1, 2, ..., p) are constructed from the factors Fk = G(
k
} successively in 

such a way that in the first step we add to the set V,u V2u ... u Vq all the vertices of 
A} and obtain factors G\X), G(

2
X), ..., G(

p
 }of KMx,m2 mq, then in the second step we 

add all vertices from A2 and obtain factors G\2), G(
2

2),..., G(2)of KMx,M2,my mq, and 
so on. Finally we add all the vertices from Aq and construct factors G\q), G(

2
), ..., 

Gp Of KM,.M2 M,-

Form the factors G(
k
n (where k = \, 2, ..., p, j=\, 2, ..., q) of the graph 

KMuM2 M.ffl.+1 mq in the following way: 

(a) Gk
n contains all the edges contained in Gk~

X), 
(b) if ue V, j<i^q, veAf, then the edge uv belongs to Gk

} if and only if wi;y 

belongs to G(l~x), 
(c) if ueWi, 1 ^ i < / , veAj, then the edge uv belongs to G™ if and only if uvj 

belongs to GTX). 
It is easy to see that the factors Gf, G2

y), ..., Gjf} form a decomposition of 
- ^ M „ M2 M,m mi+l mq • 

The proof of the equality d(GT) = d(G(
k
J~") is the same as in Theorem 1 of [1]. 

Hence d(Gk) = d(Fk) for k = \, 2, ..., p, and this complete the proof of the 
theorem. 

Corollary. The graph Kmx,m_.._mq can be decomposed into p factors with the 
diameters du dz, ..., dp (where d,^2, / = 1, 2, ..., p) if and only if 

mq^Bmum_ mq_}(du d_, ..., dp). 

Theorem 2. Let d, <7, mu m_, ..., mq be natural numbers, where d^2, q^2, 
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mx^m2^...^mq. In the graph K „,.. „,, mtt there exists a factor with the diameter 
d if and only if 

. a^min {2(mx + m2 + ... + ///„_,), mx + m2 + ... + mq - 1}. (1) 

Proof. If mx = m2 = ... = mq = 1, then the statement is obvious. Therefore we 
assume that mq>\. Denote by G the graph K„,..„l2 m<i and its parts by V,, V2, ..., 
K/- where | Vt\ = m, for / = 1, 2, ..., q. Let us consider two cases: 

I. mq >mx + m2 + ... + m„_,, 
II. mq^mx + m2 + ... + mq-x. 

I. In the first case the inequality (1) has the form 

d^2(mx + m2 + ... + mq-x). (2) 

We shall assume that the graph G has a factor F with the diameter d. Every arc 
(simple path) in Fcontains at most mx + m2+ ... + mq-x vertices not belonging to 
Vq; this arc has at most mx + m2 + ... + mq-x + 1 vertices from Vq because in this arc 
no two vertices from Vq are adjacent. Hence every arc in F has at most 
2(m, + m2 + ... + mq-x)+ 1 vertices, i.e. 2(mx + m2 + ... + mq-x) edges. This implies 
(2). 

On the other hand, let (2) be true. If d = 2, a requested factor is the whole graph 
G. Let rf^3.InGwe construct an arc v{)vxv2...vd of length d such that the vertices 
Vi with an even index i belong to Vq and those with an odd index / belong to the 
remaining parts of G. All the other vertices from Vq are joined by an edge with vx 

and each of the remaining vertices is joined by an edge with v2. These edges with 
the edges of the arc v0vxv2...vd from a factor of G with the diameter d. 

II. The inequality (1) in the second case has the form 

d^mx + m2 + ... + mq-x (3) 

Clearly, condition (3) is necessary for every factor with the diameter d in G. For 
the converse we assume that (3) holds. We shall construct a factor F of G with 
diameter d. Assume that d^3 (if d = 2, we put F= G). Choose in Vq an arbitrary 
vertex v. Then for every vertex u of G we have: 

, . mx + m-> +... + mu p 
degGu^degoV = mx + m2 + ... + mq-xz?- ~— \% 

were p is the number of vertices of G. The graph G has a hamiltonian circuit 
v{)vx...vp-xv0, which follows from [4] (see also [2], corollary 7.3. (b)). Let F be 
defined as follows: Fcontains all the edges of the arc v0vx...vdJ the other vertices 
are joined by an edge with the vertex v, if they do not belong to the same part as i/,, 
otherwise they are joined with v2. It is clear that F has the diameter d. 
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2. Factors of Kmm with given diameters and with 
a given number of edges 

From Theorem 2 we easily obtain: 
Corollary. Let d be a natural number, m, n — cardinal numbers, where d^2, 

l^m^n. A factor ofKm%n with the diameter d exists if and only ifm^- , except 

d 
m = n=-. 

Proof. If n (and also m) is finite it is sufficient to apply Theorem 2. For n (ox m) 
infinite we use the same method as in the proof of Theorem 2. 

Lemma 1. Let m, n be cardinal numbers, l^m^n. The maximal possible 
degree of a vertex in a factor with a finite diameter d^2 in a graph __-.,- (if such 
a factor exists) is: 

(I) n -—Y2 if d is Odd, n finite; 

(II) n —- + 2 if d>2 is even, m = n, n finite; 

(III) n — - + 1 if d>2 is even, m<n, n finite; 

(IV) n if d = 2 or if n is infinite. 

Proof. Put * = [ ^ y ? l . 

(I) If d is odd, then obviously the maximal possible degree of a vertex is 

(n — e — 2) = n -—f-2 (see «,_, in Fig. 1). The degree of all other vertices is 

less than or equal to this number (equal only if m = n). If there exists a vertex with 
the degree greater than this number, it is clear that the factor cannot have the 
diameter d. 

(II) In this case the maximal possible valency is n — - + 2 (see ve.x in Fig. 2). The 

proof is the same as in the case I. 

(III) The maximal possible degree is n — - + 1 (see um in Fig. 2). The proof is the 

same as in the case (I). 
. (IV) The first part is evident. The second part can be proved by a simple 

extension of construction from Fig. 1 and 2 for the case of an infinite n. 

Theorem 3. Let d be natural number, m, n and E be cardinal numbers, where 

l^m^n, m^- , but there does not hold m = n =- . The factor of Kmt„ with the 
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diameter d and with the number E of edges exists if and only if one of the following 
cases occurs: 

I. .E = m = /i = * / = l . 
E = mn, </ = 2, n is finite. 

d-3( ^ d+V\ 
II. 

III. m + / i - l ^ - E ^ m / i - l - - \m + n — 
' ) • 

IV. 

d^3, d is odd, n is finite. 
.v • rf-4/ , rf + 2 

m + / i - l ^ - E ^ m ( / i - l ) — (m + / i - )• 2 V 2 
d^4, rf is even, n is finite. 

V. E = /i, </^2, n /5 finite. 
Proof. We shall denote the parts of the graph .£-,.„ by U and V, where | U\ == m, 

| V| = n. Let one of the cases I—V occur. From the corollary of Theorem 2 it 
follows that the graph Km,n has a factor F with the diameter d. Let us prove that it 
is possible to construct the factor F such that it has E edges. It is evidnet that in the 
cases I, II and V the factor F cannot have another number of edges. In the cases III 
and IV we shall prove that it is possible to obtain the upper bound. 

If d ̂  3, d is odd and n is finite, then construct the factor F in the following way: 
in Km,H we choose an arbitrary arc v0vx...vd of length d such that t/„ t%,..., vd e U 
and v0, t/2,...- U.-1 € V. Other vertices from U are joined with v0, Vj and with other 

117 



vertices of V which are joined with i>, and vy. It is easy to show that the factor F has 
exactly 

d-3 ( d+\ . d-3/ , d+l\ 
mn - 1 — lm + n —I 

edges. The factor with an arbitrary number E of edges from case III can be 
constructed by deleting a suitable number of edges joining the vertices of U — { vx, 
v5, v7,...,vd) with the vertices of V— {v2, v4, ..., vd-x}. 

The proof of case IV is analogous. 
Let us prove now that if the graph Km n(m^n) has a factor with E edges and 

with a finite diameter d, then one of the cases I—V occurs. If n = 1, then evidently 
I occurs. If n is infinite, then the case V occurs. We can suppose that n is finite. If 
d = 2, then II holds. Evidently, we may assume that d^ 3. The factor F has at least 
m + n — \ edges. We shall prove that the total number of edges of F is less than or 
equal to the upper bound in III or IV, respectively. Let P= v()vlv2...vd be an arc of 
length d such that in F there does not exist a shorter arc connecting the vertices y„, 
vd. Each of the remaining vertices of Fcan be joined with at most two vertices from 
P and with all the vertices from the other part. 

If v{), v2, ... e V, vu V), ... e U and all the edges of the given form exist, then we 
get the upper bound from III or IV. If v(t, v2, v4, ... e U, vx, vy, ijs, ... e V and d is 
odd, we have the same result as before (the upper bound in III), if d is even, we 
have the same result as in the case IV. This complete the proof of the theorem. 

3. Decomposition of Kmn into p factors 

In the following we shall consider bipartite graphs Kmn only. For the complete 
solution of our problem it is sufficient to determine the value of Bm(dx, d2, ..., dp) 
for every (I? + l)-tuple (m, dx, d2, ..., dp). 

Lemma 2. Let the natural numbers p, m, n be given. If the graph Km.n is 
decomposable into p factors with finite diameters, then 

P*[m + „-l\: 
Proof. The graph Km... has mn edges. It is clear that the number of edges of 

a factor with a finite diameter is at least m + n — 1. Therefore 

p(m + n — \)^mn 

and the required inequality easily follows. 

Theorem 4. Let p^3 and d2 = rf, = ... = dp = » . Then 
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Bm(d„d2,...,dp) = • 

r.Wi + n •* ^ , 
r^2~\ lf 2^dí<2m; 
m + \ if dx = 2m; 
00 if 2m<d.<oo; 
1 if dx = 00, / w ^ 2 ; 

L 2 if dx = oo, m = 1 . 

Proof. The last three relations are evident. To prove the first and the second 
relation it is sufficient to construct a decomposition of the corresponding complete 
bipartite graphs into three factors with the diameters du °°- °°. We construct an 
arbitrary factor F, with the diameter rf, (this is possible according to the Corollary 
of Theorem 2). The factor F2 contains all the edges which are incident with one 
fixed vertex and do not belong to F,. The" factor F, contains all the other of the 
complete bipartite graph. It is clear that the diameter of F2 and F, is o°. The same is 
true about the factors FA9 F5, ..., Fp containing no edges. 

4. Decomposition of Kmm into two factors 

In the next five lemmas we shall assume that the cardinal numbers m ̂  1, n ̂  1 
are given. 

Lemma 3. If the graph Km,H is decomposed into two factors with the diameters dx 

and d2y where dx = 69 then </-^6. 
Proof. Let F, be the factor with the diameter dx and F2 be the factor with the 

diameter d2. Let QFl(
u> v) = 6. The vertex set of F, can be decomposed into subsets 

At = {w: Q(U9 w) = i) for i = 0, 1, 2, ..., 6. (Fig. 3). In F, there are edges joining 
vertices of the consecutive subsets Ai9 A,+1. Otherwise there would exist a shorter 
path joining u and v. We shall show that the diameter d2 of F2 is less than or equal 
to 6. The distance of vertices in A, (/ = 1, 2,. . . , 6) in F2 is equal to 2. The distances 
of vertices between the subsets A and A,, /-£/, /, / = 0, 1, ..., 6 are equal to 1, 2, 
3 or 5, except A2 and A*. The distance between vertices of these two subsets is 
equal at most to 6 (e.g. from A2 to A5 then to A>, A3, As, Ax and to A» — see 
Fig. 3). Thus the diameter of F2 is less than or equal to 6. 

Lemma 4. / / the graph Kmnis decomposed into two factors with the diameters dx 

and eh, where dx = 7 or 8, then ^ ^ 4 . 
Proof. Let dx = 7 (for dx = 8 the proof is the same). Let Fx be the factor with the 

diameter dx = 7, F2 be the factor with the diameter d*. Let QFt(u9 v) = 7. The vertex 
set of F, can be decomposed into eight subsets A, = { w: Q(U9 W) = /} for / = 0, 1, 
..., 7. In the factor Fx there are edges joining vertices of consecutive subsets A , 
A,+,. The distance of vertices in A (/ = 0 ,1 , . . . , 7) in the factor F2 is equal to 2. The 
distances of vertices between the subsets A, and Aj9 &j9 /, / = 0 , 1 , . . . , 7 are equal 
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Fig.З 

to 1, 2 or 3 except in two cases: Ax and A,, A2 and Ah. The distance between the 
vertices of these subsets is at most 4 (e.g. from Ax to A*, then to A-, A2 and to A^). 
Hence the diameter of F 2 is less than or equal to 4. 

Lemma 5. If the graph Kmn is decomposed into two factors with the diameters dx 

and d2, where dx ^ 9 , then d2 = 3. 
Proof. Let F, (/ = 1, 2) be the factor with the diameter dk. Let pF,(w, v) = dx. 

The vertex set is decomposed into subsets A = {w: Q(U, w) = i) for / = 0 , 1, 2, ..., 
dx. In the factor F, with the diameter dx^9 there are edges joining vertices of 
consecutive subsets A,, A^x for / = 0, 1, 2, ..., dx — 1. The distance of different 
vertices in A, (ir = 1, 2,..., dx) is equal to 2. The distance of vertices between Ak and 
A; (i£j\ /, 7 = 0, 1, 2 , . . . , dx) is equal to 1, 2 or 3. Thus the diameter d2^3, but the 
case d2^2 cannot occur (F2 does not contain all the edges of K„..„), so that the 
diameter of F2 is d2 = 3. 

A vertex v of a bipartite graph is said to be saturated if by adding an edge 
incident with v there always arises a graph that is not bipartite. 

Lemma 6. Let n be an integer ^ 3 . The minimal number of edges in a factor of 
KXn with the diameter 3, not containing a saturated vertex, is 2n. 

Proof. Let F be a factor of KXn that does not contain a saturated vertex such 
that d(F) = 3. The vertex set of KXn can be partitioned into two subsets U and V, 
where | U\ = 3, | V\ = n. The distance between arbitrary vertices of U in the factor F 
is 2 (since d(F) = 3). The same holds for the vertices of V. The degrees of all the 
vertices from U are at most n - 1 and it follows that the degree of the vertices from 
V is at least 2. The number of edges in the factor F is at least 2/z. We shall construct 
such a factor. The vertex set of F i s decomposed into two subsets: U= {uu Uj, u3} 
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and V={vu v2, ..., vn). The factor F of KXn consists of the following edges 
(Fig. 4) : 

(1) UtVj for / = 1, 2, ..., n - 1; 
(2) u2v, for / = 1, n; 
(3) UyVi for / = 2, 3, ..., n. 
The diameter of F is 3. The factor F has 2n edges and it does not contain 
a saturated vertex. 

П-1 

Fig. 4 

Lemma 7. Let the natural numbers m ^ 3, n ^ 4, 6e given. 77?e minimal number 
of edges in a factor ofKmn with the diameter 4, which does not contain a saturated 
vertex is m + n. 

Proof. Let F be a factor (of Km,n) not containing a saturated vertex and 
d(F) = 4. The number of edges in F is at least m + n —I (otherwise F would be 
disconnected). If the factor F contains exactly m + n —I edges, then F i s a tree. Let 
abed be a path of length 4 in the tree F . The factor F has the same form as in Fig. 5. 
The vertex c is a saturated vertex, which is contradiction to the assumption of the 
lemma. 

We shall construct a factor F (of Km,n) with the diameter 4, with m + n £dges 
and without saturated vertex for every natural number m ^ 3 , n ^ 4 . Denote by 
U= {uu u2j..., um}, V= {vuv2,..., vn} the parts of Km,n. Let us define the factor 
F in the following way: F contains the edges (Fig. 6). 
( 1 ) UXVU UiV2, 

(2) u2vu ihv^ 
(3) UiV2 for / = 3, 4, ..., m, 
(4) umVi for / = 3 ,4 , . . . , / i . 
It is easy to show that the factor F satisfies the conditions of the lemma. 
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Lemma 8. The graph Km,„ cannot be decomposed into two factors with finite 
diameters if m^2 or m = n = 3. 

Proof. For a finite n the assertion follows from Lemma 2. It is easy to show that 
the lemma holds for finite n as well. 

Fig.5 

Vn-1 

Fig. 6 

Lemma 9. / / the graph Km,H is decomposable into two factors, F, with a finite 
diameter and F2 with the diameter 3, then each vertex of F2 has the degree at 
least 2. 

Proof. No vertex of F2 can have the degree 0. If some vertex u has in F2 the 
degree 1, then the vertex v adjacent to u in F2 is saturated (since the diameter of F2 

is 3) and the diameter of F, is oo. 
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Lemma 10. There is no cardinal number n for which the graph Kyn is 
decomposable into two factors with the diameter 3. 

Proof. Let us suppose that such a decomposition of K^.n exists. Denote the parts 
of K.n by U, V where | U\ = 5 and | V| = rt. Let veV. Let F be such a factor, 
where dh(v)^2. From Lemma 9 it follows that dF(v) = 2. The vertex v is adjacent 
in F to the vertices u and u'. The distance between two arbitrary vertices of V in F 
cannot exceed 2 (the diameter of F is 3). It follows that every vertex v' e V, v' £ v 
is adjacent to w or w'. In this case the distance between u and u' in another factor 
G is greater than 2. But this is a contradiction to the assumption that the diameter 
of G is 3. 

Lemma 11. The graph K-.5 cannot be decomposed into two factors with the 
diameters 3 and 4. 

Proof. Denote the parts of K5m5 by U and V. Suppose a factor F to have the 
diameter 3. From Lemmas 7 and 9 it follows that the degrees of vertices from V are 
given by certain of the following sequences: (22223), (22233), (22224), (22234), 
(22244), (22333), (22334), (23333), (23334) and (33333). By the systematic 
examination of all possibilities we can establish that the second factor F has 
a diameter greater than 4. 

Denote by Bm(d, e) = Bm(e, d) the smallest cardinal number n such that the 
graph Km,„ can be decomposed into two factors with the diameters d and e. If such 
a number does not exists, we shall write Bm(d, e) = °°. 

Theorem 5. Let l^d^oo and m^\ be a cardinal number, then Bm(d, oo) 
equals: 
(1) 2 / / d = oo, m = \. 
(2) 1 ; / d = oo, m^2. 
(3) Aifd=\ or 2, m = \. 
(4) d-\ ifd = 2 or 3, m^2. 
(5) 3 if d = 4, m = 2. 
(6) d-2 ifd = 4 or 5, m^3. 
(7) oo if d^6. 

Proof. The first six relations are obvious. The seventh relation follows from 
Lemmas 3, 4 and 5. 

The next Theorem 6 can be proved by using the previous results and by 
systematic examination of all possibilities. 

Theorem 6. Let 3 = d^e< oo and m^\ be a cardinal number, then Bm(3, e) 
equals: s-
(1) 6 if e = 3 and m^6. 
(2) \2-m if e = 4, m = 5 or 6. 
(3) 5 ife = 4, mizl. 
(4) 5ife = 6,m=4. 
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(5) 4 if e = 6,m^5. 
(6) 5 ife = 5, 1, 8 or 9, m^5. 

(7) [£±2],r«,o,™s[l±I]. 

(8) [l±l]/f«,o.ma[^]. 
(9) oo otherwise. 

Theorem 7. Let 4 = d^e<°° and m^\ be a cardinal number, then Bm(4, e) 
equals: 

(1) 6 ife = 4, m = Ъ. 

(2) 4 if e = 4, m = 4 or 5. 

(3) 3 ife = 4, mЗïб. 

(4) 4 if e = 5 oг 1, m > 4. 

(5) 5 if e = 6, m = Ъ oг 4. 

(6) 3 if e = 6, m^5. 

(7) 5 ife = 8, m = 4. 

(8) 4 ife = 8, mì?5. 
(9) oo otherwise. 

Proof. Let us prove the statement (1). Evidently J33(4,4)>3. According to 
Lemma 7 -33(4,4) does not equal 4 or 5. A decomposition of AT3.6 into two factors 
with the diameters 4 is given in Table I, number 1. 

Let us prove the statement (2). According to the statement (1) it follows that 
neither _B4(4,4), nor -B5(4,4) are equal to 3 (according to Theorem 1 they cannot be 
<3). A decomposition of K+A into two factors with the diameters 4 is given in 
Table I, number 2. Therefore 2?4(4,4) = 4. From Theorem 1 and from previous 
results it follows that 2?5(4,4) = 4. 

From the statement (1), Lemma 8 and Theorem 1 the statement (3) follows. 
Let us prove the statement (4) for e = 5. First let us prove that Bm(4,5)£ 3, i.e. 

Km^(m^3) cannot be decomposed into two factors F and G with the diameters 
4 and 5, respectively. From Lemma 8 it follows that such a decomposition does not 
exist for m = 3. Let us assume that such a decomposition exists for rn.^4. Let G 
contain a track* (V1U1V2U2V3U3) of the length 5. It is easy to verify that without 
adding a new vertex in the part t/={w,, Wj, u3} the factor F does not contain 
a track of the length ^3 between the vertices v3 and t;2. The decomposition of .K4.4 
into two factors wit'i the diameters 4 and 5 is given in Table I, number 3. From 
Theorem 1 and from previous results the statement (4) for e = 5, m>4 follows. 
Evidently the statement (4) holds for e = 7, m^4. Let us prove the statement (5) 

* If x and y, x ̂  Y, are vertices of a graph, a track from x to y is defined to be a path of the minimum 
length going from x to y (cf. [5], p. 125). 
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Table 1 

Edges of Diameters 

Number F G d=d{F) e=d{G) 

1 11, 12,22,23, 14 ,34 ,25 ,35 ,36 . 21 ,31 ,32 , 13,33,24 , 15, 16,26 . 4 4 

2 11 , 21 , 22 ,33 ,43 , 14,44. 31,41, 12,42, 13 ,23,34 ,24 ! 4 4 

3 11,21, 12 ,32 ,42 ,23 ,43 ,44 . 31 , 41 , 22 , 13,33, 14,24,34. 4 5 

4 21,31 ,32 , 13, 14,24, 15,35. 1 1 , 1 2 , 2 2 , 2 3 , 3 3 , 3 4 , 2 5 . 4 6 

5 11 , 21 , 22 ,32 ,33 ,24 . 31, 12, 13,23, 14,34, 5 5 

6 2 1 , 3 1 , 4 1 , 3 2 , 4 2 , 13, 14,24,44. 11, 1 2 , 2 2 , 3 3 , 4 3 , 3 4 , 2 3 . 5 6 

In the Table I the edges of the factors F and G of the graph Km,„ are given. The vertex set of Km.„ is 
partitioned into two disjoint subsets (parts) U={uly u2 um) and V= {t\, v2,..., v„). Instead of the 
edges UfVj we write only //, where the first number means the index of the vertex w, and the second index 
of the vertex v<. 

for m = 3. An arbitrary factor (of KX4) with the diameter 6 has the complement 
with the diameter 6. Therefore i?3(4,6)=M. A decomposition of KX5 into two 
factors with the diameters 4 and 6 is given in Table I, number 4. Let us prove the 
statement (5) for m = 4. Obviously it is sufficient to prove that i?4(4,6) =£ 4, i.e. that 
K4,4 cannot be decomposed into two factors F and G with the diameters 4 and 6, 
respectively. Let us admit that such a decomposition exists and a track of the length 
6 in G is (v}uiv2u2v3u3v4). The vertex u4 is joined in G with v2 or v3 (otherwise 
the diameter of G is>7 or 4). Let u4 be joined with v3. It is easy to show that the 
diameter of F is 5. Therefore K4,4 cannot be decomposed into two factors with the 
diameters 4 and 6. The decomposition of Id,5 into two factors with the diameters 
4 and 6 is easy construct. Therefore £4(4,6) = 5. 

From the statement (5) for m = 3, Lemma 8 and Theorem 1 the statement (6) 
follows. 

The statement (7) and (8) are evident. 
From previous results, Lemma 5, Lemma 8 and Theorem 1 the statement (9) 

follows. 

Theorem 8. Let 5 = d*£e<°° and m^l be a cardinal number. Then Bm(5, e) 
equals: 

(1) 4ife = 5, m=3; 
(2) e-2ife = 5or6,m*z4; 
(3) oo otherwise. 

Proof. From Lemma 8 it follows that B3(5,5)^4. In Table I, number 5 
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Table 2 ҳ oc 1 2 3 4 5 6 7 8 9 

•x (1.2) ( l . D (1.2) (2,2) (2.3) (3,3) 

1 ( l . D In this aгea no decomposition exists for any K„„ 

2 (1.2) 

3 (2,2) (6.6) 
(5,7) 
(6,6) 

(5,5) (4,5) (5,5) (5,5) (5.5) 

4 (2.3) 
(5,7) 
(6,6) 

(3,6) 

(4,4) 
(4,4) (3.5) ( 4 A ) (4.5) 

5 (3.3) (5.5) (4.4) (3,4) (4,4) 

6 (4.5) (3,5) (4.4) (3,4) 

Г 7 (5,5) (4,4) In this area no decompo-

[ sition exists foг any Km „ 
8 (5,5) (4,5) 

In this area no decompo-

[ sition exists foг any Km „ 

9 (5,5) 

10 (5,6) 

There are shown for given d and e all couples (m, n) m^n, such that Bm(dy e) = n and BM(d, e) = N 

does not hold for any M^m,N^n,(M, IV)^(m, n). 

a decomposition of KX4 into two factors with the diameters 5 is given so that 
ft(5,5) = 4. 

From Lemma 8 and Theorem 1 the statement (2) for e = 5 follows. We shall 
prove (2) for e = 6, m = 4. Assume that KX4 can be decomposed into two factors F 
and G with the diameters 5 and 6, respectively. Let G contain a track 
(viUxv2u2V)Uyv4) of the length 6. It is easy to verify that either Fcontains a track or 
F is disconnected. Thus the factor F cannot have the diameter 5. The decomposi­
tion of the graph K4.4 into two factors with the diameters 5 and 6 is given in Table I, 
number 6. Therefore 2?4(5,6) = 4. 

From our previous results and Theorem 1, the statement (2) for e = 6, m>4 
follows as well. 

Feom Lemmas 4 and 5 and from the proofs of the statements (1) and (2) the 
statement (3) follows. 

Theorem 9. Let 6 = d^e<<» and m^l be a cardinal number. Then Bm(6, e) 
equals: 
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(1) 4//e = 6, m = 3; 
(2) 3 ife = 6, m_3=4; 
(3) oo otherwise. 

Proof. The statement (1) is evident. The statement (2) follows from (1) and 
from Theorem 1. The statement (3) follows from (1), (2) and from Lemmas 3, 
4 and 5. 

Theorem 10. Let l^d^e<<x>. ThenBm(d, e) = &, if one of the following cases 
occurs: 
(1) d=\ or 2; 
(2) d7zl,e^l. 

Proof. The first relation follows from Lemma 8. The second relation follows 
from Lemmas 4 and 5. 

Corollary. The bipartite graph Km%n is decomposable into two factors with the 
diameters d and e(2^d^e^<*>) if and only if n^Bm(dy e), where Bm(d, e) is 
given in Theorems 5—10. 

The proof follows from Theorems V, 5—10. 
In the next Theorem 11 there are given all couples of cardinal numbers m, 

n (m^n) for which the graph Km%H is decomposable into two factors with given 
diameters. The proof is based on Theorems 5, 6, 7, 8, 9 and 10. 

Theorem 11. Let 1 ^ d ^ e ^ o o and m, n be cardinal numbers such that m^n. 
The bipartite graph Km,n is decomposable into two factors with the diameters d and 
e if and only if one of the following cases occurs: 

(1) rf = t?=-«>, m = l, «3s2 . 
(2) d=l, e = °°, m = \, n = \. 
(3) d = 2, «? = «>, mSsl, n5s2. 
(4) d = 3, e = °°, mss2. 
(5) d = 4, e = «>, m=s2, «2*3. 
(6) d = 5, e = «>, m>3 . 
(7) d = 3,e = 3 or 4, mžsé. 
(8) d = 3, e = 4, m=s5, n>7. 
(9) d = 3, e = 6, m554, n^5. 

(10) d = 3, e = 5, 7, 8 oř 9, m^5. 

(11) d = 3 , ^ 1 0 , ^ [ ^ ] , « ^ ] . 

(12) d = 4, e = 4, m5s3, n > 6 . 
(13) d = 4, e = 4, 5 oř 1, m>4. 
(14) d = 4,e = 6, mž-3, n&5. 
(15) d = 4, e = 8, m^4, n7&5. 
(16) d = 5, e = 5, m&3, «3=4. 
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(17) </ = 5, e = 6, m^A. 
(18) </ = 6, e> = 6, m ^ 3 , n^A. 

The next corollary shows for which diameters it is possible to decompose 
a bipartite graph. 

Corollary. Let the natural numbers d, e (d^e) be given. A bipartite graph 
decomposable into two factors with the diameters d and e exists if and only if one of 
the following cases occurs: 

(1) d = 3. 
(2) d = 4, e = 4, 5, 6, 7 or 8. 
(3) d = 5, e = 5 or 6. 
(4) d = e = 6. 

Proof. If d< 3, then no bipartite graph can be decomposed into two factors with 
the diameters d and e. From Lemmas 3, 4 and 5 it follows that no bipartite graph 
decomposable into two factors with other diameters than those in (1)—(4) exists. 
According to Theorems 6—9 bipartite graphs which are decomposable into two 
factors with the diameters given in the corollary do exist. 
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РАЗЛОЖЕНИЯ ПОЛНЫХ ДВУДОЛЬНЫХ ГРАФОВ 
НА ФАКТОРЫ С ДАННЫМИ ДИАМЕТРАМИ 

ЭлишкаТомова 

Резюме 

Рассматривается проблема разложения полных двудольных графов Ктп на факторы 
с данными диаметрами. Здесь находятся все пары чисел ( т , л), для которых возможно разложить 
полный двудольный граф на два фактора с данными диаметрами. 

128 


		webmaster@dml.cz
	2012-07-31T21:03:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




