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ON THE EXTENSION OF MEASURES

RASTISLAV POTOCKY

The purpose of this paper is to extend a measure defined on an algebra A and
having values in a vector lattice to a measure on the smallest g-algebra containing
A. We present two classes of spaces in which the extension is possible. At the end
of the paper we derive several results from the main theorem; some of them are
-known, the rest seem to be new.

We recall some notions and definitions which will be used throughout the paper.
The vector lattice X is called

a) Dedekind a-complete if every non-empty at most countable subset of X which
is bounded from above has a supremum.

b) o-separable if every non-empty subset Y < X possessing a supremum contains
an at most countable subset possessing the same supremum as Y.

We shall say that the sequence x, in a Dedekind o-complete vector lattice X is
order convergent to an element x in X, if lim sup x, =lim inf x, =x. The above
definitions as well as many interesting results on vector lattices can be found in [1],
[2]. :

A set function m defined on an algebra A and having values in a Dedekind
o-complete vector lattice X is said to be a (vector) measure if

1) m(@)=0;

2) m(E)=0 for every E in A;

3) m(E)= >.m(E,) for every disjoint sequence (E, ) of sets in A whose union is

i=1

E. .

There is another definition of measure. A set function m on an algebra A with
values in a Dedekind o-complete vector lattice X is a measure if

1) m(@)=0; _

2) m(E)=0 for every E€EA ;

3) m(E)+m(F)=m(EUF)+m(EnF) for every E, FEA ;

4) m(E)=lim m(E,) (in o-sense) for every increasing sequence (E,) of sets in
A such that E=UE,€A.

It is easy to prove that both definitions are, in fact, the same.
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A linear functional on X is called

a) positive (monotone) if Tx =0 for all x=0;

b) order continuous if for each sequence (x,) in X with the order limit x, Tx,
converges to Tx;

c) o-bounded if it maps o-bounded sets into bounded sets. :

In what follows the set of all o-bounded linear functionals and the set of all linear
functionals continuous with respect to a topology on X will be denoted by X* and
X*, respectively.

Theorem 1. If m is a (vector) measure on an algebra A with values in a Dedekind
o-complete o-separable vector lattice such that the set of all o-continuous linear
functionals on X separates points of X, then there is a unique (vector) measure ri
on the o-algebr a S(A) such that for E in A m(E)=m(E).

Proof. The measure m is an operator on A with the following properties:

1) EcF>m(E)=m(F) for every E, FEA ;

2) m(E)+m(F)=m(EuF)+m(ENnF) for every E, FEA ;

3) EcF>m(F)=m(E)+m(F\E) for every E, FEA;

4) m(EUF)=m(E)+m(F) for every E, FeA ;

5) E.1E,E., E e A=>m(E)=1lim m(E,) for every sequence (E,) of setsin A.

Let S denote the set of all subsets of the basic space Q. Put B={E€S;
3(E.)e A ; E,TE} and define m,(E)=1lim m(E,) for every E in B. The definition
does not depend on the choice of the sequence (E,).

Then define m,(E) =inf{m,(F); E c F e B} for every set E in S. It follows that
m, is a monotone operator on S with values in X such that m,(EUF)=
my(E)+ my(F) for every E, FeS. Moreover m, coincides with m on A.

For every monotone, o-continuous linear functional T. on X define now an
operator *T from A into R (the field of real numbers) as follows: *T(E) = Tm(E)
for every E € A. *T has the following properties.

1) EcF>*T(E)=*T(F);

2) *T(E)+*T(F)=*T(EUF)+*T(ENnF);

3) EcF>*T(F)=*T(E)+*T(E\E);

4) *T(EUF)=*T(E)+ *T(F);

5) E.1E,E,,Ee€ A=>*T(E)=1lim*T(E,) for every sequence (E,) of setsin A.

Then put *T(E)=sup*T(E,)=sup Tm(E,) for every E€B, E, €A, E,1E.
One can show that this is a correct definition. It follows that T*(E) = Tm,(E).

Finally define T**(E)=inf{T*(F); EcFeB} for every E€S.

Since the field of real numbers is o-separable, we may suppose that there exists
a decreasing sequence (F,) of elements in B greater than E such that

T**(E)=inf{T*(F,); EcF,eB}.

On the other hand, since X is supposed to be o-separable, we have m,(E)=
inf {m,(G,); E c G, € B } and, consequently, T**(E)=inf {T*(F,); EcF,eB}=
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inf{Tm\(F,); EcF,eB}=T inf{m(F,); E cF, € B}=Tm,(E) for every E in
S. The reverse inequality is immediate.
Denote by L the set of all E €S such that

sup{m,(C); EoCeD}=inf{my(F); EcFeB},

where D is the set of all E € S for which there exists a decreassing sequence (A, ) of
elements of A such that A, |E.
We define, similarly,

L*={EeS;sup{T**(C); EoCeD }=inf{T**(F); EcFeB}}.

Since sup{m,(C,); E>C,eD }=inf{m,(F,); EcF,eB} with an increasing
sequence (C,) and a decreasing sequence (F,) implies that sup {T**(C,); E >
C.eD}=inf{T**(F,); EcF,eB}, we have LcL*.

The next problem is to prove that if (E,) is a monotone sequence in L which
converges to a set E in S, then E belongs to L. Since L < L*, we obtain from the
extension theorem for real valued measures that EeL*, i.e. sup{T**(C,);
E>C,eD}=inf{T**(F.); E c F, € B}. It follows, since the set of all o-continuo-
us linear functionals separates points of X, that sup{m,(C.); EoC,eD}=
inf (m,(F)); EcF,eB},ie. that E€L. ‘

Since L contains A, we may suppose the existence of the smallest set N
containing A with the following property: F, eN, F,]FeS(F,|FeS)=>FeN.

Since N=S(A), we define m(E)=m,(E) for E€N.

It is evident that m(@)=0 and m(E)=0 for every E € S(A). In order to prove
the continuity from below, consider arbitrary E, €S(A), E,TE. We have im-
mediately that m(E)=lim m(E,) since m is monotone. The desired result follows
then from the fact that T**(E) =lim T**(E,), i.e. Tm,(E)=lim Tm,(E,) for every
linear functional under consideration and from the fact that the set of all
o-continuous linear functionals separates points of X. _

The equality m(E)+m(F)=m(EUF)+m(ENF) and the uniqueness of m
follow without difficulty.

Corollary 1. (cf. [3], th. 11) If X is a regular Dedekind o-complete vector lattice
such that X* separates points of X, then the extension theorem holds.

Proof. Every regular Dedekind o-complete vector lattice is o-separable and
every o-bounded linear functional on such a space is o-continuous.

Theorem 2. Let X be a Dedekind o-complete, o-separable locally convex space
with an ordering given by a closed cone. Let x,—» x imply T(x,)— T(x) for every
T e X*. Then for every measure on an algebra A with values in X there exists
a unique extension to S(A).

Proof. Analoguous to that of Theorem 1.

So far we have been concerned with a set function which was a measure in the
o-sense. We can, however, extend our results to the case when we are primarily
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interested in the topology of X. Substituting in the above definition of measure
a topological convergence for the o-convergence, we shall speak about a (vector)
measure in the topological sense. The following results should be compared with
[4], [5], [6].

Theorem 3. Let X be a Dedekind o-complete, o-separable locally convex space
oredered by normal cone and let every continuous linear functional be o-continuo-
us. Then every measure (in the topological sense) on an algebra A with values in
X can be uniquely extended to S(A).

Proof. Since the cone is closed, the set function under consideration is
a measure in the o-sense as well. If /1 means the extension to S(A) mentioned in

Theorem 2, we have that rii(E,)— ri(E) whenever E,1E, E,, E cS(A) Since
the cone is normal, the result follows.

Theorem 4. Let X be a Dedekind o-complete, o-separable complete metrizable
locally convex space ordered by a closed cone and let every continuous linear
functional be o-continuous. Then for every measure on an algebra A with values in
X there is a unique extension to S(A).

Proof. The above assumptions imply normality of the cone.
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O MPOOOIIXXEHNHU MEP
Pactucnas [ToTouku
Pesome
Ilycte m — BekTOpHas Mepa omnpejeieHa Ha anrebpe A ¢ 3Ha4YEHHAMM B O — MOJHOW 0 —
cenapabenbHOI BEKTOPHOH pelieTke X TaKo#H, YTO CEMEHCTBO BCEX O — HENMPEPDbIBHBIX JIMHEHHBIX HOPM

pasnensier ee Touyku. TOrja cymecTByeT BEKTOpHas Mepa rit Ha o-anre6pe S(A) MOpOXAECHHOMH
anre6poit A, sBISOWAACT NPOJOIKeHneM m. Mepa rm onpeneneHa ORHO3HAYHO.
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