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PRODUCTS OF VECTOR MEASURES
BY MEANS OF FUBINI'S THEOREM

CHARLES SWARTZ

Let S, T be locally compact Hausdorff spaces with B(S), B(T) the Borel sets of
S, T and let X, Y, Z be quasi-complete locally convex Hausdorff spaces with u:
X XY—Z a separately continuous bilinear map. For convenience we write
u(x,y)=xy forxeX, yeY. Let u: B(S)— X and v: B(T)— Y be countably
additive set functions which are weakly regular in the sense that x'u (y'v) is regular

-foreach x' e X' (y' € Y’') ([5] Def. 2.6). We define the product measure u X v of u
and v with respect to the bilinear map u by essentially using the idea which was
employed by M. Duchoii in [9] to define the product for two vector measures of
bounded variation (cf. also [22]). That is, u(v) induces a continuous linear operator
M: Cy(S)— X via Mf=[sfdu (N: C(T)— Y by Ng=[rgdv), where C,(S)
denotes the B-space of continuous real-valued functions on S which vanish at o
equipped with the sup-norm (we assume all vector spaces are real for convenience).
The integral here is understood to be that of D. R. Lewis [17]. The product u X v
is constructed by defining a continuous linear map P: Co(S X T)— Z by means of
the iterated integral Ph = [[sh(s,t) du(s) dv(t); the integral used here is
indicated briefly in section 1. By a generalization of the Riesz-Representation
Theorem ([5] Theorem 2.2 ; [24]) there is a unique finitely additive set function A:
B(S X T)— Z" such that Ph = [s.+hdA, h e Co(S X T), (A has other properties
which we indicate later) and we define the product of 4 and v to be A (compare
with [9]). .

One unpleasant feature of this approach to the product measure is that the
product measure A takes its values in Z", the bidual of Z (see, however, [13], [16]
or [19]; this phenomena is not uncommon in vector measures [8]). In Theorem 3
we give sufficient conditions for A to actually have its range in Z and then we
present an example to show that at least in some situations this condition is also
necessary.

1. Integration of vector functions with respect to vector measures

In this section we very briefly outline the integral required to define the operator
P above. It is only necessary that we integrate bounded functions so we do not
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attempt to give a complete discussion of the integral. (Recall that even integrating
bounded vector functions with respect to vector measures is non-trivial, [6]
Example 1.)

Let X be a o-algebra of subsets of some set  and v: ¥— Y countably additive.
Let #(2,X) be the space of all X-valued X-simple functions. If s=

> cex; € P(=, X),where ce denotes the characteristic function of E and the {E,}

i=1

are disjoint, the v-integral of s over A is given by
Jasdv=Y xv(ANE,) (1)
i=1

(as usual the definition is independent of the representation of s). We say that v has
bounded u-semi-variation if for each continuous semi-norm r on Z there is
a continuous semi-norm p on X such that

v, . (Q)=sup {r(éx,-v(E,-)):{E,-:lSiSn} | 2) -

partition of , p(x,)< 1}< o0
(v,., is the p, r semi-variation of v; see [21] §1). From (1) and (2), we obtain
r(Jesdv)<sup{p(x):1<i<n}v, (Q). 3)

If we equip $(X, X) with the topology of uniform convergence on £, then (2)
implies that the integral with respect to v is a continuous linear map from ¥(2, X)
into Z and if we let B(Z, X) be the closure of (X, X) in the topology of uniform
convergence on £, the integral has a unique linear extension to B(Z; X). Thus if
feB(Z, X), there is a net of simple functions {s,} converging uniformly to f and

fofdv=Ilim [os.dv, r(fof dv)<v, . (£2) supp(f(¢)). In particular, every function
teQ

feCy(T, X) belongs to B(8(T), X) and therefore is integrable with respect to
v:B(T)- Y ([20] Prop. 1).

2. The product measure

Let u: B(S)— X, v:B(T)— Y be countably additive and weakly regular ([5]
Def. 2.6.) with v being of bounded u-semi-variation. Then pu(v) induces
a continuous linear map M: C,(S)—X (N: C(T)-Y) via Mf=[sfdu
(Ng =frgdv) ([17]). Define a continuous linear map P: Co(SxT)—Z by
Ph=[+[sh(s,t)du(s)dv(t). Note that since the function t— [sh(s, t)du(s) is
continuous and vanishes at o, the iterated integral defining P exists, and for any
continuous semi-norm p on X p(fsh(s,t) du(s))<sup {|h(s,t)|: s€S,
t € T}, (S), where fi, is the scalar semi-variation of u with respect to p ([14] IV.
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10.3), so from (2) and (3) it follows that P is continuous. By a generalization of the
Riesz Representation Theorem ([S] Theorem 2.2; [24]), there is a unique finitely
additive set function A: %B(S X T)— Z" such that A has finite semi-variation, A is
weakly regular (i.e., (A(+), z') is regular for each z' € Z') and Ph = [5.rhdA for
h € Co(S X T). We define the product of u and v (with respect to u) to be A and
write A =pu X v. Z" carries the topology of uniform convergence on equicontinuous
subsets of Z'.

To see that definition above is reasonable, consider the case where u: X XY —
X®.Y, the completion of XX Y with respect to the inductive tensor topology

([23] §43). For x’' € X', y' € Y' we have (x'Qy’, [sxr@Q@ydi) = [s.r@¢ &
pd{x' ® y', &) = [sxr@ @ wdx'uxy'v for geCy(S), YeCo(T). Thus
(x'®y',A) = x'uxy'vandsince {x'®@y':x' €X', y' €Y'} separates points in
X®Y, A(AXB)=u(A)Qu(B) for A € B(S), BeB(T). This agrees with the
previous definition of the tensor product measure as given in [10], [11], [12].

It should be pointed out that one shortcoming of this approach to the product
measure via an iterated integral is that one must assume that the measure v has
bounded semi-variation ([20] §1) in order to insure that the v-integral exists.
However, spectral measures in general do not have bounded semi-variation but
a meaningful and useful theory of products of spectral measures can be developed
([4D-

Another difficulty with this approach to the product measure is that the product
has values in Z"” and not in Z ; this is, of course, unavoidable as several examples
illustrate ([13], [16], [19]; see also [8], Th. 1.). We would like to obtain reasonably
broad conditions on the measures u and v which will guarantee that u X v has
values in Z (and is then countably additive with respect to the topology of Z). Of
course, if Z is semi-reflexive, A has values in Z and is countably additive. Now
u X v has values in Z exactly when the operator P corresponding to u X v is weakly
compact ([5] Th. 4.4) and in this case u X v is countably additive with respect to the
original topology of Z. To show P is weakly compact (under appropriate
conditions), we employ some results of Pelczynski on weakly compact and
unconditional converging operators ([18]). :

Recall that a continuous linear operator U: X — Y is unconditionally converging
(u.c.) if U carries weakly unconditional Cauchy series (w.u.c. series) into uncondi-
tionally converging series (u.c. series) [18]. (A series Xx, is w.u.c. if
Z|(x’, x,)| < for x’ € X' and is u.c. if every rearrangement converges [18], [15].)
Pelczynski ([18]) showed that C(S), S compact Hausdorff, has the property that
a continuous linear operator U: C(S)— Y, Y locally convex, is weakly compact if
and only if U is u.c. (Pelczynski’s result is stated for Y a B-space but the proofs
are valid for locally convex spaces, see [15]). It is easily seen that C,(S) has the
same property since Co(S) is a complemented subspace of C(S*), where S* is the
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one-point compactification of S. Thus to show that the operator P above is weakly
compact it suffices to show that P is u.c.

We now impose a condition on the measure v which is sufficient to guarantee
that P is u.c. Since the condition is related to the bounded convergence theorem,
we also further restrict S, T, X, Y and Z. Henceforth, we assume that S and T are
o-compact and X, Y, Z are Fréchet. Thus if f: T— X is continuous and vanishes at
o, there is a sequence {s, } in $(B(T), X) which converges uniformly to f on T

and [;s,dv— [rfdv. In this situation we extend the v-integral from B(%(T), X)
by means of :

Definition 1. A function f: T— X is v-integrable iff

(i) there is a sequence {s,} of B(T)-simple X-valued functions such that {s,}
' converges to f pointwise on T

(ii) {Jrs.dv} is Cauchy in Z. The integral of f is defined to be [fdv=
lim [rs,dv.
Then the definition is independent of the sequence {s, } and due to the additional
restrictions agrees with the previous definition of the v-integral.
The condition imposed on v is given in

Definition 2. The measure v: ¥ — Y has property B C T (with respect to u) if v
satisfies the conclusion of the bounded convergence theorem for X-valued func-
tions. That is, if f,: Q— X is a sequence from B(Z, X) converging pointwise to
a function f and if {f,(¢t): n=1, t € Q} is bounded in X, then f is v-integrable and
Jafidv— fofdv.

For the case when X and Z are B-spaces and Y=L(X, Z), Dobrakov gives
sufficient conditions for the bounded convergence theorem to hold ([6]). We will

list conditions equivalent to the B C T condition in Theorem 4 below. Pertaining to
u X v, we have

Theorem 3. Suppose v has B C T. Then P is u.c. (and hence weakly compact).
Proof: Suppose Xk, is w.u.c. in Co(S X T). Then { > h,: o afinite subset of the

Koo

positive integers N} is a bounded subset of Co(S X T) ([15]). Thus for each te T,
é:‘hk(-, t) is w.u.c. in Cy(S) ([15]). Now M is weakly compact so é:]th(-, t)=
‘2] [she(s, t)du(s)=H(t) is u.c. in X (with limit H(¢)). Since the partial sums
{ki:thk(-, t)} are bounded and converge pointwise to H, the B C T condition
implies 21 Jrfsh(s,t) du(s) dv(t) = [Hdv = glPhk, where the series
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converges in Z. Since the argument above is obviously applicable to any rearrange-

ment of the series Xh,, the series ZPh, is u.c. and P is u.c.

' From the remarks above, when v has B C T, the product measure u X v has
values in Z and is countably additive.

We now give some conditions on v which are equivalent to B C T and which are
often more easily checked than B C T. These conditions have been treated by
several different authors for normed spaces ; their methods can be easily adapted to
treat the locally convex case so we only indicate appropriate references.

Theorem 4. Let v:¥— Y. The following are equivalent:
(i) vhas BCT

(ii) for each disjoint sequence {A;}cX and bounded sequence {x;}c X, the
series Xx;v(A;) converges in Z

(iii) v is dominated, i.e., for each continuous semi-norm r on Z there is
a continuous semi-norm p on X and a positive measure # on X such that
B(A)— 0 implies v, ,(A)—0 ([21])

(iv) for each continuous semi-norm r on Z there is a continuous semi-norm p on
X such that v, , is continuous at @, i.e., A, € X, A, |0 implies v, ,(A;)— 0.

Proof: (i) implies (ii): The sequence of partial sums » c.X. converges
k=1

pointwise and is bounded in X so by B C T the series >, x,v(A,) converges.
k=1

That (ii) implies (iii) follows from the argument that F, implies F; in the proof of
Theorem 6 of [3] .and a familiar criteria for weak compactness in ca(Z) ([14] IV.
9.2).

That (iii) and (iv) are equivalent follows from the proof of Lemma 2 of [7]:

Finally (iv) implies (i) follows from the bounded convergence theorem (again
adapted to the more general situation) developed by either Bartle ([2]) or
Dobrakov ([6]). ‘

Remark 5. See [3], Theorem 6, for even further conditions equivalent to the
bounded multiplier condition (ii).

In [21], Theorem 6, it is shown that if v: ¥ — Y is dominated (as in (iii)), then v
has a countably additive Z-valued product with respect to any X-valued measure
u. It is interesting to see that this condition arises naturally in the form of the
bounded convergence theorem when the iterated integral approach to the product
measure as above is used.

Also if Z =X ®. Y and u is the tensor map, then it is shown in [21], Theorem 11,
that any measure v:¥— Y is dominated with respect to u. This fact along with
Theorem 3 yields the result of E. Thomas on &-tensor products of vector measures

(122).

It should also be pointed out that the approach to the product measure above
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gives a ‘“measure” on the Borel sets of S x T whereas the more standard
construction ([12]) gives a product measure only defined on, the o-algebra
generated by B(S) X B(T), in general a smaller g-algebra than (S x T) (see also
Theorem 3, [8]).

We now give some indication as to the necessity of the property B C T for the
existence of the product measure.

Example 6. ([1]) Let X =c,, Y=1I" and Z=1'(co) =!'"®=c, ([23] 44.2) with u
the tensor map. Let S = T =N equipped with the discrete topology. Suppose the
series Xy, is u.c. in I', y, ={y,; }=:. Then the series induces a measure v on %B(N)
via v(E)= . y., E = N. We show that if v is such that the product u X v with any

n e€E
measure u: B(N)— ¢, has values in /'(¢c,), then Xy, is absolutely convergent or v
has bounded variation.
Let {¢, } € co and e, € ¢, be the sequence {6, };=:. Define a measure y: B(N)— ¢,

by u(E)= D te,. If uxv is countably additive and has values in /'(c,), then
neE

>uxv(m,n)is uc. Thus, if £={e,}r-, € [*(I') = (I'(co))’, then

SHEwxv(m 1) = yunt| = 3 ltn] D [y <.

Since {t,} € co is arbitrary, this gives >, [Vum|= 2 ||¥alls <.

Now any vector measure of bounded variation is dominated with respect to any
bilinear map ([21] Prop. 8) so it follows that v satisfies B C T. This shows that the
B C T condition of Theorem 3 is necessary at least in this particular situation.
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IMPOU3BEOJEHUS BEKTOPHBIX MEP ITPU ITOMOIIU TEOPEMbI ®YBVHU
YapazCsapu
Pe3omMe

ITycte S 1 T — nokanbHO KOMMAKTHblE XayclOpc¢oBbI MPOCTpaHCTBA, X, Y U Z — JNOKaNbLHO
BBINYKJIBIE NPOCTPAHCTBA M U — OTAENbHO HENPEPLIBHOE GMiIMHENHHOe OoToGpaxkeHue M3 X XY B
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Z (u(x, y)=xy). Ilycrb u(v) — perynspHas X-3uaunas (Y -3HauHas) Mepa Ha GOPEJIEBCKUX MHOXKECT-
Bax B S(T). [Ipu Hagnexaumx yCIOBHSX ONpPERENAETCS HEMPEpPbIBHBIH JIMHEHHbIA onepaTop P Ha
NPOCTPAHCTBE HeNpephiBHLIX yHKUMi Ha S X T uaymux K Hymo B ©, Cu(S X T), npu nomoum
MHEpUpOBaHHOTO MHTerpana Ph=[,[sh(s,t)du(s)dv(t). Vicnons3ys o606wenue TeopeMbl Pucca
O MpeACTaBJIECHMH, JOKA3bIBAETCA CYLIECTBOBaHME Z"-3HAYHOH Mepbl A Ha GOPesIEBCKUX MHOXECTBAX B
S X T; A Ha3bIBaeTCH MPOU3BEJCHNUEM [ U V OTHOCUTENBHO U. IIpHBENEHBI HEKOTOPbIE AOCTATOYHbIE
yCOBUA AJsl TOTO, 4TOObI Mepa-npon3BeicHuE A Ha CaMOM JieJie MPUHUMaa CBOM 3HaYeHus u3 Z.
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