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MATHEMATICA SLOVACA 

VOLUME 28 1978 NUMBER 4 

OSCILLATORY AND NONOSCILLATORY PROPERTIES 
OF SOLUTIONS OF THE DIFFERENTIAL EQUATION 

y(4) + P( t)y"+Q( t)y = 0 

JAN REGENDA 

1. Introduction 

The purpose of this paper is to study some properties of solutions of the linear 
differential equation of the fourth order 

(L) L[y]=y™ + P(t)y"+Q(t)y = 09 

where P(t), O(0 are real-valued continuous functions on the interval I = [a, o°), 
— oo<0<oo. it is assumed throughout that 

(A) P(t)-S0, O(t)-§0 for all tel and Q(t) 

not identically zero in any subinterval of I. 
The equation (L) has been studied by V. Pudei [8, 9]. W. Leigh ton and Zeev 

Nehari [7] have studied a slightly more general class of self-adjoint linear 
differential equations of the fourth order and have given a number of results 
concerning the existence of oscillatory and nonoscillatory solutions. 

So far the results of papers dealing with the oscillation of solutions of the 
differential equations of the fourth order were based on the distribution of the 
zeros of nontrivial solutions. These methods are extremely difficult. This paper 
deals with the oscillation of solutions but the method of deriving the results will be 
based on the behaviour of nonoscillatory solutions. New results and another view 
of the behaviour of solutions will be obtained. The method that has been used in 
this paper has been used only in the equations of the third order and in the equation 
of the fourth order y(4)+ Q(t)y =0 [6]. 

A necessary and sufficient condition is given for the oscillation of the differential 
equation (L) in terms of the behaviour of nonoscillatory solutions. At the same 
time necessary and sufficient conditions are derived for the nonoscillation of the 
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differential equation (L). It is shown that if (L) is oscillatory, then it has two 
linearly independent oscillatory solutions such that the zeros of any two indepen­
dent linear combinations of these solutions separate on (t0, o°), t0 e I. 

A nontrivial solution of a differential equation of the n-th order is called 
oscillatory if its set of zeros is not bounded from above. Otherwise, it is called 
nonoscillatory. A differential equation of the n-th order will be called nonoscillato-
ry, when all its solutions are nonoscillatory; oscillatory, when at least one of its 
solutions is oscillatory. A differential equation of the n-th order is said to be 
disconjugate in an interval J iff every nontrivial solution has at most n — 1 zeros in 
J. 

Let Cn(I) denote the set of all real-valued functions such that its n-th derivatives 
are continuous on I . 

2. Preliminary results 

Lemma 1, [1]. Let c(t), f(t) be functions of class C[t0, o°), let the differential 
equation 

w" + c(t)w = 0 

be nonoscillatory and f(t) does not change the sign in [t0, o°). Then also the 
differential equation 

w" + c(t)w=f(t) 

is nonoscillatory in [t0, <»). 

Lemma 2. Suppose that (A) holds. Then for every nonoscillatory solution y of 
the equation (L) there exists a number t0=a such that either 

y( t )y ' ( t )>0 , y(t)y"(t)>0, 
or y(t)y'(t)<0, y(t)y"(t)>0, 
or y(t)y'(t)>0, y(t)y"(t)<0 

for all t = t0. 
Proof. Let y(t) be a nonoscillatory solution of (L). Then there exists a number 

t1=a such that y(t)±0 in [tu <»). Assume, without loss of generality that y ( t ) > 0 
on [ti, °°). Substitution y"(t) = z(t) into (L) leads to the following differential 
equation for z 

(1) z" + P(t)z=-Q(t)y. 

Since the equation 

z" + P ( t ) z = 0 
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is nonoscillatory in [tu oo) and Q( t )y (0 does not change the sign in [tu oo), it 
follows that equation (1) is nonoscillatory in [tu oo), by Lemma 1. Hence there 
exists a number t2=^tx such that z(t)=£0, i.e. y"±0 in [t2, oo). From this it follows 
further that there exists a number t0 = f2 such that y' =£0 for t=^t0. Four cases may 
occur for t =" t0: 

a) y(t)y'(t)>0, y(0y"(0>0, 
b) y ( 0 y ' ( 0 < 0 , y(0y"(0>0, 
c) y ( 0 y ' ( 0 > 0 , y(0y"(0<0, 
d) y ( 0 y ' ( 0 < 0 , y(0y"(0<0. 

The cas$ d) is easily seen to be impossible. Thus there are possible only the cases 
a), b), c). This completes the proof of the Lemma. 

Lemma 3. Let A(t, s) be nonnegative and continuous function for t0=s=t 
(nonpositive for a ^t^s^t0). If g(t), cp(t) (ip(t)) are continuous functions in the 
interval [t0, °°) ([a, to]) and 

cp(t) = g(t)+\ A(t,s)cp(s)ds, for te[f0, °°) 
Jt0 

y(t)^g(t) + JA(t,s)ti>(s)ds, for f e [ a , f 0 ] ) , 

then every solution y(t) of the integral equation 

(2) y(t) = g(t)+\' A(t,s)y(s)ds 
Jt0 

satisfies the inequality 

y(t) = cp(t) in [r0, oo) 
(y(t) = ip(t) in [a, to]). 

The assertion of this Lemma may be proved by the fact that the resolvent of the 
equation (2) under the assumptions is nonnegative function for f 0 =s =7 (nonposi­
tive function for a ^s^t^t0). If we suppose in addition that g(t)=^0 for t e [t0, oo) 
(g(t)^O for te[a, t0])y then the solution y(t) of (2) satisfies the inequality 

y(t) = g(t) = 0 for te[t0, oo) 
(y(t) = g(t) = 0 for te[a,t0]). 

Lemma 4. Suppose that (A) holds and let y(t) be a nontrivial solution of (L) 
satisfying the initial conditions 

y(to) = yo = 0, y'(to) = yo = 0, 
y"(to) = y;;=0, y"'(to) = y'o"=0 
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(to e I arbitrary, y0 + yo + y'o + yo" >0 ) . 
Then 

y(t)>0, y'(t)>0, y"(t)>0, y"'(t)>0 

for all t>t0. 
Proof. The initial-value problem 

I-l>] = 0, y(to) = y0, y'(to)=y'o, 
y"(to)=yo, y'"(t0)=y'o" 

is equivalent to Voltera's following integral equation, 

(3) y'"(t) = g(t)+\'A(t,s)y'"(s)ds, 
Jt0 

where 
g(0=y'o"-y'o[ [p(s)+^Y^Q(s)^ds-

-y'o \ (s-t0)Q(s)ds-yo \ Q(s)ds 
Jt0 Jt0 

A(t,s)=-[ [p(£) + ̂ ^ 0 ( £ ) ] d £ . 
and 

The hypotheses of the Lemma imply that g(t)>0 and A(t, s)^0 for t e (t0, oo). 
Then by Lemma 3 

y"'(t)^g(t)>0 for all te(t0, ̂ ). 

Hence there follows the assertion of Lemma 4. 

Lemma 5. Suppose that (A) holds and let y(t) be a nontrivial solution of (L) 
satisfying the initial conditions 

y(to) = yo^0, y'(to) = yo^0, 
y"(to) = y'^0, y"'(to) = y'o"^0, 

(t0e I arbitrary, yl + y'0
2 + y"0

2 + y'0"
2>0). 

Then 

y(t)>0, y'(t)<0, y"(t)>0, y"'(t)<0 

for all te[a, t0). 
Proof. The initial-value problem 

L[y] = 0, y(t0) = Уo, У'(to) = Уo, 
У"(to) = У'ô, У'"(ÍO) = УO" 
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is equivalent to the integral equation (3). The hypotheses of the Lemma imply that 
g(t)<0, A(t,s)^0 for a^t^s^t0. Then by Lemma 3 there is y" ' ( t )<0 for 
te[a, t0). Hence the assertion of the Lemma follows. 

Let W(wi9 wk ; t) denote the Wronskian determinant of the functions wt, wk at 
the point t: 

W(Wi, wk;t) = Wi(t)w'k(t) - w\(t)wk(t). 

Lemma 6. Let there be functions w,(t)6C4[t0, °°), i = l, 2, 3, t0el with the 
properties 

w2>0, w3>0, 
W(wu w2; t)>0, W(wu w3; t)>0, W(w2, w3;t)>0, 

W(wu w2; w3; t) > 0 for te (t0, <») and 
L[w^O, L[w2]^0, L[w3]^0 for te(t0, <*>). 

Then equation (L) is disconjugate in the interval [t0, oo) ([5], pp. 77, 80). 
We note if y is a solution of (L), then so is — y. Hence it follows from Lemma 4 

that y(to)^0, y'(to)^0, y"(to)^0, y'"(to)^0 (but not all zero) implies y(t)<0, 
y '( t)<0, y"(t)<0, yn,(i)<0 for all t>t0. Similarly, it follows from Lemma 5 that 
if y is a nontrivial solution such that y(t0)^0, y'(t0)^0, y"(t0)^0,y'"(t0)^0, then 
y( t)<0, y'(t)>0, / ' ( t )<0 , y'M(t)>0 for all te[a, t0). 

3. The existence of monotonic solutions 

Throughout the remainder of this paper let z0, Zu z2, z3 denote solutions of (L) 
defined on I by the initial conditions 

*«.>-*-{?; ?.'. 
for i, j = 0, 1, 2, 3. 

We will show the existence of solutions y (t) and z (t) such that y (t) > 0, y' (t) > 0, 
y"(t)>0, y"'(t)>0 for all tel and z(t)>0, z'(t)<0, z"(t)>0, z"'(t)<0 for all 
tel. 

Theorem 1. Suppose that (A) holds. There exists a solution y(t) of (L) such that 
y(t)>0, y'(t)>0, y"(t)>0, y"'(t)>0 for ail tel. 

Proof. Let y(t) be a solution of (L) which satisfies the initial conditions 
yin(a) >0, i = 0,1,2,3. Then by Lemma 4 y(,)(t) >0 for all f e / and i- 0,1,2,3. 

Theorem 2. Suppose that (A) holds. There exists a solution z(t) of (L) such that 
( - l ) ' - ( " ( 0 > 0 for all tel and i = 0, 1, 2, 3. 
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Proof. For each natural number n>a, let c0n, cln, c2n and c3„ be numbers 
satisfying 

(4) 
c0nz 

Let zn(t) = c0nz0(t) + c lnZi(0 + c2nz2(t) + c3nz3(t), The existence of numbers c0„, cln, 
c2n and c3n, satisfying the above conditions, is easy to verify. Since z0, Z\, z2 and z3 

are linearly independent, zn(t) is a nontrivial solution of (L). Since for each natural 
number n, the sequences {cin},i = 0,1,2,3 are bounded, there exists a sequence of 
integers {n}} such that the subsequences {cin.} converge to numbers c,, / = 0, 1, 2, 3. 
From (4) we see that 

(5) cS + c? + c! + c ! = l . 

The sequences {z„,(0}> {z'nt(t)}, {z"nj(t)}, {z'ni"(t)} converge uniformly on any 
finite subinterval of [a, o°) to the functions z(t), z'(t), z"(t), z"'(t), respectively, 
where z(t) is a nontrivial solution of (L). By Lemma 5 ( — l)'z(O(t) = 0 for all t el 
and / = 0, 1, 2, 3. Further, since z ( 0 is a nontrivial solution and Q(t) = 0 and not 
identically zero in any subinterval of I, it is easy to see that there is no number r el 
such that z(i\r) = 0 for some i = 0 , 1, 2, 3. Hence ( - l ) , z ( o ( 0 > 0 on I. 

Theorem 3. Suppose that (A) holds and let 

f t2+aO(t)dt=-oo, fo = m a x { a , 0 } , 0 = a < l . 

Then for every solution y(t) of (L) such that y ( 0 / ( 0 = 0, y (0y" (0 = 0 and 
y(0y"'(0 = ° for r = r0 there holds 

I imy(0 = l imy ' (0 = l imy"(0 = l i m y " ' ( 0 = 0. 
(—»oo »—»oo t—*°° t—*°o 

Proof. Suppose that y ( 0 > 0 . Then by the above conditions it follows that 
y'( t) = 0, y"(0 = 0, y"'(t) = 0 for t = t0. From this and equation (L) we obtain 
y(4)(t) = 0 for t = t0. From the above inequalities it follows easily that 

l imy ' (0 = limy''(t) = lin2y'' '(t) = 0. 

Suppose that X\my(t) = B>0. 
Multiplying (L) by t2+a, 0 = a < l , integrating from t0 to t, we obtain 

[y''\s)s2+a][0-[(2^a)s^ay\s)l0+[(^ 
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(6) - [(2 + a)(l + a)asa-1y(s)]',0 + (2 + a)(l + a)a(a - 1) f' sa~2y(s) ds + 
J'o 

+ P s2+a P(s)y"(s) ds + I' s2+aQ(s)y(s) ds=0. 
Jt0 Jt0 

Since y(t) has a finite limit and 0 = i a < l from (6) it follows that 

t2+ay'"(t)^K-B ['s2+aQ(s)ds, 
J to 

where K is a constant. Hence it follows that y " ' ( 0 > 0 for sufficiently large t. But 
this is a contradiction arid the proof is complete. 

R e m a r k . Later we shall show the uniqueness (except for a constant factor) of 
the solution y(0-

4. Conditions for disconugation 

Theorem 4. Let there be functions wt(t) e C4 [t0, oo), / = 1, 2, 3, t0 el such that 

w 2 ( 0 > 0 , w ! ( 0 < 0 , w ' / (0>0 for te[t0, oo), 
w 2 ( t )>0 , w 2 ( 0 > 0 , w'2'(t)S0 for tG[t0, oo), 

(7) w 3 ( 0 > 0 , w 3 ( 0 > 0 , w'3 '(0>0 for te(t0,™), 
w3(to) = 0 

and 
L[wx]^0, L [ w 2 ] ^ 0 , L[w3]rg0 for te(t0,«>). 

Then equation (L) is disconjugate on [t0, oo). 
Proof. Conditions (7) imply that W(wu w2;t)>0, W(wu w3;t)>0 on [t0, oo). 

We will show that W(w2, w3; t)>0 and W(wu w2, w3; 0 > 0 on (t0, oo). 
Indeed, since 

W(w2, w3; t0) = w2(t0)w3(t0) - w2(t0)w3(to) .SO 
and 

W'(w2, w3; t) = w2(0w'3 '(t)- w'^(0w3(0>0on (t0, oo), 

(8) W(w2, w3;t)>0 on (t0, oo). 

W(wu w2, w3;t) = wt(t)[w2(t)w"3(t)- w'2( t)w3(0]-
- w;(0[w2(0w'3'(0 - wKt)w3(0] + 
+ w;(t)[w2(t)w3(t) - w2(0w3(t)]. 

It is clear that the first and second term on the right-hand side is positive for t>t0. 
Since w"(t) >0 in [t0, °°) by hypothesis, it follows from (8) that the last term is also 
positive for t>t0. Hence W(wu w2, w3; t)>0 on (t0, oo). 
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Since the conditions of Lemma 6 are satisfied, equation (L) is disconugate on 
[t0, °°). This completes the proof of Theorem 4. 

Theorem 5. Let there be functions wt (t) e C4[f0, °°), i = 1, 2, 3, t0 e I such that 

w , ( 0 > 0 , w[(t)<0, w'l(t)>0,wi"(t)<0 for fe[f0, oo), 

(9) »v 2 (0>0, w'2(t)>0, w'2(t)>0,w'2"(t)^0 for re[f0, » ) , 

w3(r)>o, »vS(0>o, w;(o>o, 
»vj"(0>0 for fG(j0, °°), 

W3(fo) = H>3(to) = 0 

aпd 
ЦwJШO, Цw2]Ш0, Цw3]^0 for rє(ř„, oo). 

Then equation (L) is disconjugate on [t0, oo). 
Proof. Conditions (9) imply W(wu w2; 0 > 0 , W(wu w3; t)>0 on [t0, oo). We 

will show that W(w2, w3; t)>0 and W(wu w2, w3; t)>0 on (t0, oo). Let 

a ( 0 = w2(0w'3'(0-w'2'(t)w3(t) for ti=t0. 
Then 

a(to) = wf
2(to)wf

3'(to)^0 
and 

a ' ( 0 = w 2 ( 0 w 3 " ( 0 - w 2 " ( t ) w 3 ( t ) > 0 on (t0, oo). 

It follows from this that a ( t ) > 0 on (t0, °°). Since 

W(w2, w3; t0) = w2(t0)wf
3(t0) - w2(t0)w3(to) = 0 

W'(w2, w3; t0) = w2(t0)w'3 '(t0)-w'^o)w3(to)^0 
and 

then 

W"(w2, łvз; 0 = w'2(t)w"3(t)- w'2(t)w'3(t) + 
+ w2(t)w'3"(t) - w'2"(t)w3(t) = а(t) + w2(t)w'3"(t) -

-w2"(t)w3(t)>0 on (t0, oo), 

Wf(w2,w3;t)>0 and W(w2,w3;t)>0 on ( to, 0 0 ) . 

Hence we again obtain from (9) that 

W(wu w2, w3;t) = w1(t)[w2(t)w'3'(t)-w"2(t)w3(t)]-
- wKt)[w2(t)w'3'(t) - w'2'(t)w3(t)] + wf[(t)[w2(t)w'3(t) -

- w 2(t)w 3(0] = w,(t)a(t) - w[(t) W'(w2, w3; 0 + 
+ w';(0W(w2, w 3 ; 0 > 0 

on (t0, oo). It follows from Lemma 6 that eqation (L) is disconjugate on [t0, oo) and 
the proof is complete. 

The following consequences follow from Theorems 4 and 5. 

Corollary 1. Let (L) have solutions yu y2 and y3 with 
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yi(0>o, y i ( 0 < o , / / ( 0 > o on [to, oo), 
y 2 ( 0 > 0 , y 2 ( t ) > 0 , y'2'(t)=§o on [t0, oo), 
y3(t)>0, y 3 ( t ) > 0 , y'3 '(t)>0 on (t0, oo), 
y3(t0) = 0. 

Then (L) is disconjugate on [t0, oo). 

Corollary 2. Let (L) fiave solutions yl9 y2 and y3 with 

y i ( 0 > 0 , y l ( 0 < 0 , y ' i ' ( t )>0 ,y ; " ( t )<0 on [t0, oo), 
y 2 ( 0 > 0 , y 2 ( t ) > 0 , y ^ ( t ) > 0 , y - ' ( 0 - S O on [t0, oo), 
y 3 ( 0 > 0 , y 3 ( t ) > 0 , y ' 3 ' ( t )>0 ,y 3 " ( r )>0 on (t0, oo), 

y3(to) = y3(to) = 0. 

77ien (L) is disconjugate on [t0, oo). 
The following sufficient conditions for (L) to be disconjugate are simple 

consequences of Theorems 1, 2, 4 and 5. 

Corollary 3. Suppose that (A) holds and let there be function w eC4 [t0, oo), t0 e I 
such that w > 0 , w ' > 0 , w"SO, L [ w ] § 0 on (t0, °°). Then (L) is disconjugate on 
[to, °°). 

Corollary 4. Suppose that (A) 1201ds and let there be function w eC4 [t0, oo), t0 e I 
such that w > 0 , w ' > 0 , w">0 , w ' " ^ 0 and L [ w ] ^ 0 on (t0, oo). Then (L) is 
disconjugate on [t0, oo). 

5. Necessary and sufficient conditions for oscillatory 
and nonoscillatory equations 

Theorem 6. Suppose that (A) holds. Then equation (L) is oscillatory if and only 
if for every nonoscillatory solution y(t) of (L) there holds either 

(10) y(0y'(0>0, y( t )y"( t )>0 , y ( t ) y " ' ( t ) > 0 

on [t0, 0°) for some t0el, or 

(10') y ( r )y ' ( t )<0 , y ( t )y"( t )>0 , y ( 0 y ' " ( 0 < 0 on L 

Proof. Assume that (L) is oscillatory and let y(t) be a nonoscillatory solution of 
(L). Then by Lemma 2 there exists a number tie I such that either 

y(t)y'(t)>0, y(t)y"(t)>0, 
or 

y(t)y'(t)<0, y(t)y"(t)>0, 
or 

y(t)y'(t)>0, y(t)y"(t)<0 
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for all t = ti. There is no loss of generality in assuming that y (t) > 0 for all t e [tu °°). 
We note that if y"( t )>0, it then follows from (L) that y (4 )(0 = 0 (not identically 
zero in any subinterval). Hence these cases are possible: 

a) y ( 0 > 0 , y ' ( 0 > 0 , y"(0>0, y ' " ( 0 > 0 , 
b) y(0>o, y'(0>o, y"(0>o, y '"(0<o, 
c) y(0>o, y'(0<o, y"(0>0, y '"(0>o, 
d) y(0>0, y'(0<0, y"(0>0, y '"(0<o, 
e) y(0>0, y'(0>0, y"(0<0 

for r = t0, where t0 is some number greater than or equal to ti. In the case c) this is 
easily seen to be impossible. Only the cases a), b), d), e) may occur. Suppose that 
y(t) does not satisfy the conditions (10), (10'). Then either b) or e) holds. If 
a solution satisfying condition b) or e) existed, equation (L) then would be 
nonoscillatory, by Corollaries 1 and 2 of Theorems 4 and 5, contrary to the 
hypothesis. This completes the proof of the first half of Theorem 6. 

If y (t) is an arbitrary nonoscillatory solution of (L), which satisfies condition (10) 
or (10'), we could then construct oscillatory solutions u and v of (L) given by 

u = b0Zo(t) + b3Z3(t) 
v=c2z2(t) + c3z3(t), 

where bl + b\ = c\ + c\= \. The proof of this part of the Theorem is similar to that 
of Theorem 3 ([6], p. 293) and will be omitted. 

R e m a r k 1. An argument, similar to the one given to show that u and v are 
oscillatory, can be given to show that any nontrivial linear combination of u and v 
is oscillatory. 

Further, we note that u and v are linearly independent since, otherwise, we 
would have u = cz3, c£0 and this would contradict the fact that u is oscillatory. 

R e m a r k 2 . I f (L) is oscillatory, then it has three linearly independent oscillatory 
solutions. 

The proof of this is virtually the same as that of Theorem 4 ([6], p. 294). 
R e m a r k 3. We note that in view of Theorem 6 and Remark 2, the conditions 

(10), (10') are equivalent to the existence of three linearly independent oscillatory 
solutions. 

Theorem 7. Suppose that (A) holds. Then equation (L) is nonoscillatory on I if 
and only if there exists a number t0 eland a solution y(t) of (L) such that either 

y(0>0, y ' (0>0, y"(0<0, 
or 

y(0>0, y ' (0>0, y"(0>0, y ' " (0<0 

for all f = t0. 
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Proof. The sufficient condition follows from Corollaries 3 and 4. 
It is easy to show that the existence of such a solution is also necessary. Indeed, if 

(L) is nonoscillatory there must exist a nonoscillatory solution y(t) which does not 
satisfy the conditions (10), (10'). Then by Lemma 2 and from the proof of 
Theorem 6 it follows that there exists a number t0 e I such that either 

y(t)>0, y'(t)>0, y"(t)<0, 

or 
y ( 0 > 0 , y'(0>0, y"(0>0, y"'(t)<0 

for all t^t0. 

Theorem 8. Suppose that (A) holds. Then equation (L) is nonoscillatory on I if 
and only if there exists a function w(t)eC4 [t0, oo), t0el, such that either 

w(t)>0, w'(t)>0, w"(t)<0, L[w]^0 
or 

w(t)>0, w'(t)>0, w"(t)>0, w"'(t)<0, L[w]^0. 

Proof. Suppose that (L) is nonoscillatory on I. It follows from Theorem 7 that 
there exists a number t0el and a function w(t) such that either 

w(t)>0, R > ' ( 0 > 0 , w " ( 0 < 0 , L[w] = 0 
or 

w ( t ) > 0 , w ' ( 0 > 0 , w " ( 0 > 0 , w"'(t)<0, L[w] = 0 

for all t^t0. 
The proof of the second part of the Theorem follows from Corollaries 3 and 4. 

Theorem 9. Suppose that (A) holds. Then equation (L) is nonoscillatory on I if 
and only if there exists a number t0el such that (L) is disconjugate on [t0, oo). 

Proof. The necessity of the condition follows from Theorem 8 and Corollaries 3 
and 4. The proof of the sufficiency is based on the fact that the solution has only 
a finite number of zeros on the compact interval [a, t0]. Hence, if (L) is 
disconjugate on [t0, oo), then it is nonoscillatory on [a, oo). 

6. The properties of the zeros of solutions of oscillatory 
differential equations 

We will now show when the zeros of two linearly independent oscillatory 
solutions separate. First we state the following theorem. 

Theorem 10. Suppose that (A) holds and equation (L) is oscillatory. Let u and v 
be the solutions as constructed in the proof of Theorem 6. If Yx and Y2 are two 
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independent linear combinations of u and v, then there exists a number t0el such 
that for all t>t0YV and Y^) cannot have any common zeros, 1 = 0, 1, 2, 3. 

Proof. To prove the Theorem it is sufficient to show that there exists at most 
one point s el such that y0)(s) = y0)(s) = 0 for some 1 = 0, 1, 2. Suppose that 
y0)(r) = Y%\T) = 0 for some 1=0, 1, 2 and some other point r > s . Then there 
exist constants cx and c2, Ci + c2=£0, satisfying 

(11) c1y°)(T) + c2y^)(r) = 0, 

(12) Cl y°+1)(r) + c2n+1)(r) = 0. 

Let Y = c1Y1 + c2Y2. Then it follows, by Lemmas 4 and 5, that either 

(13) sgny(0 = sgnyO )(0, 1 = 1,2,3, for t>T 
or 
(14) sgny0)(t)-^sgny°+1)(t), 1=0,1,2, for te[a,r]. 

The case (13) contradicts the fact that every linear combination of u and v is 
oscillatory (Remark 1). It follows from (14) that y0)(t) + 0 for t e [a, T], j = 0,1,2. 
This contradicts the assumption Ya)(s) = 0 for some 1=0, 1, 2. If;' = 3, the proof is 
similar; we replace (12) by 

c1y?-1)(T) + c2y2°-1)(T) = o. 

Hence there exists a number t0=s=^a such that the assertion of the Theorem 
holds. 

Theorem 11. Suppose that (A) holds and equation (L) is oscillatory. Let u and v 
be the solutions as constructed in the proof of Theorem 6. Then there exists 
a number t0el such that the zeros of any two independent linear combinations of u 
and v separate on (t0, o°). 

Proof. Let Yx and y2 be any two independent linear combinations of u and v. 
According to Theorem 10 we can choose t0el such that y0 ) and Y^\ 1=0, 1, 2, 
have no common zeros in (t0, oo). Let tx and t2 (t0<t1<t2) be any two consecutive 
zeros of Yx. Suppose that y2 has no zero between tx and t2. Then by Theorem 10 
Y2(tx)Y2(t2)±0 and hence Y2 does not wanish in the interval [tu t2]. Thus, by 
Rolle's Theorem there exists a point r e (ti, t2) such that 

®: -• 2 / < - T 

and hence Y2YI- Y'2YU wanishes at a point T. 

Therefore, there exist the constants c, and c2, c? + c2=^0 satisfying 

C,Y,(T) + C2Y2(T) = 0 

C,Y',(T) + C2Y2(T) = 0 . 
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The solution y = clYl + c2Y2 by Remark 1 is oscillatory and hence necessarily 

y"(r)y"'(r)<0. Since Y[(a)= Y2(a) = 0 (a<r), then y'(a) = 0. By Lemma 5 

y{t)y'it)<0 for t<T, which contradicts y'(a) = 0. The proof is complete. 

The following theorem gives a condition for the uniqueness of the solution z(t) 

of Theorem 2. 

Theorem 12. Suppose that (A) holds and let equation (L) be nonoscillatory. 

Then there exists at most one solution (with the exception of constant multiples) of 

(L) such that 

foг tel and 

s g n y ^ O ^ s g n y 0 * 1 ^ ) , 7 = 0,1,2 

l i m y ( 0 = 0. 

Proof. Suppose that there exists some other solution z(t) linearly independent 

of y(t), having the same property. Then there exists a constant c such that 

z(r) + cy(r) = 0,rel. Let Y(t) = z(t) + cy(t). Since y( t ) is nonoscillatory solution 

of (L) and y(T) = 0, by Lemma 2 and 5 there exists a number t0 = r such that either 

y y > o , y y > o 
or 

y y > o , y y < o 

for all f.=.to But this contradicts the fact that z(t) and y(t) are both bounded and 

lim Y(t) = 0. This contradiction proves the Theorem. 

dXJ4 
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линейно независимых решений. 
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