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SEMIGROUPS CONTAINING MAXIMAL IDEALS 

STEFAN SCHWARZ 

A left ideal L of a semigroup S is called maximal if L £ S and no proper left ideal 
of S properly contains L. Analogously maximal right and two-sided ideals are 
defined. 

Denote by L*, R*9 M* the intersection of all maximal left, maximal right and 
maximal two-sided ideals of S, respectively. 

The purpose of this paper is to clarify the interdependence of the sets L*,R* and 
M*. Necessary and sufficient conditions are given for the validity of L* = M* and 
L* = R*. Conditions for inclusions like L*^M* or L*^M* are obtained. 

A semigroup need not contain maximal left (right, two-sided) ideals. The 
non-existence of, e.g., maximal two-sided ideals has two sources, i) The semigroup 
S is a simple semigroup (without zero), so that there are no two-sided ideals except 
S itself, ii) To any two-sided ideal Aaj=S there is a two-sided ideal Afij=S such that 
Aa^Ap. Analogously for one-sided ideals. 

To get some results we shall impose, where needed, some of. the following 
weakest possible conditions: 

ML: S contains at least one maximal left ideal. 
MR: S contains at least one maximal right ideal. 
Mji S contains at least one maximal two-sided ideal. 
The questions concerning maximal ideals can be treated by means of 5£, $l9 

^-classes using the usual ordering of these classes. 
The following result will be used: A left ideal L of S is a maximal left ideal of S 

iff S — L is a maximal !£-class of S. Analogously for maximal two-sided ideals. 
(See, e.g., [3], [5].) 

We shall use the following special notation: If La is a maximal left ideal of S, 
then the maximal ^-class S—La will be denoted by La. Hence La =S — La and 
La=S-La. 

Note finally for further purposes: If any 5E-class La (not necessarily a maximal 
if-class) meets a left ideal L, then La aL. 

The conditions ML9 MR and M- are independent. This is shown on the following 
examples. 

157 



E x a m p l e 1. If S satisfies ML and MR, it need not satisfy M,. Let B be the 
bicyclic semigroup, i.e. the semigroup with two generators p, q submitted to the 
relation pq = \. Then L = S - {1, q, q2, ...} is the unique maximal left ideal of B, 
R=S — {1, p, p2, ...} is the unique maximal right ideal of B, while B (being 
simple) has no maximal two-sided ideal. 

A much more instructive example in which ML and MR hold, there is an 
increasing chain of two-sided ideals, but not a maximal two-sided ideal is given in 
[5] (Example 5,2). 

E x a m p l e 2. We next show that ML and M- do not imply MR. Let S be a simple 
semigroup containing at least two minimal left ideals, which is not completely 
simple. It is known that such semigroups exist and S is the union of its minimal left 
ideals, S = [Jlv. Further any £%-class in S is a one-point set. (See [1], section 8,2.) 

Suppose, for an indirect proof, that S contains a maximal right ideal R. Then 
R =S — {a} for some 31 -class {a}. The element a is contained in some minimal left 

ideal, say aelaczS. We have (S - {a})-S => (IJ 'v) S = 5. Hence R is not a right 
\ v*a / 

ideal (even less a maximal right ideal). S does not contain maximal right ideals. 
Let now S°= {0}uS be the semigroup obtained by adjoining a zero 0. Then S° 

contains a maximal two-sided ideal, namely {0}. It is clear that S contains maximal 
left ideals but no maximal right ideals. Hence M} and ML do not imply MR. 

E x a m p l e 3. To show that Ms does not imply ML or MR consider the following 
example used in the literature as a counterexample for various purposes. 

Let S be the set of all couples (m,n) of positive real numbers and define 
a multiplication by (a, b)(c, d) = (ac, bc + d). This is a simple cancellable 
semigroup in which every i^-class and every 01 -class is a one-point set. Let 
(m,n)eS. We show that T = S — {(m, n)} is not a left ideal (even less a maximal 

left ideal). For, take the element (m,-\ eTczS. Then ST contains ( 1 , - — j 

( m, -) = (m, n). Hence T is not a left ideal of S. An analogous argument shows 

that S does not contain a maximal right ideal. Consider next the semigroup 
S°= {0}uS. Then S° contains a maximal two-sided ideal, namely {0}, but it does 
not contain maximal left or right ideals. 

E x a m p l e 4. To stress the weakness of the condition M, we give a simple 
example of a commutative semigroup S satisfying Mj, in which there is a proper 
ideal of S which is not contained in a maximal ideal of S. Let S0 be the 
multiplicative semigroup of real numbers from the half-open interval (0, 1) and 
St = {0, a,}, i = 1, 2, ..., n, where a* =a,, the element 0 having the usual properties 
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of a multiplicative zero. The 0-direct union S = S0uS1u.. . ,uSn contains exactly n 
maximal ideals (namely the sets S — {af}), while the ideal S iuS 2 u. , .uS„ is not 
contained in a maximal ideal of S. 

1. The relation between L* and M* 

The following has been proved in [4]. 

Lemma 1. If S satisfies the condition M3, then M*=£0. 
Several authors have noticed (see, e.g., [6]) that this need not be true for L* 

without giving more precise results. The following Lemma is implicitly contained in 
a more general statement in [2], where unary algebras are studied. 

Lemma 2. Suppose that S satisfies the condition ML. Then L* = 0iffS is a simple 
semigroup (without zero) containing a minimal left ideal. 

Proof. Let {LJa eH} be the set of all maximal left ideals of S and {La \aeH} 
the corresponding set of all maximal i?-classes. The formula f]La =C\(S — L a) = 

a a 

S-\jLa implies that L* = 0 iff S = \jLa. ML implies c a r d H ^ 2 . 
a ' a 

Suppose L* = 0. Let La be any of the maximal J£-classes and aeLa. The 
principal left ideal (a, Sa) cannot contain properl^ a left ideal B of S. For 
B<^(a, Sa) and b eB would imply (b, Sb)czB^(a, Sa). Hence (denoting by Lb 

the i£-class containing b) Lb^La. This is a contradiction with the fact that all 
J£-classes in S are maximal if-classes. Hence (a, Sa) is a minimal left ideal of S and 
the minimality implies also (a,Sa) = Sa. Now aeSa for any aeLa implies 
La cz SLa. Since for any xeLa we have Sx = Sa, we obtain La czSa. 

Now Sa cannot meet a class Lp, (}£a. For b eSanL? would imply Sba(b, 
Sb)czSa, therefore Sb =Sa. Hence b eLa, which is a contradiction with b eL?. 
We have Sa c=La, and finally La=Sa. 

Write La = Saa ,aaeLa. Then S can be written as a union of minimal left ideals of 
S in the form S = [JSaa. The end of the proof is now a well-known routine. For any 

a 

x e S we have Sxaa a Saa and since Saa is minimal Sxaa = Saa. Hence S = [JSxaa <= 
a 

SxS. Therefore S = SxS for any xeS, which proves that S is a simple semigroup. 
Conversely, if S is a simple semigroup containg a minimal left ideal, it is well 

known that S can be written in the form S = ( Jk > where each la (a e H) is a minimal 
a 

left ideal. Every maximal left ideal is of the form S — lp (fieH), so that L* = 0. 
(Note that ML implies Cardi f f2 . ) 

Before introducing Definition 1 below consider the following example (see 
Example 5,1 in [5]): 

159 



Examp le 5. Let S = {0, ea, e^, u, v, e} be a semigroup with the multiplication 
table 

Єa Єß u V e 

ea Єa 
0 0 V e 

Єß 0 Єß u 0 0 
u u 0 0 Єß w 
V 0 V e 0 0 
e e 0 0 V e 

This semigroup contains two maximal left ideals La = {0, ep, u, v, e}, Lp = {0, ea, 
u, e} and two maximal right ideals Ra = {0, e^, u, v, e} Rp = {0, ea, v, e}. We have 
L* = {0, u, e}, R* = {09 v, e}. There is a unique maximal two-sided ideal 
M* = La=Ra. We have L* = M * - { i ; , ep}=M*-Lfi and R* = M*-{u, ep} 
= M* — Rp. Note that Lp and Rfi do not contain maximal two-sided ideals of S. 

This example shows that even in the finite case a maximal left ideal of S need not 
contain a maximal two-sided ideal of S. 

The next theorem shows under what conditions this cannot take place. 

Theorem 1. Suppose that S satisfies the conditions ML and Mj. Then a maximal 
left ideal La of S contains a fnaximal two-sided ideal of S iff La nM* = 0. 

Proof, J) Suppose that LanM* = 0. Then there is at least one maximal 
two-sided ideal of S, say Ma, which does not contain La (and does not meet La). 
Hence MaaS-La=La, q.e.d. 

[Note, by the way, that Ma is uniquely determined. For, if Ma, M? were two 
different maximal two-sided ideals contained in La, we would have MauM„ c L a . 
On the other hand the maximality implies Ma uMp = S, which is a contradiction.] 

ii) Suppose conversely that La is a maximal left ideal of S and S — La=La <=. M*. 
La cannot contain a maximal two-sided ideal of S, say Mp. For, MpczLa would 
imply Mp nLa = 0, hence La is not contained in M*, contrary to the assumption. 

Definition 1. Let S be a semigroup satisfying ML and Mj. We shall say that 
S satisfies the condition A, if every maximal left ideal of S contains a maximal 
two-sided ideal of S. 

Theorem 1 implies: 

Theorem 2. A semigroup S satisfies condition At iff none of the maximal 
^-classes of S is contained in M*. 

Let {Mi\leA} be the set of all maximal two-sided ideals of S. Denote 
J1 = S —Mi. Then {Jl\l 6 A } is the set of all maximal ^-classes. It is known ([4]) 

that S=M*u|"u J'L w h e r e J'l'J'2^M* for 1,-hh. 
L/ e A J 
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The condition of Theorem 2 can be therefore formulated as follows: Every 
maximal if-class is contained in some maximal $ -class. 

In Example 3 we have seen that a maximal two-sided ideal of S need not be 
contained in a maximal left ideal of S. 

Definition 2. Let She a semigroup satisfying the conditions ML and Mj. We shall 
say that S satisfies the condition Bt if every maximal two-sided ideal of S is 
contained in a maximal left ideal of S. 

In orther words: If every maximal J -class contains a maximal if-class of S. 
Consider now the set of all maximal if-classes. Such an if-class is contained 

either in M* or in one of the Jz, leA. 
Denote by {LI \j e 1} the set of all maximal if-classes contained in M* and put 

z, = UD-
Denote by {Jk \k e K} the set of those maximal ^-classes each of which contains 

at least one maximal if-class of S. Then 

S=M*u[uHuT" (!) 
Lfc e K J 

where T, = U Jh • Here K or A - K may be empty. The ̂ -class Jh, h e A - K, is 
h e A.-K 

characterized by the fact that no if-class contained in Jh is maximal. 
Let {Lk,a\a eAk} be the set of all maximal if-classes contained in Jk

9 keK. 
Then S—Lk,a is a maximal left ideal containing the maximal two-sided ideal 
S-Jk=Mk. 

The intersection of all maximal left ideals of S, 

L*= ni*=n(-s-L')=s- \jis, 
0 eH p 0 eH 

is given by 

L* = S-Zl-\J\jLka. 
k a 

Using the expression (1) we have 

L* = (M*-Z/)uT,U \jk- U * H -
fceKL a e Ak J 

For a fixed keK we have 

Ck=Jk- U Lka=S-Mk-\jL
ka = (s-\jLka)-Mk= r\Lk,a-Mk. 

a e A k a \ a ' a e Ak 
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Here the first term C\Lk,a is the intersection of all maximal left ideals containing 

Mk. 
The formula 

L* = ( M * - Z , ) u Г , u U GІ (2) 
k є K J 

will allow us to give very definite results concerning the relation between L* and 
M*. 

To understand well the meaning of the set Ck consider the factor semigroup 
S = SIMk and the corresponding homomorphism cp: S-+S, which sends Mk into 
a new zero 0 while retaining in essential the meaning of all the elements 
eS —Mk=Jk. The semigroup 5 is a 0-simple semigroup (with zero 0). If L is 
a maximal left ideal of 5 containing Mk, then qp(L) is a maximal left ideal of S and 
C fcu{0} is the intersection of all maximal left ideals of 5. (All up to a trivial 
isomorphism.) 

It should be remarked that we shall use several times the following: If A is 
a two-sided ideal of S, then the if-classes contained in S - A are just the non-zero 
i^-classes of SI A. Analogously for 91 and ^-classes. 

In order to find conditions under which Ck is empty we first prove 

Lemma 3. Let S be a semigroup with 0 satisfying the condition ML. Then L* = 0 
iff S is a 0-disjoint union of 0-minimal left ideals. 

Proof. Let { L a | a e i L } be the set of all maximal left ideals of S. Then 
L* = 0 (S ~La) = S - [jLa. Hence L* = 0 iff S = {0}u{ U La}, where each La is 

a e H a a e H 

a maximal cSf-class of 5. The proof is now analogous to that of Lemma 2 but we 
must be careful, since nilpotent elements may occur. 

i) Suppose L* = 0 and let a eLa. The left ideal (a, Sa) cannot contain properly 
a non-zero left ideal B of S. For, suppose 0j=B Sj(a, Sa). Choose b eB, 6-/-0. 
Then (b, Sb)czB p (a, Sa), hence Lb ^La, a contradiction. Therefore (a, Sa) is 
a 0-minimal left ideal of S. [Note explicitly that there may happen that Sa = 0, in 
which case (0, a) is nilpotent.] 

For any xeLa we have (x,Sx) = (a,Sa), hence L a cz(a ,5a ) . Next (a,Sa) 
cannot meet LP, p±a. For, be (a, Sa)nL?, b=/=0, would imply (b, Sb)<=(a, Sa), 
and (with respect to the minimality) (b, Sb) = (a, Sa) and b eLa, a contradiction. 
Therefore (a, Sa) - {0} czLa. Finally La = (a, Sa) - {0}. Hence S is a 0-disjoint 
union of 0-minimal left ideals: 

5 = U la • (3) 
a є H 

Hereby / a = L a u { 0 } . 
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JJ) If, conversely, S is of the form (3), then any maximal left ideal of S is of the 
form La=\Jle, (5eH, 0 -£a, so that L* = 0. 

Corollary 3. Let S be a O-simpIe semigroup satisfying condition ML. Then L* = 0 
iff S contains a O-minimal left ideal. 

Corollary 3 implies: 

Lemma 4. The set Ck(k e K) is empty iff the semigroup S = S/Mk is a O-simpIe 
semigroup containing a O-minimal left ideal of S. 

For brevity in formulations we introduce the following notion: 

Definition 3. A O-simpIe semigroup is called a Gi-semigroup if it contains 
a O-minimal left ideal.(1) 

The decomposition (1) implies that SIM* is a 0-direct union of 0-simple 
semigroups 

S/M*a[ur]u[ U Jh], 
Lfc єK J L/i є Л - K J 

where J1 =SIMt. 
The set U Ck is empty iff each Jk(keK) is a G/-semigroup. 

k e K 

Recall that Tt=0 iff 5 satisfies condition Bt and Z7 = 0 iff S satisfies condition A,. 
The decomposition (2) implies the following results: 

Theorem 3. Lef S be a semigroup satisfying ML, Mj9 and the condition Bt. Then 
L* = M* — Zi iff SIM* is either a Gi-semigroup or a 0-direct union of Gt-semi-
groups. 

If 5 is finite, the condition B{ is satisfied, SIM* is always either a G,-semigroup 
or a 0-direct union of G,-semigroups. Further ML and M- are satisfied, unless 5 is 
a simple semigroup. Hence we have: 

Theorem 4. Let S be a finite semigroup which is not simple. Then L* = M* — Zi. 
We have L* = M* iff S satisfies the condition A,. 

Note that in this case if the condition A, is not satisfied, we have strictly L* p M*. 
In the most general case we have: 

Theorem 5. Let S be a semigroup satisfying the conditions ML and M3. Then 
L* = M* iff 

i) S satisfies the conditions At and Bt; 
ii) SIM* is either a Gi-semigroup or a 0-direct union of Gi-semigroups. 

(1) This includes the case of a null semigroup of order two. 
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Note that in this case if S satisfies A/, we have L* = M*uT/U UGІ. 
k є K J 

Hence L* 

may be strictly larger than M*. [This is the case, e.g., for the bicyclic semigroup B 
with a zero adjoined.] 

2. The relation between L* and R * 

We now take into account the intersection of all maximal right ideals R*. 

Definition 4. Suppose that S satisfies MR and Ms. We shall say that S satisfies the 
condition Ar if every maximal right ideal of S contains a maximal two-sided ideal of 
S. Further we shall say that S satisfies the condition Br if every maximal two-sided 
ideal of S is contained in a maximal right ideal of S. 

In order to get a formula analogous to (2) we denote by Zr = [J R' the union of 

all maximal 3ft-classes of S contained in M*. Next we denote by Tr the union of all 
maximal </-classes each of which does not contain a maximal <%-class of S. Let 
finally {Mk\keKx} be the set of all maximal two-sided ideals of S which are 
contained in a maximal right ideal of S. For a fixed Mk9 keKu denote by 
MkuDk[MknDk = 0 ] the intersection of all maximal right ideals of S containing 
Mk. 

With these notations we have 

K* = (M*-Z r)uT ru[ U Dk] . (4) 

We first clarify under what conditions Zr = Zi and Ck=Dk, keKnKx. 

Lemma 5. Let S be a semigroup with 0, satisfying ML and MR. Suppose that 
L* = R * = 0. Then S is a 0-direct union of a null semigroup A and of completely 
0-simple semigroups K,(j eA'): 

S=Лu U к]. 
j є Л ' J 

Hereby A or the X, may reduce to {0}. 
Proof. By Lemma 3 and its right dual, S is a 0-disjoint union of 0-minimal left 

ideals 

S = U /« , (5) 
a e Ai 

as well as a 0-direct union of 0-minimal right ideals 

S = U ra . (6) 
a e A 2 
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We now use Theorem 6,37 of [1] by which a semigroup having the properties (5) 
and (6) is a 0-direct union of a null semigroup and of completely O-simple 
semigroups. 

More precisely: Denote by N0[Nf
0] the union of all summands in (5) [in (6)] 

which are nilpotent and by NifNi] the union of all summands in (5) [(6)] which are 
non-nilpotent. Hence S = N 0 u N 1 = N 0 u N I . Then Nt = N[ is a two-sided ideal and 
if Nx =£ 0, Nx is a 0-direct union of all the completely 0-simple ideals of S. Further 
N0 = N0 is a two-sided ideal of S and N o = 0. 

R e m a r k . It follows from the proof of Lemma 3 that the conditions of Lemma 5 
are satisfied iff all i^-classes and 02-classes contained in S — {0} are maximal 
.^-classes and maximal £%-classes of S. 

Corollary 5. Ler S be a semigroup with zero satisfying ML and MR. Suppose that 
L* = R * = 0. Then any non-zero SE-class [01-class] of S is contained in a maximal 
J>-class of S. 

Proof. Write in accordance with the last Lemma 

S = A u lvA 
where the Kf are completely 0-simple and all unions are 0-direct. 

If A' =£0, then M, = A u ( J ^ . ieA'9 ii=j\ is clearly a maximal two-sided ideal 

of S and M' = S - M ; is a maximal $ -class of S. Each non-zero if-class contained 

in (J Kj is contained in some Ki9 hence in some M' . 
j e A ' 

If A =£ {0}, then A is a 0-disjoint union of the form A = (J {aj9 0} with a) = 0, 
i e A" 

/ e A", and each {a;} itself is a maximal ^-class, since S — {a,} is clearly a maximal 
two-sided ideal of S. This proves our statement. 

After this diversion we now return to the formulae (2) and (4). These formulae 
imply that 

L*nM*=M*-Zl9 

R*nM* = M*-Zr. 

Hence we have L* -£ R * if Zr =£ Z,. We now prove that Zr = Z, holds iff Zr=Zt = 0. 

Lemma 6. Suppose that S satisfies ML, MR and M3. If Zi=Zr9 then S satisfies 
both conditions Az and Ar so that both sets Zt and Zr are empty. 

Proof. Suppose for an indirect proof that Z/=Z r^=0. Consider the sets 

S-Zt = S- U ^ = n(S-L0=fU/ , (7) 
I e 1 i € I j e 7 
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s-zr = s- \JR'= f](s-R')= DR,- (8) 
j e l , j e lx j e 7, 

Denote M = S — Zt = S - Zr. It follows from (7) and (8) that M is a two-sided ideal 
of 5. By (7) and (8) the factor semigroup 5/M is a semigroup with zero 0 in which 
the intersection of all maximal left ideals and the intersection of all maximal right 
ideals is 0. By Corollary 5 any non-zero if-class contained in 5/M is contained in 
a maximal ^-class of 5/M. For the semigroup S itself this implies that every 
if-class contained in 5—M = Z, is contained in a maximal $ -class of 5. This is 
a contradiction, since Z/ has been defined as the union of those maximal if-classes 
of 5 none of which is contained in a maximal $ -class of 5. This proves Lemma 6. 

Lemma 7. Suppose that k e KnKx -r- 0. Then Ck= Dk iff Ck = Dk= 0. In this case 
5/Mfe is a completely 0-simple semigroup or a null semigroup of order two. 

Proof. If Ck=Dk, then MkuCk =MkuDk is a two-sided ideal of 5 containing 
Mk and different from 5. With respect to the maximality of Mk we have 
Ck=Dk = 0. If Ck=Dk= 0, then by Lemma 3 and its right dual, S/Mk is a 0-simple 
semigroup containing a 0-minimal left and a 0-minimal right ideal. Hence 5/M* is 
completely 0-simple or a null semigroup of order two. 

Suppose now that 5 satisfies the conditions A, and A r, i.e., Zt=Zr = 0. Then 

L* M*u[ U I'lu[UGІ, 
L/ є Л - K J Lfc є K J 

к*=м*u[ U j\>\ U Д.1 
L/ e Л - K , J Lfc є K t J 

If a e(A — K)nKu then L* contains the whole class Ja, while R* contains only 
a proper subset Da of Ja (D a may be, eventually, empty), so that R*nJa <^L*nJa. 
Analogously if (3 € ( A - K i ) n K , we have R*nJ^^L*nJ^. Therefore a further 
necessary condition for the validity of L* = R* is A -K = A -Ku hence Tr = Tt. 

Finally, for L* = R* we must have \JCk= \J Dk, i.e., Ck = Dk for any k e K. By 
fc e K fc e K 

Lemma 7 we then have Ck=Dk = 0 for all k e K. 
If, conversely, Zz = Zr = 0, K = Ku and Ck = Dk for every keK, then L* = R* = 

M* u T r=M*uT,. 
The condition Tt = Tr^0 says that the maximal .^-classes which constitute Tr = T, 

contain neither a maximal if-class nor a maximal 5ft -class. 
Again, for brevity in formulations of the results, we introduce the following 

notion: 

Definition 5. A 0-simple semigroup 5 is called a G0-semigroup if 5 contains 
neither a maximal !£-class nor a maximal $l-class of 5. 
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Theorem 6. Let S be a semigroup satisfying ML, MR, M-. Then L* = R* iff 
i) S satisfies the conditions A, and Ar; 

ii) SIM* is a 0-direct union of Go-semigroups, completely 0-simple semigroups 
and null semigroups of order two. 

Hereby the summands with the exception of at least one may reduce to {0}. 
If these conditions are satisfied, we have R* = L*=M*vTl. 
We also have: 

Theorem 7. If S is a semigroup satisfying ML, MR and Mj9 and SIM* is a 0-direct 
union of completely 0-simple semigroups and null semigroups of order two, then 
L* = M* -Zi,R* = M* — Zr. We haveL* = R* iff Ssatisfies condition A, and Ar. 

In the finite case Bt and Br are satisfied, and Ck =Dk for all keK. Hence: 

Theorem 8. Let S be a finite semigroup which is not simple. Then L* = M* — Z,, 
R*=M*-Zr. We have% L* = R* iff S satisfies the conditions A, and Ar. 

In the last case we have L* = R*=M*. 
Finally we omit the condition M, and prove: 

Theorem 9. Let S be a semigroup which is not completely simple. Suppose that 
S satisfies ML and MR but it does not satisfy M3. Then L*±R*. 

Proof. Suppose for an indirect proof that L* = R*. Then M = L* = R* is 
a two-sided ideal of 5, which is =£ S. By Lemma 2 L* = R * ± 0. Consider the factor 
semigroup S = SIM (with zero 0). Then S is a semigroup in which the intersection 
of all maximal left ideals as well as the intersection of all maximal right ideals is 0. 
By Corollary 5 any maximal i?-class [01 -class] of S is contained in some maximal 
J> -class of S. For the semigroup 5 itself this means that S contains a maximal 
$ -class, hence a maximal two-sided ideal, a contradiction with the assumption. 
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ПОЛУГРУППЫ ИМЕЮЩИЕ МАКСИМАЛЬНЫЕ ИДЕАЛЫ 

Штефан Шварц 

Резюме 

Пусть 5 - полугруппа и Ь*, М*, К*, соответственно, пересечение всех максимальных левых, 
всех максимальных правых, и всех максимальных двусторонних идеалов из 5. 

Целью статьи является исследование взаимного отношения между множествами Ь*, Я * и М*. 
В частности получены необходимые и достаточные условия для равенства Ь*=М* и Ь*=К*. 

Сформулируем один из типичных результатов (Теорема 5). Пусть 5 - полугруппа содержащая 
максимальный левый и максимальный двусторонний идеал. Равенство V = М* имеет место тогда 
и только тогда, если выполняются следующие условия: 

1. Каждый максимальный ^-класс из 5 содержится в некотором максимальном ^-классе из 5, 
и каждый максимальный #-класс содержит по крайней мере один максимальный «̂ -класс. 

2. Полугруппа 5/М* либо 0 - простая полугруппа содержащая 0 - минимальный левый идеал, 
либо 0 - прямое объединение таких полугрупп. 
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