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THE ABSOLUTE CONTINUITY OF FUNCTIONS
DEFINED ON THE o-RING GENERATED BY A RING

MARIA PASTOROVA

In the measure theory the following theorem is known: “Let u, v be two
measures on the o-ring & generated by a ring #® and let u be finite and v be
o-finite. Let u, and v, be measures on & such that u, =u/R, v, =v/R. Then u <v
if and only if u,(<)v,” [1].

The aim of this paper is to generalize the mentioned theorem for vector
measures, signed measures and subadditive measures. A common formulation of
all the cases considered will be given in terms of small systems [2], [3]. We shall
show further this theorem to be valid even if the ring ® is replaced by the
semi-ring.

Recall that a vector measure is a o-additive set function defined on a ring with

_values in a normed vector space [5]. A subadditive measure is a non-negative
non-decreasing subadditive and continuous set function. )

If @ is a set function (real or vector) on &, then |@| denotes the variation of ¢ in
the sense of [5], i. e.

I(p](A)=sup{2|(p(A,~) , AicA,ANA;=0, i+jand Aiey} )
iel

It can easily be proved that the variation of a signed measure defined on &
coincides with the total variation of the Jordan decomposition of the signed
measure. Therefore it is a positive measure. Also the variation of a vector measure
and variation of a non-negative g-subadditive function (specially the variation of
a subadditive measure) is a positive measure.

Throught this paper, the symbol P is used for the set of non-negative integers
and 0 for the empty set.

1

Let X be an abstract set and & a o-ring of subsets of X and {.¥, }., a sequence
of subclasses of & such that
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(1) For each neP, 0elN,.
(2) For each neP, there exists an increasing sequence {k;}2, of positive

integers such that E; e N, (i=1, 2, ...) implies UE ew,.
i=1
(3) Let {E:}, be an arbitrary non-increasing sequence of sets of A, and
ﬁE,- =0, then for each n € P there is m € P such that E,, e, .
i=1

(4) ForeachneP, if EcF, FeN,, then E€eW,.
(5) Mo, for all neP.

(6) For each neP we have: If E€e X, and Fe ﬁ./V,., then EUFeW,.

n=0
A sequence {N, } .-, satisfying all the properties will be called a small system on &.
Example. Let (X, ¥) be a measurable space and let u be a positive or
subadditive measure defined on &. Then the sequence {N,} -, defined by

No={E€Z: u(E)< o},
N,.={Ee¥: u(E)<l1/n} n=1,2,..)

satisfies the properties (1)—(6).
Since the variation |v| of a vector measure v or a signed measure v defined on ¥
is a positive measure, the sequence {W, }:-, generated by |v/, i. e.

No={EeZ: |v|(E)<x}, N,={Ee¥:|v|[(E)<l/n},

satisfies the properties (1)—(6), too.
Now we formulate two lemmas whose proofs are actually contained in the proof
of Theorem 8 in [2]. In the following, let A" stand for ﬁ./\f,..
=0

n

Lemma 1. Let {N,};_, satisfy the properties (3), (5), (6), then ﬁE.- ¢ N for any
i=1
non-increasing sequence of sets in N, such that E ¢ N,, (i=1,2,...).

Lemma 2. Let {N,}7-, satisfy the properties (1), (2), (5), (6). There is
a sequence {k;}{~, of positive integers such that for any n € P there is r(n) € P such
that

L(J E; e N, wheneverE; e N,, (i=1, 2, ...).
i=r(n)

Definition. Let {/V,)};.,and {#M,}_, be two small systems. The system {N,}.-o
is said to be absolutely continuous with respect to {M,}-, (notation {N, } < {4, })
iff M N.

The system {N, }~-, is said to be strongly absolutely continuous with respect to
{M,}7-0 (notation {N,} (<) {M.}) iff, for each m € P, there is n € P such that

M, N, .
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Lemma 3. Let (X, ¥) be a measurable space and ##0, s = ¥. Let pand v be
vector or signed measures on & and {N.}, {#,} be small systems generated by the
variations |u|, |v|, respectively. If u, v are subadditive measures, let {N,}, {M.}
be small systems generated by-u, v, respectively. Put No=N,n A, M= M, oA
(n=0,1,2,..) and u,=pulA, v,=vlA.

Then a) u < v ifandonlyif {Ni} < {M.},
b) u, (<) viif and only if {N7} (<) {M;} .

The proof is evident.

Theorem 1. Let (X, &¥) be a measurable space and {N.}r-o and {M,}._, be two
small systems on & and Ny=¢.
Then {N.} < {M,} if and onlyif {N,} (<) {M.} .

Proof. Let {A,)} (<) {,}, then [, c [N, =N. Since M < [) £, , we
m=0 n=0 m=0

get N, i e {N,}<{M.}.

Let now A = N. Assume that there is m € P such that, for each n € P, we have
M, EN,, . Therefore My, =N, (i=1,2,...), where {ki}i~, is the sequence of
positive integers from Lemma 2. Hence we get a sequence {E; };2, of sets such that
E. eM,, and E;¢ N, (i=1,2,..).

Put E =limsup E; = ﬁFk , where F, = LmJE,- . Evidently EcF, (k=1,2,...).
k=1 i=k

Let {n;}=, be an increasing sequence of positive integers. In view of Lemma 2,
we have the increasing sequence {r;};2; such that, for each j=1, 2, ..., we get
UE c M, , whenever E; e M, (i=1,2,...).

i=r

Hence F, e M, (j=1,2,...) and by the property (5) we get E € 4.

Now we shall prove that E ¢4, which contradicts the assumption # < A Clearly
F\E, F,eNo and F . ¢N,, (k=1,2,...). In view of Lemma 1, we get E ¢N.
Therefore {N,} (<) {#,}. Theorem 1 is proved.

Corollary 1. Let (X,¥) be a measurable space and let @,y :—A be set
functions, where A is either R or a normed vector space. Let the variations |@|, |y|
be positive or subadditive measures and let |@| be finite. Then @ <4 if and only if
@ (<) vy.

Proof. Let {N,}.-o and {A,} ., be small systems generated by the measures
|@l, |y]|. Evidently they satisfy the properties (1)—(6). Since || is finite, the
assumptions of Theorem 1 are satisfied. Therefore {N,}<<{,.} if and only if
{N.} (<) {M,}. Now we apply Lemma 3 and the proof is completed.

Corollary 2. Let (X, &) be a measurable space.
a) Let u, v be signed measures on ¥ and let |u| be finite. Then u <v if and only if
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pn(<)v.

c) Let u, v be subadditive measures on & and u be finite. Then u <v if and only if
u()v.

) Letu, v be two vector measures on ¥ and |u| be finite. Then u <v if and only if
u(<)v.

Remark. The proof for signed measures u, v is in [4]. In this paper we define
the absolute continuity of subadditive measures u, v as follows: u <v iff v(E)=0
implies u(E)=0 (Ee ).

If the absolute continuity of subadditive measures is defined by means of
a variation, then Corollary b) remains true.

2

Now we shall generalize the theorem mentioned in the introduction. Let
F = P(R) be a o-ring generated by a ring R and let R* =
= {R: R = limsup R, ; R, e R} Let {N, } -0, {M.};-, be two small systems on &.
Denote N, =N,"R, M,=M,NR and N =N, NnR*, M:=M,R* n=0, 1,
2, ...

Theorem 2. Let (X, &) be a measurable space and ¥ = F(R). Let {N, }»-o and
{M,}7-o be two small systems on & and N,,= &. Let there be for each E € R and for

each i e P a set F, e Rn M, such that ECDF.--

i=1

Then {N,}<{M,} if and only if {N}} (<) {M,}.

Proof. By Theorem 1 {N,} <{t,} implies {N} (<) {A.}. We shall prove the
inverse implication. First we can see that the sequence {ZL.}r-0 = {M. NN, }7-o
satisfies the properties (1)—(4). Then the following assertion holds : For each n € P
and for each E € %,, there is F € & such that E AF € &, (see Theorem 3 in [3]).

Now we prove that {N} (<) {M,} implies M cN. Let Ee M c MNSF = .
Let n be an arbitrary positive integer. There exists a set Fe® such that
EAFeX,. Since (F—E)c FAE e M, and E € M, it follows by the property (6)
that (F—E)UE e M, . Since F = (F—E)UE and F e &, we obtain Fe /.

Let m be an arbitrary positive integer. Choose p, q € P such that AuB e W,,,
whenever A € ¥, and B € N, by the property (2). By the assumption there is n,
such that M, <N;. Put n=max {n,,p}. We have M, <M, cN,cN,, hence
FeW,. Since (E—F)cEAF € N,cW/,, we get Ec(E—F)UFeW,,. It is true
for each m € P. Therefore E € /. Theorem 2 is proved.

Corollary 1. Let (X, &) be a measurable space and ¥ =%(R). Let @, y be
two set function, real or vector. Let the variations |@|, |y| be positive or
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subadditive measures and |@| be finite and lwl be o-finite. Then ¢ < if and only
if (<)Y on R.

Corollary 2. Let (X, ¥) be a measurable space and ¥ =S (R).

a) Let u, v be signed measures on & and let u be finite and v be o-finite. Then
u<v if and only if u (<) v on R.

b) Let u, v be subadditive measures on & and u be finite and v be o-finite. Then
u<<v if and only if u (<) v on R.

c) Let u, v be two vector measures on &. Let |u| be finite and |v| be o-finite.
Then u <v if and only if u (<) v on R.

Remark. For the case of signed measures this corollary is in [1].

Theorem 3. Let the assumptions of Theorem 2 be satisfied. Then {N,} <{M,}
if and only if {N;}<{M,}.

Proof. Evidently #{ =/ implies # <= ". Now we shall prove the converse.
Let m be an arbitrary positive integer. Construct the system A, = {E€ &: E ¢ N,.}.
Put no=sup {n:there is A such that A e#,nN,}. If no<o, then take
n, =no+ 1. Clearly #, <N, , hence {N,} (<) {#,} and, by Theorem 2, {¥,} <
{A,}. We prove that n,= ». Assume n,= . Then there is an increasing sequence
{n:}=: of positive integers such that n,=k; (where {k;}2, is the sequence from
Lemma 2) and there is a sequence {A,}, of sets such that A, e M, "N, (i=1,
2,...). Put A=limsup A,=()E., where E,=|JA;. Evidently E,¢WN,
s=1

(s=1,2,...), therefore A ¢/ by Lemma 1. Since N *<N, we have A éN*. .
But A cE, (s=1,2,...). Since, by Lemma 2, we have E,,, e, (p =1, 2, ...),

we get Aed, (p=1,2,...). Therefore A €M *. This contradicts the assumption

M= N 't Hence ny<o and now the proof of Theorem 3 follows immediately.

Corollary 1. Let the assumption of Corollary 1 of Theorem 2 be satisfied. Then
@<y if and only if <y on R *.

Corollary 2. Let u, v be signed measures or vector measures on a o-ring
F=FL(R). Let the variation |u| be finite and |v| be o-finite. Then u <v if and
only if u<v on R. .

If u, v are subadditive measures on ¥ =%(R) and u is finite and v is o-finite,
then u<v if and only if u <<v on R.

Remark. Corollary 2 is proved for the case of signed measures in [1].

3
In Theorem 2 and Theorem 3, the ring R can be replaced by the semi-ring %
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satisfying appropriate conditions for . It follows immediately from the following
theorem:

Theorem 4. Let R be generated by a semi-ring P. Let {N,}7 o, {M.}7-0 be
small systems on & and {N,}n-0 = {NanP}iso, {M)}no = { M P}7_o. Then
(M) (<) {43} implies (.} (<) {,).

Proof. Suppose that {#,} (<) {4, } is not true. Then there is n, € P having the
following property: for each n € P, there is E € & such that E e #, and E ¢ M, .

Denote the system {E e/l,: E¢N,} by %, . We shall show ﬁf,ﬁ#ﬂ. Let us
n=0

consider the topological space (¥, 7), where =R and T = {0, R, M., M, ...}.
It is clear that ¥,, %,, ... are compact sets of Z. Further, £, >%,25%; ... and

therefore ﬁ %.#9. We have used the known theorem of topology.
. n=1
It means that E, € # and E ¢ ¥, for some E,. Since E,e Z and & is generated

by 2, there are F,e? (i=1, 2, .\:.,p) such that E=LPJF,~. There is a sequence
. : i=1

{k:}7~, such that E,-eNk,. (i=1, 2,...) implies | JE eW,,. We have used the
i=1

property (2) of a small system. Since {N} (<) {A.}, for each k;, there is /; such
that #, = N,,. Evidently, F, e #, (i=1,2, ..., p). Hence F, e /V,, . But it leads to the

14 o
relation E,=|JF, €V,,, which is a contradiction with our relation E,e[ %, .

i=1 n=1

Hence Theorem 4 is proved.
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ABCOIIIOTHAS HENMPEPBIBHOCTD (DYHKHI/Iﬂ OIMPEJEJEHHBIX
HA 0-KOJIBLE NTOPOXOIEHHOM KOJIBLIOM

Mapna ITactoposa
Pe3ome

IIycTh 1, v Mephl onpeneneHHble Ha 0-KOjiblie ¥ MPOXAEHHOM KONBIOM R, MEpa { KOHEUHa U Mepa
v o-koHeyHa. ITyctb p,, v, — Mepbl onpepeneHHble Ha & TakuM 06pa3oM, 4TO U, =u/R, v, =v'R.
Potom p <€v TOrAa M TONBLKO TOTHA, ecau W, (<€) v,.

B pa6GoTe 06o06licHa npeabiayiasi TeopeMa JJis BEKTOPHBbIX M NMONYaguUTHBHBIX Mep. B TpeTheit
yacTH paboThl OKA3bIBAETCA TEOPEMA AN O-KOJbLA NMOPOXAEHHOrO MONYKOJIbIHM.
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