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PRODUCTS OF VECTOR MEASURES 
BY MEANS OF FUBINI'S THEOREM 

CHARLES SWARTZ 

Let 5 , T be locally compact Hausdorff spaces with 2fc(S), 2ft (T) the Borel sets of 
5, T and let X, Y, Z be quasi-complete locally convex Hausdorff spaces with u: 
XxY-*Z a separately continuous bilinear map. For convenience we write 
u(x,y) = xy for xeX, yeY. Let p: 3ft(S)->X and v: ffl(T)-+Y be countably 
additive set functions which are weakly regular in the sense that x'\i (y 'v) is regular 
for each x' eX' (y' e Y') ([5] Def. 2.6). We define the product measure (j, x v of \i 
and v with respect to the bilinear map u by essentially using the idea which was 
employed by M. D u c h o n in [9] to define the product for two vector measures of 
bounded variation (cf. also [22]). That is, \i(v) induces a continuous linear operator 
M: C0(S)-*X via Mf = Ufd\i (N: C0(T)-±Y by Ng = $Tgdv), where C0(S) 
denotes the B-space of continuous real-valued functions on S which vanish at o° 
equipped with the sup-norm (we assume all vector spaces are real for convenience). 
The integral here is understood to be that of D. R. Lewis [17]. The product \iXv 
is constructed by defining a continuous linear map P: C0(5 x T)—>Z by means of 
the iterated integral Ph = iTjsh(s, t) dfi(s) dv(t); the integral used here is 
indicated briefly in section 1. By a generalization of the Riesz-Representation 
Theorem ([5] Theorem 2.2; [24]) there is a unique finitely additive set function A: 
i ( 5 x T ) - ^ Z " such that Ph=U*rhdk, heC0(SxT), (A has other properties 
which we indicate later) and we define the product of \i and v to be A (compare 
with [9]). 

One unpleasant feature of this approach to the product measure is that the 
product measure A takes its values in Z", the bidual of Z (see, however, [13], [16] 
or [19]; this phenomena is not uncommon in vector measures [8]). In Theorem 3 
we give sufficient conditions for A to actually have its range in Z and then we 
present an example to show that at least in some situations this condition is also 
necessary. 

1. Integration of vector functions with respect to vector measures 

In this section we very briefly outline the integral required to define the operator 
P above. It is only necessary that we integrate bounded functions so we do not 
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attempt to give a complete discussion of the integral. (Recall that even integrating 
bounded vector functions with respect to vector measures is non-trivial, [6] 
Example 1.) 

Let Z be a a-algebra of subsets of some set Q and v: I—> Y countably additive. 
Let Sf(Z, X) be the space of all X-valued .T-simple functions. If s = 

X cEjCi e ^(-T, X),where cE denotes the characteristic function of E and the {E,} 
i = \ 

are disjoint, the v-integral of s over A is given by 

n 

$Asdv = ^xiv(AnEi) (1) 

(as usual the definition is independent of the representation of s). We say that v has 
bounded u -semi-variation if for each continuous semi-norm r on Z there is 
a continuous semi-norm p on X such that 

V r ( f l ) = sup{r(Jjc,v(E l)):{-5i: 1 ^ / ^ n } (2) 

partition of Q, p (x,) ^ 11 < oo 

(vp,r is the /?, r semi-variation of v ; see [21] §1), From (1) and (2), we obtain 

r ( J 0 5 d v ) ^ s u p { p ( j c , ) : l ^ i ^ / i } V r ( - Q ) - (3) 

If we equip 6^(X, X) with the topology of uniform convergence on Q, then (2) 
implies that the integral with respect to v is a continuous linear map from ^(H, X) 
into Z and if we let B(Z, X) be the closure of 5^(.T, X) in the topology of uniform 
convergence on Q, the integral has a unique linear extension to B(Z, X). Thus if 
feB(I, X) , there is a net of simple functions {sa} converging uniformly to / and 

J« /dv = lim J«s adv, r (Jo/dv)^v p , r (£2) supp(f(t)). In particular, every function 

/ G C 0 ( T , X) belongs to B(8ft(T), X) and therefore is integrable with respect to 
v.m(T)-*Y ([20] Prop. 1). 

2. The product measure 

Let iU:S8(5)->X, v:58(T)-> Y be countably additive and weakly regular ([5] 
Def. 2.6.) with v being of bounded u-semi-variation. Then JU(V) induces 
a continuous linear map M: C0(S)-*X (N: C0(T)^>Y) via M/ = J s /d l i 
(Ng=jTgdv) ([17]). Define a continuous linear map P: C ( ) ( 5 x T ) - > Z by 
Ph=$T\sh(s,t)&n(s)&v(t). Note that since the function t->$sh(s, t)d^i(s) is 
continuous and vanishes at o°, the iterated integral defining P exists, and for any 
continuous semi-norm p on X p($sh(s,t) dju(s))^sup {|rz(s,0l : seS, 
t e T}fip(S), where fip is the scalar semi-variation of \i with respect to p ([14] IV. 
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10.3), so from (2) and (3) it follows that P is continuous. By a generalization of the 
Riesz Representation Theorem ([5] Theorem 2.2; [24]), there is a unique finitely 
additive set function A: 2ft(S xT)->Z" such that A has finite semi-variation, A is 
weakly regular (i.e., (A(-), z') is regular for each z' eZ') and Ph = JSxTAdA for 
h e C0(S x T). We define the product of \i and v (with respect to u) to be A and 
write A = \i x v. Z" carries the topology of uniform convergence on equicontinuous 
subsets of Z \ 

To see that definition above is reasonable, consider the case where u: Xx Y—> 
X(x)ey, the completion of X®Y with respect to the inductive tensor topology 

([23] §43). For x' e X', y' e Y' we have (x'®y', JSx7<p(x)i/;dA) = JSx7<p ® 
\pd(x' ® y \ A) = JSx7<p ® tydx'iixy'v for q)eC0(S), xpeC0(T). Thus 
(x'®yf, A) = x'\i Xy'v and since {x'®y':x' eX', y' e Y'} separates points in 
X®Y, A(A xB) = ii(A)®n(B) for A e@(S), Be@(T). This agrees with the 
previous definition of the tensor product measure as given in [10], [11], [12]. 

It should be pointed out that one shortcoming of this approach to the product 
measure via an iterated integral is that one must assume that the measure v has 
bounded semi-variation ([20] §1) in order to insure that the v-integral exists. 
However, spectral measures in general do not have bounded semi-variation but 
a meaningful and useful theory of products of spectral measures can be developed 
([4])-

Another difficulty with this approach to the product measure is that the product 
has values in Z" and not in Z ; this is, of course, unavoidable as several examples 
illustrate ([13], [16], [19]; see also [8], Th. 1.). We would like to obtain reasonably 
broad conditions on the measures pi and v which will guarantee that fixv has 
values in Z (and is then countably additive with respect to the topology of Z). Of 
course, if Z is semi-reflexive, A has values in Z and is countably additive. Now 
fUXv has values in Z exactly when the operator P corresponding to /* x v is weakly 
compact ([5] Th. 4.4) and in this case \i x v is countably additive with respect to the 
original topology of Z. To show P is weakly compact (under appropriate 
conditions), we employ some results of Pelczynski on weakly compact and 
unconditional converging operators ([18]). 

Recall that a continuous linear operator U: X—> Y is unconditionally converging 
(u.c.) if U carries weakly unconditional Cauchy series (w.u.c. series) into uncondi­
tionally converging series (u.c. series) [18]. (A series Zxn is w.u.c. if 
Z\(x\x„)\<voforx'eX' and is u.c. if every rearrangement converges [18], [15].) 
Pelczynski ([18]) showed that C(S), S compact Hausdorff, has the property that 
a continuous linear operator U: C(S)^> Y, Y locally convex, is weakly compact if 
and only if U is u.c. (Pelczynski's result is stated for Y a B-space but the proofs 
are valid for locally convex spaces, see [15]). It is easily seen that C0(S) has the 
same property since C0(5) is a complemented subspace of C(S*), where S* is the 
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one-point compactification of S. Thus to show that the operator P above is weakly 
compact it suffices to show that P is u.c. 

We now impose a condition on the measure v which is sufficient to guarantee 
that P is u.c. Since the condition is related to the bounded convergence theorem, 
we also further restrict S, T, X, Y and Z . Henceforth, we assume that S and T are 
a-compact and X, Y, Z are Frechet. Thus if / : T—>X is continuous and vanishes at 
oo, there is a sequence {sn} in y(2ft(T), X) which converges uniformly to / on T 
and JVsndv —>$Tfdv. In this situation we extend the v-integral from B(3ft(T), X) 
by means of 

Definition 1. A function f: T—>X is v-integrable iff 
(i) there is a sequence {sn} of 8ft(T)-simple X-valued functions such that {sn} 

converges to f pointwise on T 
(ii) {JVsndv} is Cauchy in Z. The integral of f is defined to be JV/dv = 

lim JVsndv. 
Then the definition is independent of the sequence {sn} and due to the additional 

restrictions agrees with the previous definition of the v-integral. 
The condition imposed on v is given in 

Definition 2. The measure v: Z—> Y has property B C T (with respect to u) if v 
satisfies the conclusion of the bounded convergence theorem for X-valued func­
tions. That is, if fn:Q^>X is a sequence from B(Z, X) converging pointwise to 
a function f and if {fn (t): n ^ 1, / e Q} is bounded in X, then f is v-integrable and 
$afndv^$vfdv. 

For the case when X and Z are B-spaces and Y = L(X, Z), Dobrakov gives 
sufficient conditions for the bounded convergence theorem to hold ([6]). We will 
list conditions equivalent to the B C T condition in Theorem 4 below. Pertaining to 
// x v, we have 

Theorem 3. Suppose v has B C T. Then Pis u.c. (and hence weakly compact). 

Proof : Suppose Zhk is w.u.c. in C()(S x T). Then \ ^hk:o a finite subset of the 
Ik e a 

positive integers N\ is a bounded subset of C0(S x T) ([15]). Thus for each t e T, 

^hk(,t) is w.u.c. in C0(S) ([15]). Now M is weakly compact so ^Mhk(-, t) = 
k=i k=\ 

2 $shk(s, t)dn(s) = H(t) is u.c. in X (with limit H(t)). Since the partial sums 
k = l 

\ ^Mhk(-, t)\ are bounded and converge pointwise to H, the B C T condition 

implies ^ $T$shk(s,t) dp(s) dv(t) = $THdv = ^Phk, where the series 
k=l k=\ 
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converges in Z. Since the argument above is obviously applicable to any rearrange­
ment of the series Zhk, the series ZPhk is u.c. and P is u.c. 

From the remarks above, when v has B C T, the product measure \i x v has 
values in Z and is countably additive. 

We now give some conditions on v which are equivalent to B C T and which are 
often more easily checked than B C T. These conditions have been treated by 
several different authors for normed spaces; their methods can be easily adapted to 
treat the locally convex case so we only indicate appropriate references. 

Theorem 4. Let v:Z—> Y. The following are equivalent: 
(i) v has B C T 

(ii) for each disjoint sequence { A j c l and bounded sequence {jcy }cX, the 
series .Zx7v(Ay) converges in Z 

(iii) v is dominated, i.e., for each continuous semi-norm r on Z there is 
a continuous semi-norm p on X and a positive measure (3 on Z such that 
[3(A)->0 implies vp,r(A)->0 ([21]) 

(iv) for each continuous semi-norm ronZ there is a continuous semi-norm p on 
Xsuch that vpr is continuous at 0, i.e., A, e l , A}[0 implies vp,r(Aj)-^>0. 

n 

Proof: (i) implies (ii): The sequence of partial sums ^cAkxk converges 
* = i 

pointwise and is bounded in X so by B CT the series ^xkv(Ak) converges. 
fc=i 

That (ii) implies (iii) follows from the argument that F2 implies F3 in the proof of 
Theorem 6 of [3] ,and a familiar criteria for weak compactness in ca(2) ([14] IV. 
9.2). 

That (iii) and (iv) are equivalent follows from the proof of Lemma 2 of [7], 
Finally (iv) implies (i) follows from the bounded convergence theorem (again 

adapted to the more general situation) developed by either Bar tie ([2]) or 
Dobrakov ([6]). 

Remark 5. See [3], Theorem 6, for even further conditions equivalent to the 
bounded multiplier condition (ii). 

In [21], Theorem 6, it is shown that if v: _T—> Y is dominated (as in (iii)), then v 
has a countably additive Z-valued product with respect to any X-valued measure 
[i. It is interesting to see that this condition arises naturally in the form of the 
bounded convergence theorem when the iterated integral approach to the product 
measure as above is used. 

Also if Z = X(x)e Y and u is the tensor map, then it is shown in [21], Theorem 11, 
that any measure v:_T—» Y is dominated with respect to u. This fact along with 
Theorem 3 yields the result of E. Thomas on s-tensor products of vector measures 
([22]). 

It should also be pointed out that the approach to the product measure above 
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gives a "measure" on the Borel sets of S x T whereas the more standard 
construction ([12]) gives a product measure only defined on, the cx-algebra 
generated by 2ft (S) x 2ft (T), in general a smaller a-algebra than 2ft (S XT) (see also 
Theorem 3, [8]). 

We now give some indication as to the necessity of the property B C T for the 
existence of the product measure. 

Example 6. ([1]) Let X = c0, Y = V and Z = ll(c0) = ll®nc0 ([23] 44.2) with u 
the tensor map. Let S = T = N equipped with the discrete topology. Suppose the 
series Zyn is u.c in l\ yn = {yni }r=.. Then the series induces a measure v on 2ft(N) 

via v(E) = ^ yn, E czN. We show that if v is such that the product \i x v with any 
n e E 

measure fi: S8(IV)—>c0 has values in F(c0), then Zyn is absolutely convergent or v 
has bounded variation. 

Let {tn }ec0and en ec0be the sequence {<5n/}~=i. Define a measure (i: 2ft(N)-*c(} 

by {i(E)= ^tnen. If \i x v is countably additive and has values in V(c0), then 
n e E 

^ x v ( m , « ) is u.c. Thus, if £ = {<?„}„"=, e /"(/') = (l'(c„))', then 
n, m 

2 I (£, ft X V(m, «)> | = 2 \y~Jm I = 2 I'm I 2 |y-m I < °° • 
n , "« m , n m n 

Since {t„} e c0 is arbitrary, this gives X ly™ I = 2 lly" II i < °°-
nm n 

Now any vector measure of bounded variation is dominated with respect to any 
bilinear map ([21] Prop. 8) so it follows that v satisfies B C T. This shows that the 
B C T condition of Theorem 3 is necessary at least in this particular situation. 
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ПРОИЗВЕДЕНИЯ ВЕКТОРНЫХ МЕР ПРИ ПОМОЩИ ТЕОРЕМЫ ФУБИНИ 

Чарлз С в а р ц 

Р е з ю м е 

Пусть 5 и Т - локально компактные хаусдорфовы пространства, X, У и 2, - локально 
выпуклые* пространства и и - отдельно непрерывное билинейное отображение из X х У в 
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7. (и(х, у) = .гу). Пусть 1*(у) - регулярная Х-значная (У-значная) мера на борелевских множест­
вах в 5(Т). При надлежащих условиях определяется непрерывный линейный оператор Р на 
пространстве непрерывных функций на 5 х Т идущих к нулю в ю, С0(5 х Г), при помощи 
инерированного интеграла РН = ^Т^5Л(^, ()6Ц(5)6У((). Используя обобщение теоремы Рисса 
о представлении, доказывается существование 2Г"-значной меры А на борелевских множествах в 
5 х Т; А называется произведением // и V относительно и. Приведены некоторые достаточные 
условия для того, чтобы мера-произведение А на самом деле принимала свои значения из Т.. 
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