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OSCILLATORY AND NONOSCILLATORY PROPERTIES
OF SOLUTIONS OF THE DIFFERENTIAL EQUATION
y®+P@)y"+Q()y=0

JAN REGENDA

1. Introduction

The purpose of this paper is to study some properties of solutions of the linear
differential equation of the fourth order

@® ‘ Lly]=y®+P@®)y"+Q(1)y =0,

where P(t), Q(¢) are real-valued continuous functions on the interval I =[a, «),
—oo<g<x, It is assumed throughout that

(A) P(t)=0, Q(:)=0 forall tel and Q(r)

not identically zero in any subinterval of I.

The equation (L) has been studied by V. Pudei [8,9]. W. Leighton and Zeev
Nehari [7] have studied a slightly more general class of self-adjoint linear
differential equations of the fourth order and have given a number of results
concerning the existence of oscillatory and nonoscillatory solutions.

So far the results of papers dealing with the oscillation of solutions of the
differential equations of the fourth order were based on the distribution of the
zeros of nontrivial solutions. These methods are extremely difficult. This paper
deals with the oscillation of solutions but the method of deriving the results will be
based on the behaviour of nonoscillatory solutions. New results and another view
of the behaviour of solutions will be obtained. The method that has been used in
this paper has been used only in the equations of the third order and in the equation
of the fourth order y+ Q(¢t)y =0 [6].

A necessary and sufficient condition is given for the oscillation of the differential
equation (L) in terms of the behaviour of nonoscillatory solutions. At the same
time necessary and sufficient conditions are derived for the nonoscillation of the
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differential equation (L). It is shown that if (L) is oscillatory, then it has two
linearly independent oscillatory solutions such that the zeros of any two indepen-
dent linear combinations of these solutions separate on (#,, ®), fo€l.

A nontrivial solution of a differential equation of the n-th order is called
oscillatory if its set of zeros is not bounded from above. Otherwise, it is called
nonoscillatory. A differential equation of the n-th order will be called nonoscillato-
ry, when all its solutions are nonoscillatory; oscillatory, when at least one of its
solutions is oscillatory. A differential equation of the n-th order is said to be
disconjugate in an interval I iff every nontrivial solution has at most n — 1 zeros in
I

Let C"(I) denote the set of all real-valued functions such that its n-th derivatives
are continuous on I.

2. Preliminary results

Lemma 1, [1]. Let c(t), f(¢) be functions of class Clt,, ), let the differential
equation
w'+c(t)w=0

be nonoscillatory and f(t) does not change the sign in [t,, ©). Then also the
differential equation

w'+c()w=f(¢)
is nonoscillatory in [t,, ©).

Lemma 2. Suppose that (A) holds. Then for every nonoscillatory solution y of
the equation (L) there exists a number t,=a such that either

y(@)y'()>0, y()y"(6)>0,
or y(@®)y'(1<0, y@®y"()>0,
or y@y'(®>0, y@®)y"(1)<0
for all t=t,.

Proof. Let y(¢) be a nonoscillatory solution of (L). Then there exists a number
t,=a such that y(t)#0 in [¢,, ©). Assume, without loss of generality that y(¢)>0
on [t;, ®). Substitution y"(t)=2z(¢) into (L) leads to the following differential
equation for z '

(1) Z"+P(t)z=—-Q(t)y.
Since the equation

2"+ P(t)z=0
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is nonoscillatory in [t,, ©) and Q(¢)y(¢) does not change the sign in [¢,, ), it
follows that equation (1) is nonoscillatory in [¢t,, ), by Lemma 1. Hence there
exists a number £,=t¢, such that z(¢)#0, i.e. y"+#0 in [¢,, ©). From this it follows
further that there exists a number #,=t, such that y' # 0 for ¢ =¢,. Four cases may
occur for t=¢,:

a) y@)y'()>0, y(@)y"(1)>0,
b) y(@)y'(1)<0, y(@)y"(®)>0,
©) y(@)y'(1)>0, y()y"(r)<O0,
d) y(@)y'(1)<0, y(@)y"(£)<O0.

The casg d) is easily seen to be impossible. Thus there are possible only the cases
a), b), c¢). This completes the proof of the Lemma.

Lemma 3. Let A(¢, s) be nonnegative and continuous function for t,=s =t
(nonpositive for a=t=s =t,). If g(t), ¢(t) (y(t)) are continuous functions in the
interval [to, ®) ([a, t,]) and

<p(t)§g(t)+J:’ A(t, s)p(s)ds, for te[t,, »)

(1[1(t)ég(t)+ﬁA(t, syp(s)ds, for te[a,to]>,

then every solution y(t) of the integral equation

@) =90+ | A5 ds
satisfies the inequality
y@O=Z@((1) in [to, ©)
O=y(@) in [a,1]).

The assertion of this Lemma may be proved by the fact that the resolvent of the
equation (2) under the assumptions is nonnegative function for #,=s =t (nonposi-
tive function for a =s =t =t,). If we suppose in addition that g(¢) =0 for ¢ € [t,, ®)
(g(t)=0 for t €[a, t]), then the solution y(¢) of (2) satisfies the inequality

y()Zg(t)=0 for te(t, ©)
(Y(O)=g()=0 for te[a,t)).

Lemma 4. Suppose that (A) holds and let y(t) be a nontrivial solution of (L)
satisfying the initial conditions

Y(t)=yo=0, y'(to)=yo=0,
Y'(t)=yo=0, y'""'(t)=ys"' Z0
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(toeI arbitrary, yo+yo+ys+yo'' >0).
Then

y(©)>0, y'(®)>0, y"(®)>0, y"'(t)>0

for all t>t,.
Proof. The initial-value problem

L[y]=0, y(to)=yo, y'(to)=yo,
y"(to)zyg, y,,,(t) y’ll

is equivalent to Voltera’s following integral equation,

3) Y=g+ [ A )" (5) ds,
where

0@ =yi'=ys [ [Por+EFE 2 a(s)) as-

—yéf’(s—to)Q(s)ds—yof Q(s) ds
and
5)’

Ats)=-[ [pe+E5L 0@ .

The hypotheses of the Lemma imply that g(¢)>0 and A (¢, s)=0 for ¢ € (t,, «).
Then by Lemma 3

y'"'(t)Zg(@#)>0 forall te(t, »).
Hence there follows the assertion of Lemma 4.

Lemma 5. Suppose that (A) holds and let y(t) be a nontrivial solution of (L)
satisfying the initial conditions

() =yo=0, y'(t)=ys=0,
yll(to) yon ylll(to) ylll<0

(to€I arbitrary, yo+yo’+yo +yo''>>0).
Then
y()>0, y'(1)<0, y"(t)>0, y'"'(t)<O0

for all t €]a, to).
Proof. The initial-value problem

Lly]=0, y(t)=yo, y'(to)=ys,
Y'(t)=ys, y'"'(t)=yo"
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is equivalent to the integral equation (3). The hypotheses of the Lemma imply that
g()<0, A(t,s)=0 for a=t=s=t,. Then by Lemma 3 there is y'''(¢) <O for
t €[a, t;). Hence the assertion of the Lemma follows.

Let W(w,, w;; t) denote the Wronskian determinant of the functions w;, w; at
the point ¢:

W(wi, wie; £) =wi(t)wi(t) —wi()wi(2).

Lemma 6. Let there be functions w;(t) e C*[t,, ), i=1, 2, 3, toel with the
properties

w,>0, w;>0,
W(wi, wa; 8)>0, W(wy, ws; 1)>0, W(w,, wi;1)>0,
W(w,, wa; wis 8)>0 for te(to, ®) and
L[w,]=0, L[w,]Z0, L[w;]=0 for te(t, ®).

Then equation (L) is disconjugate in the interval [to, ©) ([5], pp. 77, 80).

We note if y is a solution of (L), then so is —y. Hence it follows from Lemma 4
that y(t)=0, y'(t)=0, y"(t;)=0, y'"'(t,)=0 (but not all zero) implies y(¢) <O,
y'(1)<0, y"(£)<O0, y'"'(t) <O for all £ >¢,. Similarly, it follows from Lemma 5 that
if y is a nontrivial solution such that y(#) =0, y'(%) =0, y"(t)) =0, y'"'(t,) =0, then
y(£)<0, y'(t)>0, y"(£)<0, y'"'(t)>0 for all t€[a, ).

3. The existence of monotonic solutions

Throughout the remainder of this paper let zo, z1, 22, Z5 denote solutions of (L)
defined on I by the initial conditions

A 0, i#j
@=o,={) {21,

for i, j=0, 1, 2, 3.

We will show the existence of solutions y(¢) and z(¢) such that y(¢) >0, y'(¢)>0,
y"(t)>0, y'''(£)>0 for all teI and z(£)>0, z'(¢)<0, z"(t)>0, z'"'(¢t) <O for all
tel.

Theorem 1. Suppose that (A) holds. There exists a solution y(t) of (L) such that
y(#)>0, y'(£)>0, y"(t)>0, y'"'(t)>0 for all tel. '

Proof. Let y(¢) be a solution of (L) which satisfies the initial conditions
y©(@)>0,i=0,1,2,3. Thenby Lemma 4 y®(t)>0forallteIandi=0, 1, 2, 3.

Theorem 2. Suppose that (A) holds. There exists a solution z(t) of (L) such that
(—1)z®@)>0for all tel and i=0, 1, 2, 3.
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Proof. For each natural number n >a, let co., ¢, €2, and cs, be numbers
satisfying

ConZo(n) + €1n2:(n) + C2022(n) + €3,25(n) =0
ConZo(n) + €1,21(n) + C225(n) + €3,25(n) =0
4) ConZ0(n) + €1a21(n) + €2a25(n) + €3,25(n) =0
ConZ0’ ' (n) +Cc1a21" (n) + €2025" (1) + €325 (n) <O
cttci +cei.+ei.=1.

Let z,(¢) = conzo(t) + €1.2:(t) + €2422(t) + ¢3,25(2), The existence of numbers c,,, C,,
c.. and c,,, satisfying the above conditions, is easy to verify. Since zo, 21, 2, and z;
are linearly independent, z,(¢) is a nontrivial solution of (L). Since for each natural
number n, the sequences {c..}, i =0, 1, 2, 3 are bounded, there exists a sequence of
integers {n;} such that the subsequences {c.,, } converge to numbers ¢, i =0, 1, 2, 3.
From (4) we see that

5) c2+ci+ci+ci=1.

The sequences {z,(t)}, {z~(#)}, {zn (1)}, {z.,''(t)} converge uniformly on any
finite subinterval of [a, ®) to the functions z(¢), z'(¢), z"(t), z""'(t), respectively,
where z(¢) is a nontrivial solution of (L). By Lemma 5 (—1)'z®(¢)=0 for all teI
and i =0, 1, 2, 3. Further, since z(¢) is a nontrivial solution and Q(¢)=0 and not
identically zero in any subinterval of I, it is easy to see that there is no number t € I
such that z®(t)=0 for some i=0, 1, 2, 3. Hence (—1)z*(¢)>0 on 1.

Theorem 3. Suppose that (A) holds and let

ftz"“Q(t)dt:—oo, tr=max {a,0}, 0=a<l.

]

Then for every solution y(t) of (L) such that y(¢t)y'(t)=0, y(¢)y"(t)=0 and
y()y'"(t)=0 for t =t, there holds

lim y(¢) =lim y'(¢) =lim y"(£) =lim y""'(£) =0.

Proof. Suppose that y(¢)>0. Then by the above conditions it follows that
y'(t)=0, y"(t)=0, y""'(t)=0 for t=t,. From this and equation (L) we obtain
y@(£)=0 for t=t,. From the above inequalities it follows easily that

lim y’(¢) =lim y"(¢) =lim y*"' (1) = 0.
Suppose that limy(¢) =B >0.
Multiplying (L) by #***, 0=a <1, integrating from ¢, to ¢, we obtain
[y ()s* L = [2 + a)s ™y (), +[2 + a)(1 + @)sy " ()], —
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©6) —-[Q+a)d+a)as“'y(s)],+(2+a)1l+a)a(a— l)f‘ s972y(s) ds +

+f' s2+°P(s)y"(s)ds+f $**Q(s)y(s) ds = 0.

0

Since y(¢) has a finite limit and 0=a <1 from (6) it follows that
t2+ay’”(t);K_B f s2+aQ(s) ds ,

where K is a constant. Hence it follows that y'’’(¢) >0 for sufficiently large ¢. But
this is a contradiction and the proof is complete.

Remark. Later we shall show the uniqueness (except for a constant factor) of
the solution y(¢).

4. Conditions for disconugation

Theorem 4. Let there be functions w;(t) € C* [t,, ©),i =1, 2, 3, to€ I such that

wi(#)>0, wi(t)<0, wi(t)>0 for ¢t €lt, *),
wo(£)>0, wi(t)>0, wi(t)=0 for te[t, »),
)] wi(£)>0, wi(t)>0, wi(t)>0 for te(to, o),
ws(t,) =0
and
L{w,]=0, L[w,]20, L[w;]=0 for te(to, ®).

Then equation (L) is disconjugate on [t,, ®).

Proof. Conditions (7) imply that W(w,, w,; t)>0, W(w,, ws; t)>0 on [¢t,, ®).
We will show that W(w,, ws; £)>0 and W(w,, w,, ws; t)>0 on (¢, ).

Indeed, since

W(wa, Wi to) = wy(to)wi(te) — wi(to)ws(t) =0
and
W' (W2, Wi )= wy()wi(t) — wi(t)ws(£) >0 on (¢, ),
8 W(w,, wi; £)>0 on  (to, ®).

W(wi, wa, Wss 1) = wi(6)[wi(O)w5(e) — wi()w5(0)] -
—wiO)[wAt)w's(t) — wit)ws(2)] +
+wi(O)[w.()wi(t) — wi)ws(t)].

It is clear that the first and second term on the right-hand side is positive for ¢ > f,.
Since wi(¢) >0 in [¢,, ) by hypothesis, it follows from (8) that the last term is also
positive for t>t,. Hence W(w,, w,, ws; t)>0 on (fo, ®).
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Since the conditions of Lemma 6 are satisfied, equation (L) is disconugate on
[t0, ). This completes the proof of Theorem 4.

Theorem 5. Let there be functions w;(t) € C*[to, ®),i=1, 2,3, t,€ I such that

wi(1)>0, wi(t)<0, wi(t)>0,w! ' (t)<0 for te[t, »),
9) wa(8)>0, wi(t)>0, wi(t)>0,ws'(t)=0 for telt, ©),
wi(£)>0, wi(t)>0, wi()>0,
wi''(£)>0 for te(t, »),
wa(to) =wi(to) =0
and
L[{w,]=0, L[w,]Z0, L[ws]=0 for te(to, ).

Then equation (L) is disconjugate on [t,, ).

Proof. Conditions (9) imply W(w,, w,; t) >0, W(w,, ws; t)>0 on [£, ©). We
will show that W(w,, ws; t)>0 and W(w,, w,, ws; £)>0 on (f, ©). Let

a(t)=wi@)wi(t) —wi(t)wi(t) for t=t,.

Then

a(t)) =wi(to)wi(te)=0
and

a'()=wi)wi"' (t)—wi' ' (O)wi(t)>0 on (t, ).
It follows from this that a(¢)>0 on (£, ). Since

W (w2, wi; o) = wi(to)W3(to) — wito)ws(to) =0
W’(Wz, W3 ; to) = Wz(t())wg(t()) - W’z’(to)w:;(to) ;O

and
W' (w,, ws; £) =wi(O)wi(t) — wi(e)wi(t) +
+wo()ws' () —wy' ' ()ws()=a(t) + wa(t)ws''(t) —
—wy"'(O)ws(t)>0 on (to, ®),
then

W' (wy wa; £)>0 and W(wa, ws;t)>0 on  (t, ®).
Hence we again obtain from (9) that

W(wi, wa, ws; t) =wi(O)[waO)wi(t) — wit)wi(0)] -
= wiO)[w2()w3(0) = wi(O)ws()] + wi(O)[wa()wi(e)
—wi®)ws(O)] =wi()a () —wi(t) W' (wz, wa; t)+
+wi(t)W(wa, wi;£)>0
on (t,, ). It follows from Lemma 6 that eqation (L) is disconjugate on [¢,, ®©) and
the proof is complete.
The following consequences follow from Theorems 4 and 5.

Corollary 1. Let (L) have solutions yi, y» and y; with
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yi(£)>0, yi(t)<0, yi(t®)>0 on [to, ®),
y(t)>0, yx()>0, y3(1)=0 on [t, ),
yi(£)>0, yi()>0, y3(t)>0 on (t, »),
y3(t)=0.

Then (L) is disconjugate on [t,, ©).
Corollary 2. Let (L) have solutions y:, y, and y, with

yi(0)>0, yi(1)<0, yi()>0,yi""(t)<0 on [to, ®),

y(8)>0, yi(t)>0, y5()>0,y"'()=0 on [t, ),

yi(#)>0, yi(t)>0, y3()>0,y5"'(t)>0 on (t, *),
y3(to)) =y3(t0) =0.

Then (L) is disconjugate on [t,, ©).
The following sufficient conditions for (L) to be disconjugate are simple
consequences of Theorems 1, 2, 4 and 5.

Corollary 3. Suppose that (A) holds and let there be function w € C* [t,, ©), toe
such that w>0, w' >0, w"=0, L[w]=0 on (t,, «). Then (L) is disconjugate on
[to, ). »

Corollary 4. Suppose that (A) holds and let there be function w € C* [t,, ©), toe I
such that w>0, w'>0, w">0, w'''=0 and L[w]=0 on (t,, ). Then (L) is
disconjugate on [to, ).

5. Necessary and sufficient conditions for oscillatory
and nonoscillatory equations

Theorem 6. Suppose that (A) holds. Then equation (L) is oscillatory if and only
if for every nonoscillatory solution y(t) of (L) there holds either

(10) y@)y'()>0, y(@)y"(#)>0, y@)y'"'(£)>0
on [to, ©) for some t €1, or
(10") y@y'(1)<0, y()y"(£)>0, y()y'""(#)<0 on I

Proof. Assume that (L) is oscillatory and let y(¢) be a nonoscillatory solution of
(L). Then by Lemma 2 there exists a number ¢, € I such that either

y(@y'(®>0, y@)y"(1)>0,
or

y()y'(£)<0, y@®)y"(t)>0,
or

y@)y'(©)>0, y@)y"(t)<0
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for all £ =¢,. There is no loss of generality in assuming that y(¢) >0 for all ¢ € [¢,, ).
We note that if y”(¢)>0, it then follows from (L) that y“’(¢)=0 (not identically
zero in any subinterval). Hence these cases are possible:

a) y()>0, y'(£)>0, y"(t)>0, y'"'(t)>0,
b) y()>0, y'(t)>0, y"(®)>0, y'""(r)<0,
©) y()>0, y'(1)<0, y"(©)>0, y'"'(£)>0,
d) y()>0, y'(1)<0, y"(6)>0, y'"()<O0,
e) y(@)>0, y'(t)>0, y"(1)<0

for t =1t,, where ¢, is some number greater than or equal to ¢,. In the case c) this is
easily seen to be impossible. Only the cases a), b), d), €) may occur. Suppose that
y(t) does not satisfy the conditions (10), (10’). Then either b) or e) holds. If
a solution satisfying condition b) or e) existed, equation (L) then would be
nonoscillatory, by Corollaries 1 and 2 of Theorems 4 and 5, contrary to the
hypothesis. This completes the proof of the first half of Theorem 6.

If y(¢) is an arbitrary nonoscillatory solution of (L), which satisfies condition (10)
or (10"), we could then construct oscillatory solutions u and v of (L) given by

u= boZo(t) + szs(t)
V= CzZz(t) + C3Zg(t),

where b3+ b3 =c3+ c3=1. The proof of this part of the Theorem is similar to that
of Theorem 3 ([6], p. 293) and will be omitted.

Remark 1. An argument, similar to the one given to show that u and v are
oscillatory, can be given to show that any nontrivial linear combination of # and v
is oscillatory.

Further, we note that u and v are linearly independent since, otherwise, we
would have u = cz;, c# 0 and this would contradict the fact that u is oscillatory.

Remark 2. If (L) is oscillatory, then it has three linearly independent oscillatory
solutions.

The proof of this is virtually the same as that of Theorem 4 ([6], p. 294).

Remark 3. We note that in view of Theorem 6 and Remark 2, the conditions
(10), (10') are equivalent to the existence of three linearly independent oscillatory
solutions.

Theorem 7. Suppose that (A) holds. Then equation (L) is nonoscillatory on I if
and only if there exists a number t, € I and a solution y(t) of (L) such that either

y()>0, y'(1)>0, y"(r)<0,
or
y()>0, y'(1)>0, y"(©)>0, y"'(1)<0

for all t=t,.
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Proof. The sufficient condition follows from Corollaries 3 and 4.

It is easy to show that the existence of such a solution is also necessary. Indeed, if
(L) is nonoscillatory there must exist a nonoscillatory solution y(¢) which does not
satisfy the conditions (10), (10'). Then by Lemma 2 and from the proof of
Theorem 6 it follows that there exists a number ¢,€I such that either

y(®>0, y'()>0, y"(1)<0,
or
y(®>0, y'(6)>0, y"()>0, y'"'(1)<0

for all t=¢,.

Theorem 8. Suppose that (A) holds. Then equation (L) is nonoscillatory on I if
and only if there exists a function w(t) e C* [to, ®), to€ I, such that either

w()>0, w'(t)>0, w"(t)<0, L[w]=0
or
w()>0, w'(t)>0, w"(t)>0, w'’(t)<0, L[w]=0.

Proof. Suppose that (L) is nonoscillatory on I. It follows from Theorem 7 that
there exists a number #,€I and a function w(t) such that either

w()>0, w'(t)>0, w"(t)<0, L[w]=0
or
w()>0, w'(£)>0, w"()>0, w''(t)<0, L[w]=0

for all 1 =¢,.
The proof of the second part of the Theorem follows from Corollaries 3 and 4.

Theorem 9. Suppose that (A) holds. Then equation (L) is nonoscillatory on 1 if
and only if there exists a number to€1 such that (L) is disconjugate on [t,, ).

Proof. The necessity of the condition follows from Theorem 8 and Corollaries 3
and 4. The proof of the sufficiency is based on the fact that the solution has only
a finite number of zeros on the compact interval [a, t,]. Hence, if (L) is
disconjugate on [t,, *), then it is nonoscillatory on [a, ©).

6. The properties of the zeros of solutions of oscillatory
differential equations

We will now show when the zeros of two linearly independent oscillatory
solutions separate. First we state the following theorem.

Theorem 10. Suppose that (A) holds and equation (L) is oscillatory. Let u and v
be the solutions as constructed in the proof of Theorem 6. If Y, and Y, are two
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independent linear combinations of u and v, then there exists a number t,€ I such
that for all t>1,Y{’ and YY cannot have any common zeros, j =0, 1, 2, 3.

Proof. To prove the Theorem it is sufficient to show that there exists at most
one point s € I such that Y{(s) = Y¥(s)=0 for some j=0, 1, 2. Suppose that
Y{(r) = Y¥(r)=0 for some j=0, 1, 2 and some other point t>s. Then there
exist constants ¢, and c¢,, c¢i+c3+#0, satisfying

(11) aYP(r)+c,YP(r)=0,

(12) YO (t) + e, YI(1)=0.

Let Y=c,Y,+c,Y,. Then it follows, by Lemmas 4 and 5, that either
13) sgn Y(#)=sgn Y¥(¢), j=1,2,3, for t>7

or

(14) sgn YO(t)#sgn YU*V(¢), j=0,1,2, for tela,1].

The case (13) contradicts the fact that every linear combination of u and v is
oscillatory (Remark 1). It follows from (14) that Y?(¢) #0for ¢ €[a, 7],j=0, 1, 2.
This contradicts the assumption Y?(s) =0 for some j =0, 1, 2. If j = 3, the proof is
similar ; we replace (12) by

C ng‘l)(r) + 62Y§j—1)(1’) =0.

Hence there exists a number #,=s =a such that the assertion of the Theorem
holds.

Theorem 11. Suppose that (A) holds and equation (L) is oscillatory. Let u and v
be the solutions as constructed in the proof of Theorem 6. Then there exists
a number t, € I such that the zeros of any two independent linear combinations of u
and v separate on (t,, ©).

Proof. Let Y, and Y, be any two independent linear combinations of u and v.
According to Theorem 10 we can choose f, €I such that Y{’ and Y?, j=0, 1, 2,
have no common zeros in (%, ©). Let ¢, and ¢, (¢,<t,<t,) be any two consecutive
zeros of Y. Suppose that Y, has no zero between ¢, and t,. Then by Theorem 10
Y,(t:)Y2(2;) #0 and hence Y, does not wanish in the interval [¢,, t,]. Thus, by
Rolle’s Theorem there exists a point 7 € (¢, t,) such that

Y\ _
(Yz) =t - 0,
and hence Y,Y]— Y:Y,, wanishes at a point t.

Therefore, there exist the constants ¢, and c¢,, ci+ c3#0 satisfying

C Y,(‘L') + CzYz(T) = O
a,Yi(t)+c,Y(r)=0.
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The solution y=c,Y,+c,Y, by Remark 1 is oscillatory and hence necessarily
y"(r)y""(r)<O0. Since Yj(a)=Y3(a)=0 (a<t), then y'(a)=0. By Lemma 5
y(2)y'(t)<O0 for t <7, which contradicts y’(a)=0. The proof is complete.

The following theorem gives a condition for the uniqueness of the solution z ()
of Theorem 2.

Theorem 12. Suppose that (A) holds and let equation (L) be nonoscillatory.
Then there exists at most one solution (with the exception of constant multiples) of
(L) such that

sgn y@(t)#sgn yi*(¢), j=0,1,2
for t eI and

lim y(r)=0.

Proof. Suppose that there exists some other solution z(¢) linearly independent
of y(t), having the same property. Then there exists a constant ¢ such that
z2(t)+cy(r)=0,7€el. Let Y(¢)=2z(¢)+cy(t). Since Y(¢) is nonoscillatory solution
of (L) and Y(7)=0, by Lemma 2 and 5 there exists a number #,= 7 such that either

YY' >0, YY'>0
or
YY'>0, YY'<O

for all £ =¢,. But this contradicts the fact that z(¢) and y(¢) are both bounded and

lim Y(¢)=0. This contradiction proves the Theorem.

du4
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OCUWUIAUUOHHBIE U HEOCUWIISLIMOHHBLIE CBOVICTBA
PELIEHUN NHU®PEPEHIIUAJIBHOIO YPABHEHUS

SlHPerenpa
Pe3ome
B pa6ote npuBeneHbl HEOOXOAMMBIC M JOCTATOYHbIE YCIIOBHA AN OCLMJIISALUM W HEOCLWIISLIUM

peureHnii ypaBHeHus. Kpome TOro, paccMaTpMBaeTcs BOMPOC O TOM, YEPEAYIOTCA-MH HYIM ABYX
JMHEHHO HE3aBUCHMBbIX PEILEHHH.
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