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CLASSIFICATION A N D EXTENSION 
BY THE TRANSFINITE INDUCTION 

MICHAL SABO 

An application of the transfinite induction to the extension of functional defined 
on certain lattices is connected with a classification. The classical examples of this 
classification are: the Baire and Young classifications of functions and the 
Lebesgue classification of Borel sets [3], [4], [8], [9]. The Baire classification is 
characterized by adding limits of sequences, the Lebesgue and Young classifica­
tions are characterized by adding limits of monotone sequences. 

Certain functional defined on systems of sets or functions can be investigated 
simultaneously as functionals defined on certain lattices [2], [5]. 

In the first section of the paper it is shown that the obtained sublattices, closed 
with regard to limits, monotone limits, respectively, are the same, when both of the 
mentioned types of classifications are used. 

The generalized classification of Baire type has been used [1]. In the present 
paper the generalized classification of the Young type is used to the extension of 
certain functionals. 

The assumptions made in the present paper seem to be weaker than those in [1], 
however, at the end of the paper it is proved that they are equivalent. These 
assumptions are, of course, easier to verify. The obtained results can be used for 
extension of a measure and an integral [1], [2]. 

1. Classification 

Let S be a lattice. As usually, jcuy (xny) denotes the supremum (infimum) of x, 
yeS. If {xn} is a sequence of elements of S, then [Jxn (Pta) denotes the 
supremum (infimum) of the sequence {*„}, if it exists. Denote lim xn = x or xn —>x 

if U Dxi! = U fl*. =x ar-d -f aU of ̂ e used elements exist. If {xn} is an increasing 
n5sl i^n « > 1 i^n 

(decreasing) sequence, i.e. x„ ^x„+t (x„ 3=Jt„+i) and lim x„ =x, then we shall write 
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xn/x (xn\x). Note that for any x = Jxn (x = f~\xn) a sequence {x'n} can be found 
such that x'n/x (x'n\x). 

Now suppose: xn—>x, y„-*y^x„vyn-*xuy, xnnyn—>xny and let C be 
a sublattice of 5. We define: 

(C)* = {x e S, for which there is {xn}, xn e C, xn —>x} 
(C)~ = {x eS, for which there is {xn}, xn e C, xn/x} 
(C)_ = {x eS, for which there is {xn}, xn e C, xn\x}. 

Let A be a sublattice of S. We define three transfinite sequences as follows: 

f\0 = t>0 = CQ = A 

Aa = (Aa_i)", Ba = (Ba_i)_ if a is an odd ordinal; 
A a = (Aa_i)_, B a = (Ba_i)" if a is an even non-limit ordinal; 

Aa= jAp, Ba = jBp if a is a limit ordinal; 
P<a /3<a 

Ca = U ( Q ) * for any ordinal a. 
(3<a 

Symbolic: 
A =A0/A1\A2/...Aw/Aw+l\... 
A =B0\B1/B2\...Bw\Bw+i/... 
A = Co—* C i —> C2—>.. .Cw —> C^+i —> . . . 

Note that the limit ordinals are taken for even. 
It is evident that Aa = Aa, Ba = Bn, Ca = Cn (Q is the first uncountable ordinal) 

for a>Q (xneAan, an<Q^ there is a0 such that an<a0<Q [6]). 

Proposition 1. Aa=Ba = C&. 
Proof : We prove the stronger proposition: AY=BY = CY for any limit ordinal y. 

Evidently, AYczCY. First, we prove Cn czA2n n = 1, 2, 3, ... using the induction. 

If x e C„ then x = f] Jxt, xt e A. Since U ^ G ^ i anc* U ^ ' N ^ ' w e n a v e x ~A2. 
n^\ is*n i^n i^n 

Now let C_i cz A2n_2 and x e Cn. Then x = (~) Jxi, xt e Cn-X. Thus Jxi e A2n_x 
n^\ i^n is=n 

and U ^ N - ^ ~ A2n. This implies CW=AW, which is the first step of the transfinite 
i^n 

induction. Further, let for the limit ordinals <5, 6 < y the proposition hold. If a < y , 
then a=P + n, where (3 is the limit ordinal, n<co [7]. As Cp=Afi, we have 

Cp+n czAp+2n, /3 + 2n<Y. Therefore CY = \JCa cz \jAa =AY. The proof of the 
a<Y a<Y 

equality CY = BY is dual. 
In the following sections we shall apply the classification of the type {Aa}as£« to 

an extension of a finite functional defined on a certain lattice. 
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2. Assumptions 

Let S be a conditionally a-complete lattice with two further binary operations 
+ , — such that: 

La. There is an element o eS such that o =x — x for any xeS. 
b. an/a, bn/b^>annbn/anb, an+bn/a+b 

an\a, bn\b^>anKjbn\aub, an +bn\a +b 
an/a, bn\b =>a„ - bn/a - b, bn-an\b-a 

Let A be a sublattice of S closed under + , —, satisfying the condition : 
II. To any xeS there are a, b eA such that a^x^b. 
Let J be a real-valued finite functional defined on A fulfilling the following 

conditions: 
(1) a,beA,a^b^>J(a)^J(b) 
(2) a,beA=>J(a)-J(b)^J(a-b) 
(3) a,beAd>J(a) + J(b)=J(avb) + J(anb) 
(4) aneA, an\o^>\imJ(an) = 0. , 

Note that from (2) and (4) we have: an/a or a„\a=> lim J(an) = J(a). 

3. The first step 

We define two transfinite sequences of sublattices of S (see Section 1.): 
Symbolic: 

A =A0/A1\A2/A3\...A(O/A(O+1\... 

A = B0\B1/B2\B3/...B(O\VOi+1/... 

We shall use the first sequence only to the extension. 

Lemma 1. Aa, Ba are the sublattices of S closed under +. 

Lemma 2. If a </S, then Aa c=Bp, Ba aAp. 

Lemma 3. If a eAa, b eBa, then a —b eAa, b —a eBa. 
Proof : We use the transfinite induction. Let a be an odd ordinal, then there are 

{an}, {bn}, an eAa-u bneBa-1 such that an /a, bn\b. Since an -bn eAa-x, bn-an 

e Ba_! and an—bn/a — b,bn—an\b—a,v/e have: a — b eAa, b —a eBa. The 
proof is dual if a is non-limit even ordinal. If a is a limit ordinal, the proof is trivial. 

Corollary 1. If a eAa, b e A a + 1 , then b —aeAa+1. 

Corollary 2. If a, b eAa, where a is a limit ordinal, then a—beAa. 

Lemma 4. Let a, /? be odd ordinals. Then Aa, B^+1 (Bp, Aa+1) are closed under 
limits of increasing (decreasing) sequences. 

Proof : We shall prove the first part only. Let an/a, aneAa. For any n there is 
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a sequence {a„},, an/an (/—>°°), aneAa-x. Put ck = (Jaf. Evidently a^[Jcn^ 
7 = 1 

{Jan =a. Thus Cn/'a, cn eAa-x. 
Now we define a functional Jj: Ai—>R as follows Ji(a) = lim J(an), where - . . / 'a , 

aneA, aeAx. We shall have to prove that the definition is correct. The existence 
of the limit follows from (II) and (1). We shall prove that the functional Jx is 
unambigously defined in the known way [5]. 

Let {an}, {cn} be increasing sequences of elements of A converging to a e Ay. 

Then amncn / amna = am. Therefore J(am) = lim J(amncn) ^ lim J(cn), i.e. lim 
n n m 

J(am) ^ lim J(cn). Analogously, we can prove the reverse inequality. 
n 

Theorem 1. The functional Jx is an extension of J satisfying (1), (3) and 
(T) aeAx,beA=>Jx(a)-J(b)^Jx(a-b) 
(4') an/a,aneAx^>aeAx and \imJx(an) = Jx(a). 
Proof : (1): an/a, cn/c, a^c, an, cn e A an = anncn/a andJ^a ) = limJ(an) 

^ lim J(cn) = Jx(c). 
(2'), (3) — trivial. 
(4 ' ) : an/a, an eAx. By Lemma 4, we have a eAx. 
We construct the sequence {cn} (see the proof of Lemma 4). Then Jx(a) = lim 

J(cn) ^ lim Jx(an) ^ Jx(a). 

Corollary 3. If an\o, aneAx, then lim/1(a„) = 0. 
P roo f : Let £>0. For any an an element al

neA can be found such that 

o^an^an and Ji(an) - J(a\) ^ — . If we put a2
n = a\na\n ... na\, then 

o^al^an^an and an\o. Hence, by (4), lim/(a^) = 0. Using the induction we 
prove 

JM-Jial)^^. 
i _ i Z 

Indeed, Jx(an) - J(a2) = Jx(an) - J(anna2
n-X) = Jx(an) - J(a\) - J(a2-X) 

+ J(a„ua^_i). Using the hypothesis of the induction and the fact that al
nuan x ^ 

an-x we have: 

Ji(an)-J(a2
n)^^Jj = g | - . 

Hence, lim Jx (an ) ̂  lim J (a „) + _ = e. 

Corollary 4. If an\a; an, aeAx, then \imJx(an)=Jx(a). 
Proof : Asa eAu thereisasequence {bn},bn eA, bn/a andJj(a) = limJ(_>_). 
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Then o^an-bneAx (Corollary 1) and an-bn\o. Therefore, by Corollary 3, 
\imJl(an-bn) = 0. Since O^J^a^-Jfa) ^ Jx(an-bn), we have: 

\imJx(an) = lim J(bn) = Ji(a). 

4. The second step 

Now we define a functional J2: A2^R as follows: J2(a) = \im /i(a„), where 
an\a, an eAu aeA2. The existence of the limit is clear ((II), (1)). We shall show 
the independence of J2 on the choice of the sequence. It is sufficient to prove: an, 
bneAu aeA2, an\a, bn\a imply: \imJx(an) = \imJx(bn). 

(Lb) implies: anubm\anua = an e Ax. According to Corollary 4, lim J1(anubm) 

= Ji(an). Therefore Ji(a„) = lim J^ub^ ^ lim Jj(6m) i.e. lim Ji(an) ^ lim 
m m n m 

J\(bm). We show similarly that \imJi(an) ^ lim/i(6m). 

Theorem 2. The functional J2 is an extension of Jx satisfying (1), (3) and 
(2") aeA2,beA^J2(a)-J2(b)^J2(a-b) 
(4") an\a, an eA2^>aeA2 and \imJ2(an) = J2(a). 
Proof : The proof of (4") is dual to the proof of (4') and the other assertions are 

easy. 

5. The transfinite induction 

Theorem 3.,For any a, the functional J extends to a functional Ja: Aa —>R, such 
that: 

(i) a, beAa, a^b^Ja(a)^Ja(b) 
(ii) aeAa, beAa-x (beAa), a-non-limit (limit) ordinal -->Ja(a) — Ja(b) ^ 

Ja(a-b) 
(Hi) a, beAa=>Ja(a) + Ja(b) = Ja(aub) + Ja(anb) 
(iv) If e>0, aeAa, then there is beA2, b^a such that Ja(a) — Ja(b)^e 
(v) an\o, aneAa^>\im Ja(an) = Ja(o) = 0 

(vi) an/a (an\a), aneAa, a-non-limit odd (even) ordinal = > a e A a and lim 
Ja(an) = Ja(a). 

Proof : We are using the transfinite induction. Define: If a eAa, a-non-limit 
odd (even) ordinal, then Ja(a) = lim Ja-i(an), where an e Aa-U an/a (an\a). If 
aeAa, a-limit ordinal, then Ja(a) = Jp(a), (3<a. The first and second step have 
been proved in sections 3 and 4, respectively. Let the theorem be true for any j3, 
P<a. First, we show that Ja(a) depends on the element a only. If a — 1 is a limit 
ordinal, then the independence Ja(a) from the choice of a sequence {an} can be 
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proved as it was proved for /-. The required implication: 

an/a\ a,a„GAa_i4>lim/a-i(a„) = / a - i (a ) , 

follows from (i), (ii), (v) and Corollary 2. 

Let a — 1 be a non-limit even ordinal. Let an/a, bn/a ; an, bn e Aa_1? a eAa. 
From the definition of / a _ j , one can found a sequence {a\}, a\eAa-2, a\^an and 

P 
/«-i(«n) - Ja-\(an) ^ — . We construct a sequence {a„}, where an = a{ua2u ... 

u a i e A a _ 2 . Using (II), there is ceA, c^a. Therefore, the elements a\ may be 
chosen such that a\^c. Because the sequence {an} is bounded above by c, we have 
a2

n/a eAa-2. Using the induction we prove: lim/a_i(aj) — l im/ a_i(a„)^e (Simi­
larly as in the proof of Corollary 3). Hence bm^a^a and lim/a_i(an) 
+ £^lim/ a_i(a^) = Ja-i(a) ^ Ja-\(bm) for any m. Since e is arbitrary, 
lim/a_1(a-) ^ lim/a_i(fe„). By symmetry, we have the inverse inequality. 

If a is an even non-limit ordinal, the proof is analogous to the proof of the 
independence of J2 from the choice of a sequence. (The implication: a„\a ; a, 
aneAa-l => lim/a_!(a„) = Ja-^(a), follows from (i), (ii), (v)). 

In the case of a limit ordinal a the definition of / a (a ) is evidently correct (the 
assumption JY(a) =£ Jp(a) y<(3<a contradicts the hypothesis of the induction). 
The proof of (i), (ii), (Hi) is trivial, (iv) — Obviously, the statement is true for 
a = 1, 2. If a >2 is an odd ordinal and a eAa, then there are c e Aa_i, b eA2, 
b ^c^a such that: 

Ja(a)-Ja(c) + Ja(c)-Ja(b)^e. 

If a is a non-limit even ordinal, then there is {an}, an e Aa-U an\a. To any n we 
£ 

can find a\eA2, a\^an such that Ja(an) — Ja(a\)^— . We construct a sequence 

{an} (see the proof of Corollary 3), a^\a, a e A2 and / a (a ) - Ja(a)^e. The proof 
of (iv) for limit ordinals is trivial. 

(v) — Let an\o, an eAa. Using (iv), we construct a sequence {a\}, a\eA2, 
£ 

Ja(an) — Ja(a\) ^ — . Putting a2
n = a\na\n ... na\, we obtain the sequence {al}, 

an\o such that lim/a(an) — l im/ a (a^)^£ . The proof of (vi) is analogous to the 
proof of (4'). 

Theorem 4. There is a lattice A, AczAczS, closed under the operations + , 
— and a functional J: A-+R, which is the unique extension of J satisfying (1), (2), 
(3) and 

(5) If an e A , an/a or an\a, then a eA and lim/(a„) = / ( a ) 
P roof : We put A =Aa,J = Ja. It is sufficient to prove the uniqueness only. Let 

K: A —>R be another extension of / satisfying (1) and (5). Denote G = {x e A, for 
which K(x) = J(x)}. We shall prove: G=>Aa, for a^Q, using the transfinite 
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induction. Let G =>AY for any y, Y<a>- If xeAa then there is {an}, an 6Aa_, and 
an/x or an\x. We have: /(*) = lim/(a„) = UmK(an) = K(x). Hence xeG.lt 
implies G => Aa. If a is a limit ordinal, the proof follows from the definition of Aa 

and the hypothesis of the induction. 

6. The conclusion 

The conditions required for the lattice in the present paper and those in [1] are 
equivalent. Namely, if xn —.>x and yn —>y, then it can be shown that xn + yn —>x + y, 
xn—yn-*x—y, xnuyn—>xuy and xnnyn-*xny, using (I) and the conditional 
a-completness of S. 

It is clear that the results of [1] and those of the present paper are equivalent, 
too. The apparent difference is in (5) and (P) only. Evidently (P)=>(5). We shall 
show the reverse implication. Let xn -+x, xn e A. From the definition of A we have 

x e A. As x = f l L U = U C\xi9 we have: U*<\*> C\xi/x, J (U*«) ^ J(xn) 
n^l i^n n^l i^n i^n i^n \i^n / 

^ J (n* . ) • Thus J(x) = lim / ( n ^ ' ) ^ liminf /(*„) ^ lim sup J(xn) ^ lim 
\|'3SM / \i^n I 

J (\Jx) = Hx) i.e. limJ(xn) = J(x). 
\i2*n I 

REFERENCES 

[1] ŠABO, M.: On an extension of finite functionals by the transfinite induction. Math. SІovaca, 26, 
1976, No.З, 193—200. 

[2] PИEЧAH, Б.: O нenpepывнoм npoдoлжeнии мoнoтoнныx фyнкциoнaлoв нeкoтopoгo тиna. 
Mat.Ayz. Čas., 15, 1965, 116—125. 

[3] HATAHCOH, И. П.: Teopия фyнкций вeщecтвeннoй пepeмeннoй. Moskva 1957. 
[4] KURATOWSKI, K.: Topology, Vol. I. Warszawa 1966. 
[5] RIEČAN, B.: An extension of the Daniel integration scheme. Mat.-fyz. Čas., 3,1975,211—219. 
[6] KELLEY, J. L.: General topology. New Yoгk 1957. 
[7] KURATOWSKI, K., MOSTOWSKI, A.: Set theoгy. Amsterdam 1967. 
[8] HAUSDORFF, F.: Mengenlehre. Walter de Gruyter und Comp. Beгlin 1935. 
[9] SIERPINSKI, W.: Funkcje pгzedstawialne analitycznie. Wyklady uniweгsyteckie. Waгszawa 1925. 

Received Maгch 31, 1977 Kаtedга mаtemаtiky 
Chęmickotechnologickej fаkuìty 

Slovenskej vysokej školy technickej 
Jánskа ul. 1 

880 37 Bгаtislаvа 

175 



KЛACCИФИKAЦИЯ И ПPOДOЛЖEHИE METOДOM 
TPAHCФИHИTHOЙ ИHДУKЦИИ 

Mиxaл Шaбo 

Peзюмe 

Пycть Л - пoдcтpyктypa a-мoнoтoннoй cтpyктypы S. Haимeньшee мнoжecтвo нaд Л, зaмк- • 
нyтoe oтнocитeльнo пpeдeлoв пocлeдoвaтeльнocтeй или мoнoтoнныx пocлeдoвaтeльнocтeй мoжнo 
пoлyчить пocтeпeнным дoбaвлeниeм пpeдeлoв пocлeдoвaтeльнocтeй, или мoнoтoнныx пoc-
лeдoвaтeльнocтeй. B литepaтype этo знaкoмo кaк клaccификaция фyнкций Бepa или клac-
cификaция бopeлeвcкиx мнoжecтв. B пepвoй чacти пoкaзывaeм, чтo в oбщeм cлyчae пoлyчeнныe 
cтpyктypы oдинaкoвы. C клaccификaциeй тecнo cвязaн мeтoд тpaнcфинитнoй индyкции, кoтopый 
пpимeняeм в чacтяx 2-5, вмecтe c клaccификaциeй втopoгo типa, к пpoдoлжeнию нeкoтopoгo 
кoнeчнoгo фyнкциoнaлa oпpeдeлeннoгo нa нeкoтopoй пoдcтpyктype Л, зaмкнyтoй oтнocитeльнo 
oпepaций -I-, —. B чacти 6 пoкaзывaeм, чтo peзyльтaт paбoты, из кoтopoгo вытeкaют тeopeмы 
o пpoдoлжeнии мepы в интeгpaлa, нe зaвиcит oт выбopa типa клaccификaции. 
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