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MATHEMATICA SLOVACA 

VOLUME 28 1978 NUMBER 3 

THE ABSOLUTE CONTINUITY OF FUNCTIONS 
DEFINED ON THE a-RING GENERATED BY A RING 

MARIA PASTOROVA 

In the measure theory the following theorem is known: "Let JU, v be two 
measures on the a-ring Sf generated by a ring 9t and let \i be finite and v be 
a-finite. Let \ix and u, be measures on 3JI such that \ix = ii/0l, u, = v/3h. Then \i<v 
if and only if \ix(<)v" [1]. 

The aim of this paper is to generalize the mentioned theorem for vector 
measures, signed measures and subadditive measures. A common formulation of 
all the cases considered will be given in terms of small systems [2], [3]. We shall 
show further this theorem to be valid even if the ring 3fl is replaced by the 
semi-ring. 

Recall that a vector measure is a a-additive set function defined on a ring with 
values in a normed vector space [5]. A subadditive measure is a non-negative 
non-decreasing subadditive and continuous set function. 

If q? is a set function (real or vector) on Sf, then |cp| denotes the variation of cp in 
the sense of [5], i. e. 

|cp|(A) = sup |]£|<p(A)|, A,c=A, AinAj = 0, /=£/ and A,e Sf\ . 

It can easily be proved that the variation of a signed measure defined on Sf 
coincides with the total variation of the Jordan decomposition of the signed 
measure. Therefore it is a positive measure. Also the variation of a vector measure 
and variation of a non-negative a-subadditive function (specially the variation of 
a subadditive measure) is a positive measure. 

Throught this paper, the symbol P is used for the set of non-negative integers 
and 0 for the empty set. 

1 

Let X be an abstract set and Sf a a-ring of subsets of X and {.AT., }~=t) a sequence 
of subclasses of Sf such that 
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(1) For each neP, 0e.Nn. 
(2) For each neP, there exists an increasing sequence {k,}r=i of positive 

integers such that Et eNki (/ = 1, 2, ...) implies \JE{ eMn. 
i = l 

(3) Let {F,}r=i be an arbitrary non-increasing sequence of sets of N0 and 

P|Fi =0, then for each neP there i s m e P such that EmeJfn. 
i = i 

(4) For each neP, if Ec=F, FeJfn, then EeNn. 
(5) Jfn+lczJfn for all neP. 

(6) For each neP we have: If EeNn and F e f l ^ . > then EuFeNn. 
n = 0 

A sequence {dV),} *=0 satisfying all the properties will be called a small system on &). 
Example. Let (X, 5̂ ) be a measurable space and let \i be a positive or 

subadditive measure defined on £f. Then the sequence {Nn}n=0 defined by 

J{0={Eey:n(E)«»}, 
Nn = {Ee<f:ii(E)<\ln} (n = l ,2 , ...) 

satisfies the properties (1)—(6). 
Since the variation \v\ of a vector measure v or a signed measure v defined on SP 

is a positive measure, the sequence {Jfn}n=o generated by |v|, i. e. 

N0 = {Eey:\v\(E)<™}, J{n = {Ee<f: \v\(E)<lln} , 

satisfies the properties (1)—(6), too. 
Now we formulate two lemmas whose proofs are actually contained in the proof 

CO 

of Theorem 8 in [2]. In the following, let N stand for C\Jfn • 
n = 0 

CO 

Lemma 1. Let {Nn}n-o satisfy the properties (3), (5), (6), then f]Ei &N for any 
i = l 

non-increasing sequence of sets in Jf0 such that Et iJfm (i = 1, 2, ...). 

Lemma2. Let {Jfn}n=0 satisfy the properties (1), (2), (5), (6). Tftere is 
a sequence {kjr=i of positive integers such that for any n eP there is r(n)ePsuch 
that 

U Ei eNn wheneverEi eNki (i = 1, 2, ...). 
i2»r(n) 

Definition. Let {Jfn }n=0 and {Mn }n=0 be two small systems. The system {Nn }n=0 

is said to be absolutely continuous with respect to {Mn }n=0 (notation {Jfn} < {M^}) 
iff M^M. 

The system {dVn}r=o is said to be strongly absolutely continuous with respect to 
{An}n=o (notation {Nn} (<) {^L}) iff, for each meP, there is neP such that 
MnClNm. 
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Lemma 3. Let (X, &) be a measurable space and d± 0> &<= Sf. Let JU and v be 
vector or signed measures on &>and {Jfn}9 {Mn} be small systems generated by the 
variations \p\, \v\, respectively. If\i, v are subadditive measures, let {Jfn}, {Mn} 
be small systems generated by>[i,v, respectively. Put Jfn-Jfnn4, M^M^ntf 
(n=0, 1, 2, ...) and \ix=\il:d, vx = vld. 

Then a) \i < v if and only if {Jfn} < {Mn} , 
b) ]Ui (<*) Vrifandonlyif {Jf'n} (<) {Mn} . 

The proof is evident. 

Theorem 1. Let (X, &>) be a measurable space and {Jfn }r=o and {Mn }r=0 be two 
small systems on Sf and Jf0 = &>. 
Then {JTn} <Z {M,} ifandonlyif {Jfn} (<) {Mn} . 

Proof. Let {Jfn} (<){Mn}, then f] Mnmcz f)Jfn =Jf. Since Mcz f] M^, we 
m=0 n=0 m=0 

get MczJf, i.e. {Jfn}<{Mn}. 
Let now MczJf. Assume that there is meP such that, for each n eP, we have 

MnczJfm. Therefore Mk.<tJfm (i = l ,2 , ...), where {fc}r=i is the sequence of 
positive integers from Lemma 2. Hence we get a sequence {Ejr=i of sets such that 
Et eMk. and EtctJfm (i = 1, 2, ...). 

CO CO 

Put E = limsup Et = p|Fk , where F* = (JJ3. • Evidently EczFk (k = 1, 2, ...). 
fc=i «=fc 

Let {«/}/" i be an increasing sequence of positive integers. In view of Lemma 2, 
we have the increasing sequence {//}/"- such that, for each / = 1, 2, ..., we get 

U Et cz Mn., whenever Et e Mki (i = 1, 2,...). 

Hence Fn eMk. (J = 1, 2, ...) and by the property (5) we get EeM. 
Now we shall prove that E£Jf, which contradicts the assumption MczJf. Clearly 

Fk\Ey Fk eJf0 and Fk £Jfm (k = 1, 2, ...). In view of Lemma 1, we get E&Jf. 
Therefore {Jfn} (<) {Mn}. Theorem 1 is proved. 

Corollary 1. Let (X,if) be a measurable space and let <p, i/>: £f-*A be set 
functions, where A is either Rora normed vector space. Let the variations \ <p |, | \p \ 
be positive or subadditive measures and let | <p | be finite. Then q)<\l>if and only if 
cp(<)xp. 

Proof. Let {Jfn}n=0 and {M„}nss0 be small systems generated by the measures 
|<p|, \xl>\. Evidently they satisfy the properties (1)—(6). Since |<p| is finite, the 
assumptions of Theorem 1 are satisfied. Therefore {Jfn} < {Mn} if and only if 
{Jfn} (<) {Mn}. Now we apply Lemma 3 and the proof is completed. 

Corollary 2. Let (X, &>) be a measurable space. 
a) Let [i, v be signed measures on &* and let \fi\ be finite. Then it<vif and only if 
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i u H ) u . 
c) Let fi, v be subadditive measures on Sf and \i be finite. Then yi<v if and only if 

|U (<)v. 

c) Let[i,vbe two vector measures on Sf and \yi\be finite. Then \i<vif and only if 
\i (<)v. 

Remark. The proof for signed measures \i, v is in [4]. In this paper we define 
the absolute continuity of subadditive measures \i, v as follows: \i < v iff v(E) = 0 
implies JU(E) = 0 (EeSf). 

If the absolute continuity of subadditive measures is defined by means of 
a variation, then Corollary b) remains true. 

Now we shall generalize the theorem mentioned in the introduction. Let 
Sf = Sf($t) be a a-ring generated by a ring 0t and let 9fc* = 
= {R:R = limsup Rn,Rne9t} Let {Jfn }:=(), {Mn} *,0 be two small systems on Sf. 
Denote Jfn = JfHn9t9 M'n = Mnn^t and Jf*=Nnn0t*, M*n=Mnn<3l* n=0, 1, 
2,...). 

Theorem 2. Let (X, Sf) be a measurable space andSf = Sf(0t). Let {Jfn }n=o and 
{Mn }n=o be two small systems on Sf and Jf0 = Sf. Let there be for each Ee&t and for 

each ieP a set Ft e$tnM{) such that EaQf];. 
i=\ 

Then {JTn}<{Mn} if and only if {Jf'n} (<) {M'n}. 

Proof. By Theorem \{Jfn}<{Mn} implies {N'n} (<) {M'n}. We shall prove the 
inverse implication. First we can see that the sequence {-2?„}T=o = {MnnJfn}n={i 

satisfies the properties (1)—(4). Then the following assertion holds: For each neP 
and for each EeS£{), there is F e 0t such that EAFeS£n (see Theorem 3 in [3]). 

Now we prove that {M'n} (<) {M'n} implies Majf. Let EeMaM{)nSf = S£{). 
Let n be an arbitrary positive integer. There exists a set Fe$t such that 
EAFeS£n. Since (F—E)aFAEeMn and EeM, it follows by the property (6) 
that (F—E)uEeMn. Since F c ( F - £ ) u £ and Fe0t, we obtain FeM'n. 

Let m be an arbitrary positive integer. Choose p, qeP such that A u B eJfm, 
whenever AeJfp and B eJfq by the property (2). By the assumption there is nq 

such that MnqaJf'q. Put n=max {nq, p}. We have MnaM'nqczJfqciJfq, hence 
FeJfq. Since (E-F)czEAF e Jfnczjrp, we get Ecz(E—F)uFeJfm. It is true 
for each me P. Therefore EeJf. Theorem 2 is proved. 

Corollary 1. Let (X, Sf) be a measurable space and Sf = Sf(9t)% Let <p,\p be 
two set function, real or vector. Let the variations \q)\, |T//| be positive or 
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subadditive measures and |<p| be finite and \ty\ be o-finite. Then (p<trp if and only 
if cp (<) ip on 01. 

Corollary 2. Let (X, 9) be a measurable space and 9 = 9(01). 

a) Let \i,v be signed measures on 9 and let \i be finite and v be o-finite. Then 
li <v if and only if \i (<) v on 01. 

b) Let \i,v be subadditive measures on 9and \i be finite and v be o-finite. Then 
H<v if and only if \i (<i) v on 01. 

c) Let /i, v be two vector measures on 9. Let \\i\ be finite and \v\ be o-finite. 
Then n<v if and only if [i (<) v on 01. 

Rema rk . For the case of signed measures this corollary is in [1]. 

Theorem 3. Let the assumptions of Theorem 2 be satisfied. Then {Nn} < {Mr,} 
if and only if {Nn} ^ {Mn}. 

Proof. Evidently MczJf implies M ' czJf '. Now we shall prove the converse. 
Let m be an arbitrary positive integer. Construct the system Jfm = {E e 9: E $ Mm } . 

Put no = sup {n: there is A such that AeMnr\Mm}. If n0<oo, then take 
nm = no + 1. Clearly Mnm c= dVm, hence {Jfn} ( < ) {Mn} and, by Theorem 2, {Jfn} < 
{Mn}. We prove that n0 = °°. Assume n0 = °°. Then there is an increasing sequence 
{ni}r=i of positive integers such that nt^ki (where {kijUj is the sequence from 
Lemma 2) and there is a sequence {AJH-1 of sets such that A, eMnir\Km (i = 1, 

OO CO 

2, . . .) . Put A = limsup At = {~)ES, where Es = {jAt. Evidently Es | Nm 
s=\ i=s 

(s = 1, 2, . . . ) , therefore A £Jf by Lemma 1. Since Jf !lc=dV; we have A tN*. 
But A czEs (s = 1,2, . . . ) . Since, by Lemma 2, we have Er(p)eMp (p = 1, 2, . . . ) , 

we get A eMp (p = 1, 2, . . .) . Therefore AeM |:. This contradicts the assumption 
M'[iczN I:. Hence n0<o° and now the proof of Theorem 3 follows immediately. 

Corollary 1. Let the assumption of Corollary 1 of Theorem 2 be satisfied. Then 
q) <ip if and only if q><ip on 01 *. 

Corollary 2. Let yt,v be signed measures or vector measures on a o-ring 
if = 9(01). Let the variation |JU| be finite and \v\ be o-finite. Then n<£v if and 
only if ii<tv on 01. 

If \i,v are subadditive measures on Sf = 9(01) and \i is finite and v is o-finite, 
then [i<v if and only if [i<£v on 01. 

Rema rk . Corollary 2 is proved for the case of signed measures in [1]. 

3 

In Theorem 2 and Theorem 3, the ring 01 can be replaced by the semi-ring 0* 
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satisfying appropriate conditions for 01. It follows immediately from the following 
theorem: 

Theorem 4. Let 01 be generated by a semi-ring 0>. Let {Nn}:=0, {A}n°=o be 
small systems on 01 and {Jf'n}:=0 = {Kc\0>}:=o, {M'n}n=0 = {M^n^}:^. Then 
{,Vn} (<) {M'n} implies {Jfn} (<0 { A } . 

Proof. Suppose that {Jfn} (<) {Mn} is not true. Then there is n0 e P having the 
following property: for each neP, there is Ee01 such that EeMn and E $Mno. 

Denote the system {EeMn: E$Jfn(} by £Sn. We shall show fl-S^f 0. Let us 
rt=0 

consider the topological space (#?, ST), where <§? = £% and 2T = {0, 01, Mx, M2, . . . } . 
It is clear that i?i, -S?2, ... are compact sets of 3?. Further, J£-:o j£2 3 «S?3 ... and 

therefore f̂ | ^ =/= 0. We have used the known theorem of topology. 
rt = i 

It means that E() e M and E e Jf„0 for some E0. Since E0 e 01 and 01 is generated 
p 

by 0, there are Fke0 (« = 1, 2,...,p) such that J5 = U i v There is a sequence 
/ = i 

{k,}r=i such that EteJfki (i = l, 2,...) implies U^GJV^,,. We have used the 
i = 1 

property (2) of a small system. Since {Jf'n} (<^) {M'n}, for each k,, there is /, such 
that Mti c/Vfc.. Evidently, F{ eMh (i = 1, 2,..., p). Hence F( eNki. But it leads to the 

p oo 

relation E0 = [jFieJfno9 which is a contradiction with our relation E0e{~]££n. 
i = i « = i 

Hence Theorem 4 is proved. 
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АБСОЛЮТНАЯ НЕПРЕРЫВНОСТЬ ФУНКЦИЙ ОПРЕДЕЛЕННЫХ 
НА а-КОЛЬЦЕ ПОРОЖДЕННОМ КОЛЬЦОМ 

Мариа Пасторова 

Резюме 

Пусть у,, V меры определенные на а-кольце У прожденном кольцом 01, мера ц конечна и мера 
V а-конечна. Пусть 11х, VI — меры определенные на 01 таким образом, что [ку-\1101, V^ = V 01. 
Роют \1^ тогда и только тогда, если \1Х {<) VI. 

В работе обобщена предыдущая теорема для векторных и полуадитивных мер. В третьей 
части работы доказывается теорема для а-кольца порожденного полукольцим. 
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