Mathematica Slovaca

Eliska Tomova

Decomposition of complete bipartite graphs into factors with given diameters

Mathematica Slovaca, Vol. 27 (1977), No. 2, 113--128

Persistent URL: http://dml.cz/dmlcz/136139

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/136139
http://project.dml.cz

Math, Slovaca, 27, 1977, No. 2, 113—128

DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS
INTO FACTORS WITH GIVEN DIAMETERS

ELISKA TOMOVA

Introduction

The authors of paper [1] study the problem of the existence of decompositions of
the complete graph K, into factors with given diameters. In the present paper we
study similar problem for the complete g-partite graphs. Most of the results are
concerned with the case ¢ =2 of bipartite graphs.

All graphs in the present paper are undirected, without loops and multiple edges.
Let an integer ¢ =2 be given. A graph G with the vertex set V is called g-partite if
V can be partitioned into ¢ mutually disjoint, nonempty subsets V,, Vi, ..., V,.
which are called parts of G such that every edge of G joins vertices of two different
parts of G. If G contains every edge joining vertices of two different parts of G,
then G is said to be a complete g-partite graph and we write G=K,,.m,. ... m,»
where the cardinality |v,|=m, for i=1, 2, ..., q (2-partite graphs are called
bipartite).

By a factor of a graph G we mean a subgraph of G containing all the vertices of
G. By a decomposition of a graph G into factors we mean a system & of factors of
G such that every edge of G is cdntained in exactly one factor of . The diameter
d(G) of a graph G is the supremum of the set of all distances gs(x, y) between two
vertices x and y of G. The diameter of G can be also equal to «, if -G is
disconnected or if there does not exist the maximum of the distances, which may
occur in infinite graphs. The other terms are used in the usual sense [2, 3].

Let natural numbers g =2, p and non-zero cardinal numbers m,, m., ..., m, be
given. Our aim is to determine the conditions for the existence of a decomposition
of the graph K,,,,. m,. ... m, into p factors with the given diameters d,, ., ..., d,, where
each d; (i=1, 2, ..., p) is a natural number or the symbol .

1. The general case

Let ¢ =2 and p be natural numbers, m; (i=1, 2, ..., ¢ — 1) — cardinal numbers
=1,d, (j=1, 2, ..., p) — natural numbers or symbols . Denote by B,,,. m,.....m,.,
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(d\, d,, ..., d,) the smallest cardinal number m, such that the graph K .., ... ..m,€an
be decomposed into p factors with the diameters d,, d,, ..., d,. If such a number
does not exists, we shall write B, m, ..m,, (di, &, ..., d,)=.

The importance of the function B, ,n,. ... m,_, is €vident from the next theorem.

Theorem 1. If the graph K., ,.,. .... », Is decomposable into p factors with the given
diameters d,, d,, ..., d, (whered, =2 fori=1,2, ..., p), then the graph K y;, m,. .. m,
(where M,=m,, M,=m,, ..., M, = m,) is also decomposable into p factors with the
diameters d,, d,, ..., d,.

Proof. Let K., . ...m, be a complete g-partite subgraph of Ku,. u,. ... s,- Denote
by Vi, V,, ..., V, the parts of K., m, ..m, and by W,, W,, ..., W, the parts of
Kuv m,...m, where Vic W, V,c W, ..., V,cW,. Put A=W, - V. fori=1, 2,
..., 4. Choose in each V; an arbitrary vertex, denote it by v,. Decompose in some
way the graph K., ., .., into p factors F, F;, ..., F, with the diameters d,, 4,, ...,
d, it can be done by the assumption. Decompose the graph Kuy, s, .. s, into p
factors G,, G., ..., G, with-the same diameters as follows: The factors G“” G,
(where k=1, 2, ..., p) are constructed from the factors F, = G{” successively in
such a way that in the first step we add to the set V,u V,u ... UV, all the vertices of
A, and obtain factors G1”, G%", ..., G}’ of K u,. m, ...m,, then in the second step we
add all vertices from A, and obtam factors &, ”’ ooy GO f Kty vy .y and
so on. Finally we add all the vertices from A and construct factors G'\*, G“”
G::q) of Kum vy o,

Form the factors G{’ (where k=1, 2, ..., p, j=1, 2, ..., q) of the graph
Ku, My ..M. ...m, iD the following way:

(a) G¢ contains all the edges contained in G{ ™"
(b) if ueV,, j<i<gq, veA,, then the edge uv belongs to G if and only if uy,
belongs to G{™", _
(c) if ue W, 1<i<j, veA,, then the edge uv belongs to G’ if and only if uv,
belongs to GY™".
It is easy to see that the factors GY’, G, ..., G form a decomposition of
KM, My, ..o My my .
The proof of the equalrty d(GP)= d(G" V) is the same as in Theorem 1 of [1].

Hence d(Gi)=d(F,) for k=1, 2, ..., p, and this complete the proof of the
theorem. '

Corollary. The graph K...m,...m, can be decomposed into p factors with the
diameters d,, d, ..., d, (where d,=2, i=1,2, ..., p) if and only if

. quB'm,,mz,...‘mq_,(d], dQ, ceey dp).
Theorem 2. Let d, q, my, m,, ..., m, be natural numbers, where d =2, q=2,
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m<m,<..<m,. In the graph K ,,, ......., there exists a factor with the diameter
d if and only if : ‘

.d<min 2(m,+m.+...+m,_ ), m+m.+ ...+ m,—1}. (D

Proof. If m,=m,=...=m, =1, then the statement is obvious. Therefore we
assume that m, > 1. Denote by G the graph K., ..., and its parts by V,, V., ...
V,. where |V;|=m, for i=1, 2, ..., q. Let us consider two cases:

I. m>m+m+..+m,_,,
IN. m=m+m+..+m,_,.

I. In the first case the inequality (1) has the form

a<s2(m+m+..+m,_,). 2)

We shall assume that the graph G has a factor F with the diameter d. Every arc

(simple ‘path) in F contains at most m, + m.+ ... +m,_, vertices not belonging to
V, ; this arc has at most m, + m,+ ... + m,_, + 1 vertices from V, because in this arc

no two vertices from V, are adjacent. Hence every arc in F has at most

2(m,+my+...+m,_,)+ 1 vertices, i.e. 2(m, + m,+ ... + m,_,) edges. This implies )
(2).

On the other hand, let (2) be true. If 4 =2, a requested factor is the whole graph
G.Let d=3. In G we construct an arc v,v,v....v, of length d such that the vertices
v, with an even index 7/ belong to V, and those with an odd index / belong to the
remaining parts of G. All the other vertices from V, are joined by an edge with v,
and each of the remaining vertices is joined by an edge with v,. These edges with
the edges of the arc v,v,v....v, from a factor of G with the diameter d.

II. The inequality (1) in the second case has the form

dsm+m+..+m,_, - (3)

Clearly, condition (3) is necessary for every factor with the diameter d in G. For
the converse we assume that (3) holds. We shall construct a factor F of G with
diameter d. Assume that d =3 (if 4 =2, we put F= G). Choose in V, an arbitrary
vertex v. Then for every vertex u of G we have:

m+m+...+m
degou=degev=m,+m,+ ...+ m,_ =— '2 “=%,

. were p is the number of vertices of G. The graph G has a hamiltonian circuit
VoU,...U,— Vo, Which follows from [4] (see also [2], corollary 7.3. (b)). Let F be
defined as follows: F contains all the edges of the arc v,v,...v,, the other vertices
are joined by an edge with the vertex v, if they do not belong to the same part as v,,
otherwise they are joined with v,. It is clear that F has the diameter d.
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2. Factors of K., , with given diameters and with
a given number of edges

From Theorem 2 we easily obtain:
Corollary. Let d be a natural number, m, n — cardinal numbers, where d =2,

1<m=<n. A factor of K, , with the diameter d exists if and only if m Zg , except

m=n=x2.
2 .
Proof. If n (and also m) is finite it is sufficient to apply Theorem 2. For n (or m)
infinite we use the same method as in the proof of Theorem 2.

Lemma 1. Let m, n be cardinal numbers, 1<m<n. The maximal possible
degree of a vertex in a factor with a finite diameter d =2 in a graph K., ,, (if such
a factor exists) is:

0 n_d;l

+2 ifd is odd, n finite:;
(11 n—g+2 if d>2 is even, m=n, n finite;

(I1I) n—g+1 if d>2 is even, m<n, n finite;

(IV) n if d=2 or if n is infinite.

Proof. Put e= [51_42_-_2] .
(I) If 4 is odd, then obviously the maximal possible degree of a vertex is
d+1

(n—e—=2)=n ——2—+2 (see u._, in Fig. 1). The degree of all other vertices is

less than or equal to this number (equal only if 721 = n). If there exists a vertex with
the degree greater than this number, it is clear that the factor cannot have the
diameter d.

(II) In this case the maximal possible valency is n — g +2 (see v._, inFig. 2). The
proof is the same as in the case I.
(II1) The maximal pbssible degree is n _4 + 1 (see u,, in Fig. 2). The proof is the

2
same as in the case (I).

_(IV) The first part is evident. The second part can be proved by a simple
extension of construction from Fig. 1 and 2 for the case of an infinite .

Theorem 3. Let d be natural number, m, n and E be cardinal numbers, where

lsm<sn,m 2‘—1 , but there does not hold m=n =-g— . The factor of K, , with the
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diameter d and with the number E of edges exists if and only if one of the following
cases occurs:
I. E=m=n=d=1.
II. E=mn, d=2, nis finite.
d—3

e m+n—1sEsmn—1——2—(m+n-

d+ 1)
2 ’
d=3, d is odd, n is finite.
IV. m+n—-1<E<min —1)-'-‘1—-2-4 (m+n——d—%g) ,
d=4, d is even, n is finite.
V. E=n,d=2, nis finite.

Proof. We shall denote the parts of the graph K. . by U and V, where |U|=m,
|Vl =n. Let one of the cases I—V occur. From the corollary of Theorem 2 it
follows that the graph K., , has a factor F with the diameter d. Let us prove that it
is possible to construct the factor F such that it has E edges. It is evidnet that in the
cases I, Il and V the factor F cannot have another number of edges. In the cases 111
and IV we shall prove that it is possible to obtain the upper bound. ‘

If d=3, d is odd and n is finite, then construct the factor F in the following way:
in K,. . we choose an arbitrary arc v,v,...v, of length d such that v, v, ..., v, €U
and o, Vs, ..., Va— € V. Other vertices from U are joined with vo, v, and with other
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vertices of V which are joined with v, and v.. It is easy to show that the factor F has
exactly

mn—1—-———|m+n——5—

d;3( a’;—l)

edges. The factor with an arbitrary number E of edges from case Il can be
constructed by deleting a suitable number of edges joining the vertices of U — {v,,
Vs, Us,...,U,} With the vertices of V—{uv,, v,, ..., v,_}.

The proof of case IV is analogous. '

Let us prove now that if the graph K., .(m <n) has a factor with E edges and
with a finite diameter d, then one of the cases I—V occurs. If n =1, then evidently
I occurs. If n is infinite, then the case V occurs. We can suppose that # is finite. If
d =2, then Il holds. Evidently, we may assume that d = 3. The factor F has at least
m+ n —1 edges. We shall prove that the total number of edges of F is less than or
equal to the upper bound in Il or IV, respectively. Let P = v,v,v....v, be an arc of
length d such that in F there does not exist a shorter arc connecting the vertices v,,
v,. Each of the remaining vertices of F can be joined with at most two vertices from
P and with all the vertices from the other part.

If vy, 05, ... € V, v, v,, ... € U and all the edges of the given form exist, then we
get the upper bound from Il or IV. If v,, v, v,, ...€ U, v,, U5, U5, ...€ Vand d is
odd, we have the same result as before (the upper bound in III), if 4 is even, we
have the same result as in the case I'V. This complete the proof of the theorem.

3. Decomposition of K, , into p factors

In the following we shall consider bipartite graphs K, , only. For the complete
solution of our problem it is sufficient to determine the value of B,.(d,, 4., ..., d,)
for every (p + 1)-tuple (m, d,, 4., ..., d,).

Lemma 2. Let the natural numbers p, m, n be given. If the graph K., . is
decomposable into p factors with finite diameters, then

p<lmin=-
Proof. The graph K, , has mn edges. It is clear that the number Qf edges of
a factor wi,th a finite diameter is‘ at least m + n — 1. Therefore
| p(m+n—1)<mn
and the required inequality easily follows.

Theorem 4. Let p=3 and d,<=d,=...=d,=». Then
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[di+1
%
m+1 if d=2m;
% if 2m<d <o;
1

2

] if 2<d,<2m;

B.(d, 4, ...,d,)=

if dy=wo, m=2;
if d=», m=1.

Proof. The last three relations are evident. To prove the first and the second
relation it is sufficient to construct a decomposition of the corresponding complete
bipartite graphs into three factors with the diameters d,, ®, ©. We construct an
arbitrary factor F, with the diameter d, (this is possible according to the Corollary
of Theorem 2). The factor F, contains all the edges which are incident with one
fixed vertex and do not belong to F,. The factor F; contains all the other of the
complete bipartite graph. It is clear that the diameter of F, and F; is . The same is
true about the factors F,, F;, ..., F, containing no edges.

4. Decomposition of K, . into two factors

In the next five lemmas we shall assume that the cardinal numbers m=1, n=1
are given.

Lemma 3. If the graph K., . is decomposed into two factors with the diameters d,
and d,, where d, =6, then d,<6.

Proof. Let F, be the factor with the diameter 4, and F, be the factor with the
diameter d,. Let o, (1, v) =6. The vertex set of F, can be decomposed into subsets
A, ={w: o(u, w)=i} for i=0, 1, 2, ..., 6. (Fig. 3). In F; there are edges joining
vertices of the consecutive subsets A,;, A,.,. Otherwise there would exist a shorter
path joining # and v. We shall show that the diameter 4, of F; is less than or equal
to 6. The distance of vertices in A, (i=1, 2, ..., 6) in F; is equal to 2. The distances
of vertices between the subsets A, and A;, i#j,i,j=0,1, ...,6 are equal to 1, 2,
3 or 5, except A, and A,. The distance between vertices of these two subsets is
equal at most to 6 (e.g. from A, to A, then to A,, A,, As, A, and to A, — see
Fig. 3). Thus the diameter of F, is less than or equal to 6. p

Lemma 4. If the graph K., ,, is decomposed into two factors with the diameters d,
and d,, where d,=7 or 8, then d,<4.

Proof. Let d, =7 (for d, = 8 the proof is the same). Let F; be thc factor with the
diameter d, =7, F, be the factor with the diameter d,. Let g, (4, v)=7. The vertex
set of F, can be decomposed into eight subsets A, = {w: o(u, w)=1i} for i=0, 1,

..» 7. In the factor F, there are edges joining vertices of consecutive subsets A,,
A, ... The distance of vertices in A, (i =0, 1, ..., 7) in the factor F; is equal to 2. The
distances of vertices between the subsets A, and A,, i#,i,j=0,1, ..., 7 are equal
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Fig. 3

to 1, 2 or 3 except in two cases: A, and A, A, and A,. The distance between the
vertices of these subsets is at most 4 (e.g. from A, to A,, thento A,, A, and to A.).
Hence the diameter of F; is less than or equal to 4.

Lemma 5. If the graph K,,, , is decomposed into two factors with the diameters d,
and d,, where d,=9, then d,=3.

Proof. Let F, (i=1, 2) be the factor with the diameter d,. Let o, (u, v)=d,.
The vertex set is decomposed into subsets A, = {w: o(u, w)=1i} fori=0,1, 2, ...,
d,. In the factor F, with the diameter d,=9 there are edges joining vertices of
consecutive subsets A;, A,., for i=0, 1, 2, ..., d,— 1. The distance of different
vertices in A, (i=1, 2, ..., d,) is equal to 2. The distance of vertices between A; and
A (i#¥],i,j=0,1,2,...,d)isequal to 1, 2 or 3. Thus the diameter d,< 3, but the
case d,<2 cannot occur (F, does not contain all the edges of K, .), so that the
diameter of F; is d,=3.

A vertex v of a bipartite graph is said to be saturated if by adding an edge
incident with v there always arises a graph that is not bipartite.

Lemma 6. Let n be an integer =3. The minimal number of edges in a factor of
K, ., with the diameter 3, not containing a saturated vertex, is 2n.

Proof. Let F be a factor of K, that does not contain a saturated vertex such
that d(F) = 3. The vertex set of K, , can be partitioned into two subsets U and V,
where |U| =3, | V| = n. The distance between arbitrary vertices of U in the factor F
is 2 (since d(F)=3). The same holds for the vertices of V. The degrees of all the
vertices from U are at most n — 1 and it follows that the degree of the vertices from
Vis at least 2. The number of edges in the factor Fis at least 2n. We shall construct
such a factor. The vertex set of F is decomposed into two subsets: U = {u,, w,, u;}
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and V={v,, vy, ..., v,}. The factor F of K, , consists of the following edges
(Fig. 4):

(1) wv, for i=1,2,...,n—1;

(2) ww, for i=1, n;

3) ww, for i=2,3,.., n.

The diameter of F is 3. The factor F has 2n edges and it does not contain
a saturated vertex.

Fig. 4

Lemma 7. Let the natural numbers m=3, n =4, be given. The minimal number
of edges in a factor of K,,, , with the diameter 4, which does not contain a saturated
vertex is m+ n. ‘

Proof. Let F be a factor (of K, ,) not containing a saturated vertex and
d(F)=4. The number of edges in F is at least m + n —1 (otherwise F would be
disconnected). If the factor F contains exactly 71 + n — 1 edges, then Fis a tree. Let
abcd be a path of length 4 in the tree F. The factor F has the same form as in Fig. 5.
The vertex c is a saturated vertex, which is contradiction to the assumption of the

lemma.

We shall construct a factor F (of K, ,.) with the diameter 4, with m + n edges
and without saturated vertex for every natural number m =3, n=4. Denote by
U={u, s, ..., Un}, V={v,, Vs, ..., v,} the parts of K,, .. Let us define the factor
F in the following way: F contains the edges (Fig. 6).

(1) wv, v,

(2) wv,, wv,,

(3) uwv, for i=3,4,...,.m,

(4) u,v;, for i=3,4,.., n.

It is easy to show .that the factor F satisfies the conditions of the lemma.
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Lemma 8. The graph K, , cannot be decomposed into two factors with finite

diameters if m<2 or m=n=3.
Proof.For a finite  the assertion follows from Lemma 2. It is easy to show that

the lemma holds for finite n as well.

Fig. 5

Fig. 6

Lemma 9. If the graph K., . is decomposable into two factors, F, with a finite
diameter and F, with the diameter 3, then each vertex of F, has the degree at

least 2.
Proof. No vertex of F, can have the degree 0. If some vertex u has in F; the
degree 1, then the vertex v adjacent to u in F; is saturated (since the diameter of F,

is 3) and the diameter of F, is o.
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Lemma 10. There is no cardinal number n for which the graph K. is
decomposable into two factors with the diameter 3.

Proof. Let us suppose that such a decomposition of K; , exists. Denote the parts
of K., by U, V where |U|=5 and |V|=n. Let ve V. Let F be such a factor,
where d,(v)<2. From Lemma 9 it follows that d-(v) = 2. The vertex v is adjacent
in F to the vertices « and u'. The distance between two arbitrary vertices of V in F
cannot exceed 2 (the diameter of F is 3). It follows that every vertex v' e V, v' # v
is adjacent to « or «’'. In this case the distance between « and u’' in another factor
G is greater than 2. But this is a contradiction to the assumption that the diameter
of G is 3. o

Lemma 11. The graph K.s cannot be decomposed into two factors with the
diameters 3 and 4.

Proof. Denote the parts of K;s by U and V. Suppose a factor F to have the
diameter 3. From Lemmas 7 and 9 it follows that the degrees of vertices from V are
given by certain of the following sequences: (22223), (22233), (22224), (22234),
(22244), (22333), (22334), (23333), (23334) and (33333). By the systematic
examination of all possibilities we can establish that the second factor F has
a diameter greater than 4.

Denote by B.,.(d, €)= B,.(e, d) the smallest cardinal number n such that the
graph K, ., can be decomposed into two factors with the diameters d and e. If such
a number does not exists, we shall write B,,(d, e) = «.

Theorem 5. Let 1<d<® and m=1 be a cardinal number, then B,,(d, ©)
equals: »
(1) 2ifd=w, m=1.
2) 1ifd=o, m=2. .
(3) difd=1or2, m=1.
4) d-1ifd=2or 3, m=2.
(5) 3ifd=4, m=2.
(6) d-2ifd=4or5 m=3.
(7) o ifd=6.
Proof. The first six relations are obvious. The seventh relation follows from
Lemmas 3, 4 and 5.
The next Theorem 6 can be proved by using the previous results and by
systematic examination of all possibilities.

Theorem 6. Let 3=d<e<» and m=1 be a cardinal number, then B..(3, €)
equals: .
(1) 6 ife=3 and m=6.
(2) 12—-mife=4, m=5 or 6.
(3) 5ife=4, m=17.
4) Sife=6, m=4.
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(5) 4ife=6, m=5.
(6) Sife=5,7,80r9, m=5.

o) [8;2] ifezlo,mz[——";”].
e+17 . e+2
(8) [ 5 ]:fezlo,mz[ > ]

(9) o otherwise.

Theorem 7. Let 4=d<e<o and m=1 be a cardinal number, then B,.(4, €)
equals:

(1) 6ife=4, m=3.

(2) 4ife=4, m=4orS.
(3) 3ife=4, m=6.

(4) 4ife=5Sor7, m=4.
(5) Sife=6, m=3 or 4.
(6) 3 ife=6, m=5.

(7) Sife=8, m=4.

(8) 4ife=8, m=5.

(9) oo otherwise.

Proof. Let us prove the statement (1). Evidently B.(4,4)>3. According to
Lemma 7 B,(4,4) does not equal 4 or 5. A decomposition of K, into two factors
with the diameters 4 is given in Table I, number 1.

Let us prove the statement (2). According to the statement (1) it follows that
neither B,(4,4), nor Bs(4,4) are equal to 3 (according to Theorem 1 they cannot be
<3). A decomposition of K, into two factors with the diameters 4 is given in
Table I, number 2. Therefore B,(4,4)=4. From Theorem 1 and from previous
results it follows that Bs(4,4) =4.

From the statement (1), Lemma 8 and Theorem 1 the statement (3) follows.

Let us prove the statement (4) for e =5. First let us prove that B,,(4,5)#3, i.e.
K. ;(m=3) cannot be decomposed into two factors F and G with the diameters
4 and 5, respectively. From Lemma 8 it follows that such a decomposition does not
exist for m = 3. Let us assume that such a decomposition exists for m=4. Let G
contain a track* (v,4,v,1,0,4,) of the length 5. It is easy to verify that without
adding a new vertex in the part U={u,, u,, u,} the factor F does not contain
a track of the length <3 between the vertices v, and v,. The decomposition of K, ,
into two factors wit1 the diameters 4 and 5 is given in Table I, number 3. From
Theorem 1 and from previous results the statement (4) for e =5, m >4 follows.
Evidently the statement (4) holds for e =7, m =4. Let us prove the statement (5)

*If x and y, x# y, are vertices of él graph, a track from x to y is defined to be a path of the minimum
length going from x to y (cf. [S], p. 125).
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Table 1

Edges of . Diameters
Number| F G d=d(F)| e=d(G)

1 11,12, 22, 23, 14, 34, 25, 35, 36. | 21,31, 32, 13, 33, 24, 15, 16, 26. 4 4
2 11,21, 22, 33,43, 14, 44. 31,41, 12,42, 13, 23, 34, 24, 4 4
3 11,21, 12, 32,42, 23,43, 44, 31,41, 22, 13, 33, 14, 24, 34, 4 5
4 |21,31,32,13, 14, 24, 15, 35. 11, 12,22, 23, 33, 34, 25. 4 6
S 11,21, 22, 32, 33, 24. 31,12, 13, 23, 14, 34, 5 5
6 21.31..41.32, 42,13,14,24,44. | 11,12,22, 33,43, 34, 23. S 6

In the Table I the edges of the factors F and G of the graph K,, , are given. The vertex set of K,,, ,, is
partitioned into two disjoint subsets (parts) U = {u,, u,, ..., u,,} and V={v,, v,, ..., v, }. Instead of the
edges w,v; we write only ij, where the first number means the index of the vertex «, and the second index
of the vertex v,.

for m=3. An arbitrary factor (of K;,) with the diameter 6 has the complement
with the diameter 6. Therefore B,(4,6)#4. A decomposition of K, into two
factors with the diameters 4 and 6 is given in Table I, number 4. Let us prove the
statement (5) for m =4. Obviously it is sufficient to prove that B,(4,6) #+ 4, i.e. that
K.. cannot be decomposed into two factors F and G with the diameters 4 and 6,
respectively. Let us admit that such a decomposition exists and a track of the length
6 in G is (v,u, v, v,u3v,). The vertex u, is joined in G with v, or v, (otherwise
the diameter of G is:7 or 4). Let u, be joined with v,. It is easy to show that the
diameter of Fis 5. Therefore K, , cannot be decomposed into two factors with the
diameters 4 and 6. The decomposition of K, s into two factors with the diameters
4 and 6 is easy construct. Therefore B,(4,6)=5.

From the statement (5) for m =3, Lemma 8 and Theorem 1 the statement (6)
follows.

The statement (7) and (8) are evident.

From previous results, Lemma 5, Lemma 8 and Theorem 1 the statement (9)
follows.

Theorem 8. Let S=d<e<o and m=1 be a cardinal number. Then B,,(5, e)
equals:

(1) 4ife=5 m=3;
(2) e—-2ife=5o0r 6, m=4,
(3) o otherwise.

Proof. From Lemma 8 it follows that B,(5,5)=4. In Table I, number 5
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d ¢ x 1 2 3 .4 5 6 7 8 9
x (1.2) | (LD | (L2) | (2.2) (23) | 3.3)
1 (1.1) In this area no decomposition exists for any K, ,,
2 (1.2)
(5.7)
3| 22 (6.6) (6.6) (5.5 45 5.5 ] (5.5 ] (5.5)
(5.7) (3.6)
4 (2.3) 6.6) | (4.4) (4.4) (3.5) | (44) ] (4.5)
5| 3.3) (55 | 44) | 34) | 44
6 (45) | 35) | (44) | 34)
7 (5.5) | (4.4) In this area no decompo- | .
8 (5.5) (4.5) sition exists for any K, ,
9 . (5.5)
10 (5.6)

There are shown for given d and e all couples (m, n) m<n, such that B,,(d, ¢)=n and B,,(d, e)=N
does not hold forany M<sm,N<n, (M, N)#(m, n).

a decomposition of K, into two factors with the diameters S is given so that
B.(5,5)=4.

From Lemma 8 and Theorem 1 the statement (2) for e =5 follows. We shall
prove (2) for e =6, m =4. Assume that K, , can be decomposed into two factors F
and G with the diameters5 and 6, respectively. Let G contain a track
(viu, v, 05U, v,) Of the length 6. It is easy to verify that either F contains a track or
F is disconnected. Thus the factor F cannot have the diameter 5. The decomposi-

“tion of the graph K, , into two factors with the diameters 5 and 6 is given in Table I,
number 6. Therefore B,(5,6)=4.

From our previous results and Theorem 1, the statement (2) for e=6, m>4
follows as well.

Feom Lemmas 4 and 5 and from the proofs of the statements (1) and (2) the
statement (3) follows.

Theorem 9. Let 6=d<e<® and m=1 be a cardinal number. Then B,,(6, e)
equals:
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(1) 4ife=6, m=3;
(2) 3ife=6, m=4;
(3) o otherwise.

Proof. The statement (1) is evident. The statement (2) follows from (1) and
from Theorem 1. The statement (3) follows from (1), (2) and from Lemmas 3,
4 and 5. :

Theorem 10. Let 1 <d <e <. Then B,,(d, e) = », if one of the following cases
occurs :

(1) d=1or?2;
(2) d=7, e=7.

Proof. The first relation follows from Lemma 8. The second relation follows
from Lemmas 4 and S. '

Corollary. The bipartite graph K., , is decomposable into two factors with the
diameters d and e(2<d<e<) if and only if n=B,,(d, e), where B, (d, e) is
given in Theorems 5—10. '

The proof follows from Theorems 1, 5—10.

In the next Theorem 11 there are given all couples of cardinal numbers m,
n (m<n) for which the graph K, , is decomposable into two factors with given
diameters. The proof is based on Theorems 5, 6, 7, 8, 9 and 10.

Theorem 11. Let 1 <d<e<x and m, n be cardinal numbers such that m<n.
The bipartite graph K,, , is decomposable into two factors with the diameters d and
e if and only if one of the following cases occurs:

(1) d=e=wo, m=1, n=2.

(2) d=1,e=»o, m=1,n=1.
(B) d=2,e=o, m=1, n=2.
(4) d=3,e=o, m=2.

(5) d=4,e=o, m=2, n=3.
(6) d=5,e=o, m=3.

(7) d=3,e=3or 4, m=6.

(8) d=3,e=4, m=5, n=7.
9) d=3,e=6, m=4, n=5.
(10) d=3,e=5,7,80r9, m=5.
(11) d=3,e210,m2[e;1],n>[i22]{
(12) d=4,e=4, m=3, n=6.
(13) d=4,e=4,50r7, m=4.
(14) d=4,e=6, m=3, n=5.
(15) d=4,e=8, m=4, n=5.
(16) d=5, e=5 m=3, n=4,
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(17) d=5, e=6, m=4.
(18) d=6,e=6, m=3, n=4.

The next corollary shows for which diameters it is possible to decompose
a bipartite graph.

Corollary. Let the natural numbers d, e (d<e) be given. A bipartite graph
decomposable into two factors with the diameters d and e exists if and only if one of
the following cases occurs:

(1) d=3.

(2) d=4,e=4,5,6,7 or 8.

(3) d=5,e=5 orbé.

(4) d=e=6. _

Proof. If d <3, then no bipartite graph can be decomposed into two factors with
the diameters 4 and e. From Lemmas 3, 4 and 5 it follows that no bipartite graph
decomposable into two factors with other diameters than those in (1)—(4) exists.
According to Theorems 6—9 bipartite graphs which are decomposable into two
factors with the diameters given in the corollary do exist.
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PA3JIOXKEHHWSA MOJIHBIX IBYNOJIBHBIX 'PA®OB
HA ®AKTOPbl C JAHHBIMHU TUAMETPAMH

Onuwka ToMoBa
Pesome
PaccmMaTpuBaeTcs npobneMa pasnoXEHHS MONHbIX [ABYRONbHbIX rpadoB K, , Ha ¢akTopsl

C NaHHbIMH AHAMETPaMH. 31¢Ch HAXOAATCA BCE Napbl Yuces (M, n), 1715 KOTOPLIX BO3MOXHO Pa3ioXHThb
NOMNHBIA KBYRONbHBIA rpad Ha ABa (HaKTOPa C AaHHBIMHM JHAMETPAMH.
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