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ON GENERALIZED DABROUX
AND CONNECTIVITY FUNCIIONS

JANA FARKOVA

1. Introduction and notations

It is known that the Kuratowski—Sierpinski theorem, which asserts that
a function f: E,— E, of Baire class 1 is Darboux if and only if it is a connected
subset of the plane E, (as usually the function is identified with its graph), is not
valid already in the case f: E,— E,, see [2]. This is due to the fact that already in E,
the connected subsets form a substantially richer and more complicated system as
in E,. For this reason usually the concept of a Darboux function is modified to
a given base of open subset of the space, to obtain generalizations of results
from E, for arbitrary topological spaces.

If not specified, in the following X will be a locally connected metric space with
a given base % of open connected subsets and all considered functions are defined
on X and have real values.

We say that a function f is Darboux with respect to the base %, shortly
RB-Darboux (f € D(RB)), if f(B) is connected for each B € %.

Similarly, we say that a function f is a connectivity function with respect to the
base A, shortly %B-connectivity function (f € €(%RB)), if f/B {(x, f(x)): xeB}is
connected in X X E, for each B € .

. For thus defined classes of functions the following assertion, which in some sense
generalizes the Kuratowski-Sierpinski theorem, was proved in [3]:

(A) If f: XY is of Baire class 1, where X is E, with a base 9 having some
special properties and Y is a separable metric space, then f € D(B) <« f € €(RB).

Somewhat weaker and more general than the Darboux property is the Darboux
property in the sense of Radakovi¢. For functions of a real variable it was
introduced in [8]. In [5] it was generalized for functions on a topological space with
respect to its base. In [1] these functions were studied in connection with the
investigation of the uniform closure of Darboux functions.

We say that a function f is Darboux in the sense of Radakovi¢ with respect to the

base B (f € Do(B)) if f(B) is connected for each B € AB.
63



Similarly as the Darboux property in the sense of Radakovi¢, we have the
following generalization or weakening of the connectivity function concept :

We say that a function f is a connectivity function in the sense of Radakovi¢ with
respect to the base B(f € €o(RB)) if f/_B is connected in X X E, for each B € 4.

Finally we define the classes of functions 9, and %, as follows: f € D,, or f € €, if

f—(C_'), or ]_‘/_C is connected for each connected subset C =X, respectively.
Naturally the question arises what relations there are between these classes of
functions, particularly, whether the analogue of assertion (A) above is valid for
Do(B) and 6o(RB). In Theorem 1 we show that a similar assertion holds, even
without the assumption that f is of Baire class 1, however under a special
assumption on the base 8. This assumption is introduced by the next

Definition. We say that the base B of X has the (*) property if BinB,€ R for
each B,, B,e B, BinB,# 0.

Clearly in E, (n>1) the base of all open spheres as well as the base of all open
connected subsets do not have the (*) property. On the other hand the base of all
open intervals in E, and the base of all open convex subsets have the (*) property.

Co(f, x) as usually will denote the cluster set of f at x, i.e., the set of all limit
numbers of f at x (y € Co(f, x) <> there is a sequence {x,} such that f(x,)—y and
X, —>X).

C5(f, x), where B € B and x € B, will denote the relative cluster set of f at x with
respect to B, which means that y € C5(f, x) < there is a sequence {x,} such that
x,€B, x,—x and f(x,)—y.

Clearly C5(f, x) = Co(f, x) when x € B.

2. The classes D4(B) and 6o(B).

We prove now some properties of the classes 2o(%B) and €o(RB).

It is known that for X = E, and 94 being the base of all open intervals, f € €(2B) if
and only if f/E, is connected, i.e. if f (its graph) is connected. As the following
simple example shows, for €,(%) this is not so.

Example 1. Let f:E,—E, be defined as follows: f(x) = sin 1/x if x>0,
f(x)=0 if x<0 and x is rational, and f(x)=1 if x <0 and x is irrational. Then

clearly f/E, is connected, however f/(a,b) for a<b<O0 is not. Thus the

connectivity of f/E, does not imply f € €.(%).
If f € D(AB), then it is easy to see that f(O) is connected for each open connected
subset O — X. Similarly we immediately have the next

Proposition 1. Let f € Do(RB). Then f(O) is connected for each open connected
subset O cX.
The following proposition will be substantially used in the proof of Theorem 1:

64



Proposition 2. Let the base B of X have the (*) property and let f € Do(B).
Then C3(f, x) is a closed interval for each B € B and each x € B.

Proof. Let Be® and let x,eB. Put o =inf C5(f, x,), B = sup C5(f, x,) and
let o <f (otherwise the proof is complete). Let vy €(a, ). Then there are
X, Yo €B,n=1, 2, ...such that x,, — x,, Ya—Xo0, f(Xn)— 0, f(y.) =P and f(x,) < y
< f(y,) foreach n=1, 2, ...

For each k=1, 2, ... take B, € B and n, so that x,e B, = O(x,, 1/k) and x,,,
Yn. € By, where O(x,, 1/k) is the open sphere with the centre x, and the radius 1/k.
Since BinB € B by the (*) property of % and since f € Do(B),

ve(f(n) fyn)) = ( inf_f(x), sup f(x)) = f(B.B)
xeBnB xeB,nB
for each k=1, 2, ... Hence for each k=1, 2, ... there is an z. € B.nB such that
If(zo)—y|< 1/k. Since xo € B, = O(x,, 1/k) for each k, z, € B, zx — X, and f(z) >
y. Thus y € C5(f, x,), what we wanted to show.
In the special case when X is locally compact and the base is such that each B € B

is relatively compact in X we obtain more, namely the following generalization of
Theorem 3.1. from [1]. (In [1] X=E,.)

Proposition 3. Let the base & of X have the (*) property and let each B € % be
relatively compact in X. Then the following conditions are equivalent:

1) fG_@o(%), _

2) Cs (f, x) is a closed interval in E, for each B € % and each x € B, and

3) UCB (f,x)= (infﬁf(x), sup f(x)) for each Be@.

XEB-
Proof. 1) = 2) by Proposition 2.
2) > 3).Let BeRB.Put A= uEC‘g(f, x)and I = (infﬁf(x), sup f(x)). First we

show that A =1. Suppose that A#I. Then there is a non-empty open interval
(a,b) =« I—A.Denote B, = {x: x€B, f(x)<a} and B,={x: xeB, f(x)=b}.
Clearly B, # 0+ B, and B = B,UB,. Since B is connected, without loss of generali-
ty we may suppose that B,nB,#@. Let x,€ BinB,. Then f(xo)=b and there is
a sequence x, € By, n=1, 2, ... such that x, —x,. From the sequence {f(x.)} take

a convergent subsequence {f(x,.)}. Then y =lim f(x,,)<a. In this way Cg(f, x,)
k—»o0

contains the point f(xo) =b, as well as the point y <a, which contradicts to the facts
that C5(f, x,) is a closed interval and C4(f, xo) N (a, b)=0. Thus A _=I.

Let now y eI. Then for each n=1, 2, ... there are x, € B and y, eCo(f, x.) N
(y —1/n, y +1/n). Since B is compact by assumption we may suppose without loss
of generality that the sequence {x,} is convergent. Let x,=1lim x,. Then x,€ B.

n—w
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Further for each n there must exist z, € O(x,,, 1/n)nB such that f(z,) € (y —1/n,
y +1/n). Hence z,—Xo, f(z.)—7v and therefore ye A. Thus A=A =].

3) = 1). Let B e®. We have to show that f(B)=1. Let y e I. Then by 3) there
is an x € B such that y € C§(f, x), Hence for each £ >0 there is an z € B such that
f(z) e (y—¢,v+e).

Since the base of open spheres in E, does not have the (*) property, this
proposition cannot be applied to this case. However, a similar assertion for this
special case was proved in [7].

Proposition 4. Let B be a base of X. Then €o(B) = Do(RB).
Proof. Let f € €y(%), let P, be the projection of X X E, onto E, and let B € &.

Clearly P,(f/B) = P.\(f/B) = P\(f/B). Since P,(f/B) = f(B) and since f/B is

connected, f(B) is connected. Thus f € Do(B).
Our main result is the following

Theorem 1. Let the base B of X have the (*) property. Then Do(B) = €o(RB).
Proof. By Proposition 4 it is enough to show that @o(B)<=%.(%B). Let

f€Dy(B) and suppose that fé& 6y(B). Then there is a BeZRB such that f/? ’
= A,UA,, where A, #0+#A,, and A,nA, = A,nA,=0. Put B, = {xeB,
(x,f(x)) € A} and B, = {xeB, (x, f(x))€A.}.

Clearly B=B,UB,, and B,#0+B, (B,=0 = f/Bc A, > fIBcA, > A=
). Since B is connected, without loss of generality we may suppose that there is
a point x,€ B;nB,. But then (x,, f(x,)) € A, and there is a sequence x, € B;,, n =1,
2, ... such that x,, — x,. Let {x,, } be such a subsequence of {x,} that the sequence
{f(x,,)} is convergent and put y = limf(x,, ). Then y € C5(f, x,). Since x,, € B, for

k—soc

each k=1,2, ..., (x,, f(x..)) €A, and therefore lim (x., f(x,) = (x0,y) €
k—»00

A,=A.. Hence y#f(x,) (A,nA,=0).
Since the base & has the (*) property (min (f(xo), y), max (f(xo), y)) <
Co(f,xo) by Proposition2, hence G = {(xo,v): ve (min (f(xo),Y),

max (f(xo), ¥))} <f/B = A,UA..
Since GNA,#0+ GnNA,, and since G is connected, A, and A, cannot be
separated, a contradiction. The theorem is proved.

Remark. If X =E, and % is the base of open intervals in E,, then clearly B has
the (*) property, hence Do(B) = €,(B). But then Do(B) N B, = Go(B) N B,,
where %, is the first Baire class. Hence we have the analog of the Kuratow-
ski—Sierpinski theorem, which asserts that D(B) N B, = €(B)NRB,.
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From results of [5] and [6] it follows that D(B)NB, = Do(B)NB,. Hence we
have the following

Corollary. Let X =E, and let B be the base of all open intervals in E,. Then
D(B)NB, = Do(B)NB, = C(B)NB, = Co(B)NB, .

In this real case also clearly Po(B) =D, and €,(RB) = 6,, hence D,=%6, by
Theorem 1. The following simple example shows that for X = E, this is not true.

. Example 2. Define f: E,—E, as follows: f(x,y) = cos x for x<O0, f(x, y)
= sin 1/x for x>0. Clearly fe P,n%RB,, but f¢ 6, (for example, the set C

= {(x,y): x>0, y=sinl/x} U {(0,0)} is connected, hower f/C is not
connected.

The following theorem is concerned with the relationships between the classes
Do(B) and D, and €o(AB) and 6, in general.

Theorem 2. Let f € Do(B) (f € 6o(B)) be such that C(f, x) = f(C) for each
non-degenerated connected subset C = X, with x € C. Then f € Do(f € 6,).

We omit the proof of this theorem, since it is very similar to the proof of
Theorem 2.4. from [4], which gives a sufficient condition that a function f € 2(R)
maps each connected subset into a connected subset.

Let 4 denote the class of all functions f: X — E, for which Co(f, x) <= f(C) for
each non-degenerated connected C =X and each x € C. Then from Theorems 1
and 2 we immediately have the next

Corollary. Let the base B of X have the (*) property. Then Dy(B)n.A
= Go(B)NnA = DonA = Gon-4.
Finally we give an example of a function f € 9o(%) such that f ¢ 9,. This example

shows that the condition Co(f, x) = f(C) from Theorem 2 cannot be omitted.

Example 3. Let X=E, and let B be the base of open intervals in E,. Let
further @: E,—E, be a function which maps each non degenerated interval
onto E,. Define f: E,—E, as follows: f(x, y) = @(x))if y =0, and f(x, y) = x if
y#0. Then it is easy to see that f € Do(B) (even f € D(R)).

Take x, so that @(xo) #xo. Then C={(x0, y): y€(0,1)} is a non;degenerated
connected subset of E;, but f(C) = {xo} U {@(x,)}, hence f(C) is not connected.
Thus f¢ D, Since for the point (x4, 0)e C we have Cu(f, (xo, 0))=E,, the

assumption Co(f, x) = f(C) from Theorem 2 is really not satisfied.
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OB OBOBIIEHHBIX ®YHKIHAX:
JAPBY U CO CBA3HBIM I'PAPUKOM

Slna ®apkoBa

Pesiome

B 3T0/1 cTaThe BBOAATCS M PacCMaTPUBAIOTCH HEKOTOPBIE KJAacChl 0600MmeHHbIX yHKumi: [Japby
¥ CO CBSI3HBIM rpacpukoM. DTH (PyHKLMHU OnpefesieHbl Ha METPUYECKOM npocTpaHcTBe. CBoiicTso [1apOy
¥ CBSI3HOCTb rpachvKa OTHOCATCS K HEKOTOPO# 6a3e M KpOMe TOro MOHUMaIOTCs B cMbicie Pagakosuya.
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