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ON SOME TYPES OF MAXIMAL [-SUBGROUPS
OF A LATTICE ORDERED GROUP

STEFAN CERNAK

All lattice ordered groups dealt with in this paper are assumed to be commutati-
ve. We consider the conditions (p), (q), (h) and (8) for a lattice ordered group (for
detailed definitions cf. § 1). The condition (q) is similar to a condition studied by
Everett [5]. The condition (8) has been considered by Alling in [1] for the case
of linearly ordered groups.

For x e {p, q, h, B} we denote by S,(G) the system of all convex /-subgroups of
an /-group G that fulfil the condition (x). The system S,(G) is partially ordered
under set inclusion. The class of all lattice ordered groups satisfying the condition
(x) will be denoted by T,.

§ 2 contains some auxiliary results concerning the conditions (p), (q), (h) and
(B). In § 3 it is proved that for each x € {p, q, h, B} the partially ordered system
S,(G) has the greatest element. From this it follows that T, is a radical class in the
sence introduced by Jakubik [7].

§ 1. Preliminaries

Let us recall some concepts, definitions and notations to be used throughout the
paper. For the notations and basic concepts not introduced here, we refer to [2] and
[6].

Let G be an abelian /-group. Denote by N the set of all positive integers. We say
that a sequence (x,) is in G if x, € G for each n € N. A sequence (x,) in G is called
descending if x,=x,., for each n e N. The concept of an increasing sequence is
defined dually. Let (x,) be a sequence in G and let x € G. Suppose that there exist
sequences (u,) and (v,) in G such that (u,) is increasing, (v,) is descending,
u, <x,<v, foreach n e N and vu, = Av, =x. Then we shall write x,, — x ; we also
say that (x,) o-converges to x, or that x is an o-limit of (x,). If (x.) is a descending
sequence and if there exists Ax, =x, then (x,) o-converges to x ; this situation will
be denoted by x,|x. The meaning of x,Tx is analogous. A sequence (x,) will be
called a zero sequence if x, — 0 (O denotes the zero element of G). It is obvious that
x,—0 if and only if there exists a sequence t,|0 such that |x,|<t, (neN). A
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sequence (x,) satisfying
|% — x| <t. (n€eN, m=n)

for some (%) with #,]0 is called fundamental. Denote by H(E) the set of all
fundamental (zero) sequences in G. If (x,) is o-convergent, then (x,)e H. The
converse does not hold in general. If every sequence (x,) € H is o-convergent, then
G is said to be o-complete. An interval [a, b] of G is called o-complete if (x,)
o-converges whenever x, €[a, b] (neN) and (x,) e H. Since each fundamental
sequence is bounded, G is o-complete if and only if each interval of G is
o-complete.

Now we describe the construction of the Cantor extension C(G) of G. This
construction is due to Everett [5]. Let (x.), (y.)e H. We put (x,)+(y.)
= (x,+ y,); further we set (x,) <(y.) if x, <y, for each n e N. Then H turns out to
be an abelian /-group and E is an /-ideal of H. The factor /-group H/E = C(G) is
said to be the Cantor extension of G.

The symbol (x,)* will be used to denote the coset of C(G) containing (x,) € H.
The mapping @:x—(x, x, ...)* from G into C(G) is an o-isomorphism. If x and
@(x) are identified, then every sequence (x,)€ H is o-convergent in C(G) and
every element of C(G) is an o-limit of some sequence (x.) € H. Both symbols
0 and E will be used to denote the zero element of C(G).

We say that an element y € G is an o-cluster point of a sequence (x,) if there are
sequences (u,) and (v,) in G such that

(i) w.ly, valy,

(ii) for each n,e N there exists n € N, n =n, with the property u, <x, <v,.

It is easy to prove that y € G is an o-cluster point of (x,) if and only if y is an
o-limit of a subsequence of (x,).

In § 2 and § 3 we shall consider the following conditions for G:

(p) If [a., b.] (n € N) is a system of intervals of G such that [a,, b,] 2[@,+1, bn.1]
for each n e N, then N[a,, b,] (n e N)#0.

(q) If (x,) is a fundamental sequence in G and Ax, does exist in G, then (x,) is
o-convergent.

(h) Every bounded sequence in G possesses an o-cluster point.

(B) If a is an ordinal, A, B are nonempty linearly ordered subsets of G such that
A <B, cardA +card B<R,, then there exists g € G with A <{g}<B. Here
A <B (A <B) means that a<b (a<b) for eachae A and each beB. If G is
linearly ordered and if it fulfils (8), then G is called an n,-group (cf. Alling [1]).

We say that a sequence (x,) in G converges to x if for each 0 <e € G there exists
no€ N such that |x, —x|<e for each n=n, (see [5]). An element x € G is called
a cluster point of a sequence (x,) if for each 0<e € G and each n, € N there exists
n=n, such that |x, —x|<e.

A sequence (x.) will be called almost constant if there is n,e N with x, =x,, for
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each n=n,. If G is a linearly ordered group, the o-convergence is reduced to the
convergence (see [5]) and it is easily seen that the concept of an o-cluster point
coincides with the concept of a cluster point. If G is an /-group that fails to be
linearly ordered and if a sequence (x,.) of elements of G converges to x, then (x,) is
almost constant (x, = x, n =n,) (cf. [5]). Therefore x is a cluster point of (x,) if and
only if for each m e N there exists n(m)=m with X,..,=x.

Let us recall the definition of the direct (lexicographic) product of partially
ordered groups (cf. [6]). Let A and B be partially ordered groups. The cartesian
product G of A and B is made into a partially ordered group by putting (a;, b,) <
(a,, b,) if and only if a,<a,, b;<b, (a,<a,ora,=a,and b,<b,) for all a,, a,e A
and all b,, b,eB. Then G is said to be the direct (lexicographic) product of
partially ordered groups A and B. We shall use the notation G=A XB
(G=AoB). By x(A) (x(B)) we shall denote the component of x € G in the factor
A(B). ’

Since G is abelian, the notion of a convex /-subgroup of G coincides with the
notion of an [/-ideal of G. The additive groups of all integers, rational and real
numbers (with the natural linear order) will be denoted by C, Q and R,
respectively.

§ 2. The conditions (p), (¢) and (h)

This paragraph deals with the relation between the o-completeness of G and the
conditions (p), (¢) and (). Further there are investigated some relations between
G and the Cantor extension C(G) of G.

If [x,., ¥.] (n € N) be a system of intervals of R such that [x,., y.] 2[Xa+1> Ya+1] for
each n e N, then N[x,, y.] (n e N)# 0. The analogous statement need not hold in
G.

Example 1. If g =C.C, then N[(0, n); (1, —n)]=4.

Let [u., v.] be a system of intervals of G with [u,, v,]2[tn+1, Vasi] for each
n eN. Denote K =n[u,, v,] (n eN).

2.1. If K#0 and if

(i) (u), (va)eH,

(i) (u.)*=(va)*
hold true, then cardK =1.

Proof. Assume that (i) and (ii) are fulfilled and let card K >1. Since K is
a sublattice of G, there exist x, y € G, x <y. From (ii) we get (u, —v,) € E ; hence
there is a sequence £, 10 such that 0<v, —u,<f,. Then 0<y—x < v, —u,<t,
(n eN). This is a contradiction, because At, (neN)=0.

2.2. If K={x}, then Av,=vu,=x (neN).

Proof. We see that x <v,.. Assume that y € G such that x <y <wv, (n € N). Since
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y=u, (neN), we have ye K. The hypothesis implies x=y and so x= Av,
(n eN). Similarly x =vu, (neN).

From 2.1 and 2.2 we obtain immediately:

2.3.If K+ 0, then card K =1 if and only if the following conditions are fulfilled :

() (u), (v.)eH,

(i) (u)*=(va)*.

2.4. For each sequence (x,) € H there exist sequences (u,) and (v,) such that
(u.) is increasing and (v,) is descending with

(i) u.<x,<v, (neN, m=n),

(1) (Un)* = (va)* = (xa)*.

Proof. Suppose that (x,) € H. There exists a sequence (¢,) in G such that £, |0
and |x, — x| <t,, i.e., —t,<x, — x,.<t, (neN, m=n). Then

¢)) X, — L, <X,<x,+t, (neN, m=n).
Construct sequences (u,) and (v,) as follows:

U =x1—t, U,=x—t)vu,_, (neN, n>1),
vi=x+t, v,=(X.+8)Av.-1 (neN, n>1).

From (1) it follows that (i) is valid. The sequence (u,) is increasing and (v,) is
a descending one. Hence [u,, v,] 2[uz, v2]2.... The definition of elements u, and
v, implies

2) X, — L <u,<x,<v,<x,+t, (neN, m=n).

From (2) we obtain 0<u,, —u, <x, —u,<2t, (n €N, m=n). Since 2t,]0, we
have (u,)e H. In the same way we get (v,)e€ H. According to (2) we have
0<v,—u,<2t, (neN),0=<x, —u,<2t, (n € N). Therefore u, —v,—0, x, — U, —
0. Thus (u.)*=(v.)*, (x.)*=(u,)* and so (i) is valid.

2.5. If G fulfils (p), then G is o-complete.

Proof. Suppose that G fulfils (p). Let (x,) € H. Let the sequences (u,) and (v,)
be as in 2.4. By the assumption K = n[u,, v.] (n € N)#0, hence because of 2.3
card K = 1. If we denote K = {x}, from 2.2 it follows x = Av, = vu, (n € N); hence
v.lx, u,Tx. Since u, <x,<wv, (n€N), we have x,—>x.

Example 1 shows that if G is o-complete, then G need not fulfil (p).

2.6. G is o-complete if and only if condition (q) holds.

Proof. Suppose that condition (q) is satisfied and let (x,) € H. According to 2.4
we can find an increasing sequence (u,)€ H and a descending sequence (v.) € H
such that u, <x, <v,. Since Au, =u, does exist in G, the assumption implies that
the sequence (u,) is o-convergent. Consequently, u, Tu = vu, (n € N). By using (2)
we obtain v, —u, <2t,; hence 0<v, —u<2t,]0 (neN). Then v, —u |0, which
means that v, |u. We infer that x,—u; thus G is o-complete. The converse is
obvious.
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The condition (q) is similar to the condition

(q@') If (x,)e H, then Ax, does exist in G.

Everett [5] has shown that condition (q¢') holds in G if and only if G is
o-complete.

2.7. If (x,)*e€ C(G), E <(x,)*, then there exists g € G, E <g <(x.)*.

Proof. Let E<(x,)*e C(G). We may suppose that x, =0 (n € N). By 2.4 we
can find an increasing sequence (u.)eH, u,<x, (n€N), (u.)*=(x.)*. Hence
u,=u,v0<x, (neN). Since (u,)*=(x,)*, there exists noe N with u, =g>0.
From 0<g <u,<x, (n=n,) we obtain E <g <(x,)*.

2.8. If A+ {E} is a convex [-subgroup of C(G), then AnG+ {E}.

Proof. If A = G, the assertion is obvious. Suppose that A & G. Then there exists
E<(x,)*€A, (x,)*¢G. In fact, because G is an /-subgroup of C(G), we infer
A c G, if each positive element from A belongs to G. With respect to 2.7 there is
g € G, E <g=<(x,)*. The convexity A in C(G) implies g € A and thus g e AnG.

2.9. If G'is a linearly ordered group and (x,) is a sequence in G, the following
conditions are equivalent:

(i) For each 0<eeG there exists noe N such that |x,—x,|<e (neN,
m=nz=n,),

(if) (x.)eH.

Proof. Suppose that (ii) is valid. There exists a sequence (f,) with ¢,]0 and
|X, — x| <t, (n €N, m=n). In view of [5] a sequence (a,) in a linearly ordered
group o-converges to a if and only if (a,) converges to a. Thus for each 0<ee G
there exists noe N such that ¢, <e (n=n,) and so (i) is true. Conversely, let (i)
hold true. If (x,) is an almost constant sequence, it is easily seen that (ii) is valid.
Let (x.) be a sequence which is not almost constant. Then for each n € N there
exists m=n with |x, —x,,| #0. If 0<e, € G, then according to (i) there exists the
least number n, € N such that |x, —x,.|<e, (ne N, m=n=n,). Let p e N be the
least number with the properties p >n, and |x,, —x,|#0. For e,=|x,, —x,|<e,
there exists the least n, € N such that |x, — x,,| <e, (n € N, m=n =n,). In the same

way we can find n,, and so on. Clearly, n,<n,<n,;<.... Let us form a sequence
() by putting: U, =uU,= ... = Up 1= €1y Un, = Up 1= oo = Upyo1 = €1, Up, = Upys1 =
. =U,,_1=¢6,, .... The sequence (u,) is descending and u,=0 (neN). Now we

show that Au, —0 If xe G, x<u, (neN), then x <0. Assume that x >0. By (i)
there exists no€ N such that |x, — ,,.| <x (n €N, m=n =n,). Further, there are r,
seN r=s=n, such that u,=|x, —x,|<x, a contradiction. Hence u,|0 and
| — Xm| <u, (n €N, m=n=n,). Therefore (x,) € H.

2.10. Let (i) and (ii) be as in 2.9. Assume that an [-group G contains at least one
o-convergent sequence which is not almost constant. If (ii) implies (i), then G is
a linearly ordered group.

Proof. Suppose that G is an /-group such that condition (ii ) implies (i). Assume
that G is not linearly ordered. Then there are 0<a, b € G, a Ab =0. According to
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the assumption there exists a sequence (x,) in G such that x, —»x and for each
no€ N we can find n >n,, with x,# x. Then there exists a sequence t,.lO, t, >0
(n e N) satisfying |x, —x|<t, (neN). We have (t,) € H, hence (t,) fulfils ().
Therefore there is m, e N such that ¢, —¢, <a, whenever m =n=m,. Similarly
there is m, e N such that ¢, —¢,, <b, whenever m =n =m,. If my;=max{m,, m,},
then 0<t, —t,<aAb =0 for each pair n, m with m=n=m,. Since (¢,) is not
almost constant, we have a contradiction.

If (if) implies (i), but each o-convergent sequence in an /-group G is almost
constant, the assertion need not hold (example: G=C X C).

From 2.9 and 2.10 it follows

Theorem 2.1. Assume that an l-group G contains at least one o-convergent
sequence which is not almost constant. G is linearly ordered if and only if the
conditions (i) and (ii) from 2.9 are equivalent.

2.11. If an interval [0, a] is a chain in G, then [E, a] is a chain in C(G).

Proof. Assume that there exist (x,)*, (y.)* €[E, a], (x.)*||(y.)*. According to
2.7 there are g and A from G such that E<g<(x,)* E<h<(y.,)* If
(x.)*A(y.)*=E, then g||h which is impossible because [0, a] is a chain. Now let
(xX:)*A(yn)* = (z.)*>E. Introduce the notations (u,.)*=(x,)* — (z.)*>E,
(va)*=(.)* — (z.)*>E. Hence (u,)*A(v,)*=E. In a similar way as above we
obtain a contradiction.

Theorem 2.2. C(G) is a linearly ordered group if and only if G is a linearly
ordered group.

Proof. Let G be a linearly ordered group. C(G) being an /-group, it suffices to
verify that [E, (x,)*] is a chain for each (x,)* € C(G), (x,)*>E. Every fundamen-
tal sequence in G is bounded. To get this result it suffices to put n =1 in (i) from
2.4. Hence an element a =(x,)* does exist in G. By the assumption and 2.11 [0, a]
is a chain in C(G) and so [E, (x,)*] is a chain as well. The converse is obvious.

The system {a;: i € M} of elements from G will be called disjoint if M+ @, a, >0
for all i e M and a; Aaq; =0, whenever i, je M, i¥j. Let a be a cardinal. Assume
that the following condition is fulfilled in G:

(F(a)) If {a;: i e M} is a disjoint system in G, then cardM <a.

In Conrad’s paper [3] there is studied the condition F(R,). The condition (F(a))
was considered by Jakubik [8].

2.12. The condition (F(a)) holds in C(G) if and only if it holds in G.

Proof. Let G satisfy the condition (F(a)) and let S = {a;: i e M} be a disjoint
system in C(G). With respect to 2.7 for each i e M there is g; € G with E <g; <a,.
Hence {g.: i e M} is a disjoint system in G and therefore card M < a. The converse
is obvious.

A subset A of G is said to be a basis for G (cf. Conrad [3]) if

(i) an interval [0, a] is a chain for each 0<a €A,
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(if) A is a disjoint set,

(iif) if 0<b € G such that bAaa =0 for each ae A, then b=0.

2.13. A basis A ={a;: ie M} for G is a basis for C(G).

Proof. Let A be a basis for G. In view of 2.11 we obtain that [E, a;] is a chain in
C(G); and thus (i) is fulfilled in C(G). It is clear that (ii) holds in C(G) as well. It
remains to verify only (iii). Let E <(x,)* € C(G), (x.)*Aa=E foreachae A. We
have to show that (x,)* = E. Assume that E <(x.)*. According to 2.7 there exists
geG, E<g<(x,)*.Since A is a basis for G, from g Aa =0 it follows that g =0, a
contradiction.

2.14. If x,—x, then x is the only o-cluster point of (x,).

Proof. If x,—x, then there are sequences (u,) and (v,) such that u,,,Tx, va | x
and

3) u,<x,<v, (neN).

Then x is an o-cluster point of (x,). Let also x’ € G be an o-cluster point of (x,).
Hence for" each n,e N there exists n =n, with the property

4) Urn<x,<v,,

where u,Tx’, vilx’. Let us form a sequence (X,(m)) (n € N) such that for eachm e N
we find n(m)e N with the property Usnemy < Xnem) < Unemy. If m;<m,, we can
choose n(m,)<n(m,). By using (3) and (4) we get Unmyt+Unm) < 2Xnem) <
Ungmy + Ungmy (m € N). Therefore 2x,(.,—x +x'. The assumption implies 2x,m—
2x, hence x +x'=2x, x=x".

2.15. If x is an o-cluster point of (x,)€ H, then x,—x.

Proof. Let (u,) and (v,) be as in 2.4. By the assumption there exists
a subsequence (X,.m) of (x,) such that x,..,—>x. With respect to (2) we have
Uy < Xpemy SV, (n €N, m=n). Therefore u,<x<wv, (ne€N). Thus (u,)*<(x, x,
...)*<(v,)* and 2.4. implies (1,)* = (v,)* = (x, x, ...)*. Hence u,x, v, |x and
by using (2) we obtain the assertion. Since every fundamental sequence is bounded,
with respect to 2.15 we conclude

2.16. If G fulfils (h), then G is o-complete.
The converse does not hold in general.
Example 3. G=Qo.R is an o-complete /-group (see [4]). The sequence

(x.)= <(% 0)) in G is bounded but it possesses no o-cluster point. Assume that

(x, y) e G is an o-cluster point of (x,). Hence there are sequences (u,) and (v.)
such that u,T(x, y), v.|(x, y) and for each noe N there exists n=n, with the
property u, <x,<v,. There exists n,€ N with the property u,(Q)=v.(Q)=x

(n=n,) (see [4]). If x>0, then x>nl for some n,eN. Hence u,>x, (n=n,
. 2
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= max{n,, n.}), a contradiction. If x =0, then x, >v, (n =n,), again a contradic-
tion.

2.17. If G satisfies (h), then it satisfies (p) as well.

Proof. Let [u,, v.] (n € N) be a system of intervals of G such that [u,, v.] 2
[tns15 Vus1] for each neN. The sequence (v,) is bounded and hence by the
assumption it has an o-cluster point x. There exists a subsequence (v, ) of (v,) with
v,{x. Therefore, v,|x and u,<x<wv, (neN). This shows that x € N[u,, v.]
(neN) and (p) holds true.

If G fulfils (p), then G fails to satisfy (h); it suffices to put G=RoR. The

sequence (x,)= ((% 0)) has no o-cluster point.

2.18. 1f G fulfils the condition (h), then G is archimedean.

Proof. Assume (by way of contradiction) that G satisfies (%) and it fails to be
archimedean. Then there exist a, b € G, a >0, b >0 with na <b (n € N). We wish
to show that the bounded sequence (na) has no o-cluster point. Suppose that x is
an o-cluster point of (na). Then we can find sequence (u,) and (v,) with u,]x,
v, |x. For each n, € N there is n =n, such that u, <na <v,. We obtain v, >ka (n,
k eN). Hence na<Av,=x (neN) and thus (n+1) a<x, na<x —a. For each
m € N there exists n =m such that u,, <u,<na < x —a. Hence x = vu,, (meN)
< x —a, a contradiction.

If G is archimedean then the condition (#) need not hold in G, for example if
G=Q.

§ 3. The greatest [ -ideals of G

In this paragraph it will be shown that for each x € {p, q, h, B} the partially
ordered system S,(G) possesses the greatest element M,.

It is easy to verify that G fulfils the condition (x) if and only if each interval of G
fulfils the condition (x). Let us form the set

M, ={g € G: the interval [0, |g|] fulfils the condition (x)}.

Let x, y, ceG, x<c<y.

3.1. If the intervals [x, c] and [c, y] satisfy condition (p) then the interval [x, y]
fulfils condition (p) as well.

Proof. Let [a., b.] (n € N) be a system of intervals in G such that [a,., b.]c
[x,y] (neN) and [a,, bi] 2 [a2 bs]2.... Denote a, =a,vc, bb,vc, a,=a, Ac,
b, = b, Ac. Therefore [,, b,] < [c, y] (n € N), [,, b.] < [x, c] (n eN),[a,, b)] 2
[@z B2)2..., [a1, b1] 2 [@2 2] 2.... Hence, from the assumption it follows that
there exist Z € N[dn, b.](neN)and Z e m[a,,, b,] (n € N). Let n be a fixed positive
integer. From a, —a, = a, —c we get a, =a, +(a, —c). Since a,<Z and @, —c <
7—c,wehave a,<Z + Z—c=z.Inasimilar way obtain b, =z. Then z € N[a.,, b.]
(n e N) and the proof is finished.
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3.2. M, is an l-ideal of G.

Proof. Let g, h € M,. By the assumption the intervals [0, |g|] and [0, |2|] satisfy
condition (p). Because of [0, |#|]=[|g], |g|+ |k|], according to 3.1 the interval
[0, |g| + |k]] fulfils (p). From 0<|g+h| < |g|+|h| (see [6]) it follows that
[0, |g + h]] satisfies (p) and so g + h € M,. Since |g|=|—g|, M, is a subgroup of
G.From |gvh| < |g|v]|h| < |g| + |h| we conclude that M, is a sublattice of G. It
is easily seen that M, is a convex subset of G and the proof is complete.

Theorem 3.1. M, is the greatest l-ideal of G satisfying condition (p).

Proof. First, we prove that M, fulfils (p). It suffices to show that every interval
of M, fulfils (p). Let [a, b] we any interval of M,. Since 0<b —a e M,, by the
definition of the set M, we obtain that [0, b —a] fulfils (p) and [0, b —a]=]a, b]
implies that (p) holds true in M,. Now let M’ be any /-ideal of G satisfying (p) and
let geM'. Then [0, |g|]cM’ and thus [0, |g|] fulfils the condition (p), hence
g € M,. This shows that M' cM,.

3.3. If the intervals [x, c] and [c, y] are o-complete, then the interval [x, y] is
o-complete.

Proof. Suppose that (x,) € H and x, €[x, y] (n € N). We have to prove that (x,)
is an o-convergent sequence. By [6], Chapt. V we have |x,vc =X, vc| < [X, — X
and |x,Ac—x,Ac| < |x,—xn.|. Hence (x,)eH implies (x,vc)eH and
(x. Ac) € H. By hypothesis x,vc—t and x,Ac—t. Since

X, =(x,ve)+(x.Ac)—c

for any n e N (see [6], Chapt. V), it is easy to prove that x,—t+{—c.
Let us denote
M ={g € G: the interval [0, |g|] is o-complete}.
In a similar manner as in 3.2 the following assertion can be proved:

Theorem 3.2. M is the greatest o-complete [-ideal of G.

Since M =M,, we have

Corollary. M, is the greatest I-ideal of G satisfying the condition (q).

3.4. If the intervals [x, c] and [c, y] satisfy condition (h), then the interval [x, y]
fulfils (h) as well.

Proof. We intend to show that every sequence (x,) with x, €[x, y] (n € N) has
an o-cluster point. By the assumption there exist a subsequence (¥.)) of (x,Vvc)
and a subsequence (X.¢,) of (x,Ac) such that %,,,— ¢ and %,;,— . Let (n(k)) be
a subsequence of (n(i)) and of (n(j)). Evidently X.«,—¢ and X.«y—f. Since
X, =(x,vc) + (x,Ac)—c for any n € N, we obtain x,x—>¢+ £ —c. Thus (x,) has
an o-cluster point. Therefore the following assertion holds:

Theorem 3.3. M, is the greatest I-ideal of G fulfilling the condition (h).
3.5. If the intervals [x, c] and [c, y] satisfy condition (B), then the interval [x, y]
fulfils (B) as well.
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Proof. Let A and B be arbitrary nonempty linearly ordered sets such that
Acl[x,y], Bc[x,y], A<B,cardA + card B<R,. We have to prove that there
exists z €[x, y], A<{z}<B. Denote avc=a, anc=a, bvc=5b, bac=b for
each aeA and each beB; further, denote A={a: aeA}, B={b: beB},
A={d:acA) and B= {b b eB}. We have card(Ar\B)<l and card (AnB)<
1. From cardA cardA < cardA and cardB cardB < cardB we obtain
card A +card B<R, and cardA + cardB< R,. First we shall show that if
card(AnB)=1, then A <B. Let there exist a€ A and b € B with anc = b Ac.
We have avc < bvc. This follows immediately from A <B and from the
distributivity of G.Leta, e A, b,eB,a,<a.lf b,=b, thena,vc <avc<bvc <
b,vc, hence a,ve < b,ve. If b;<b, thena,vc<b,vc.Infact,if a,vc < avec,
then a,vc<b,vc because of avec < b,vc.If a,vec = ave and a,vec = b,vc,
from b,Ac = baAc = anc it follows b,=a, a contradiction. The proof is
analogous to that of a,>a. In a similar way we show that if A "B is a one-element
set, then A<B.

Let a be an arbitrary element of A. If A <B, then the assumption implies that
there exists Z €[c, y], A <{z}<B. From A <B we infer that there is Z €[x, c],
A<{Z})<B.Sincea—ad = d—c,weobtaina=a+(a—c). Froma<z,a—-c <
z—citfollows z=2 + (Z—c)>a. In a similar manner we obtain z <b for each
b € B. We conclude that A < {z} <B. Under the assumption A < B the situation is
analogous.

By the same method as in 3.2 we can prove the following statement:

Theorem 3.4. M, is the greatest [-ideal of G fulfilling condition (B).
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HEKOTOPBIE TUITbI MAKCUMAIJIbHBIX /-ITOJIYTPYIIII CTPYKTYPHO
YINOPAOOYEHHOM T'PYIIIIbI

Illtecpan HepHak

Pe3iome
[Tyctb G KOMMYTaTHBHAs CTPYKTYPHO YNmopsjoYeHHas rpynmna. B arToit craTee paccmMaTpuBaroTcs
ycnoBus ans G Kkaccaroluecs nocnenosaTtenbHocTei B G. [Ioka3aHo, YTO CYLIECTBYIOT MaKCHMallbHbIE

/-ugeansl B G, ynoBIETBOPSIOWIME ONHOMY M3 3THX ycioBuil. ITonoGHbIE yCNOBHS MCCIEAOBaNU
DBEpPETT M AJUIUHT.
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