Mathematica Slovaca

Michal Sabo

Classification and extension by the transfinite induction

Mathematica Slovaca, Vol. 29 (1979), No. 2, 169--176

Persistent URL: http://dml.cz/dmlcz/136208

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/136208
http://project.dml.cz

Math. Slovaca 29, 1979, No. 2, 169—176

CLASSIFICATION AND EXTENSION
BY THE TRANSFINITE INDUCTION

MICHAL SABO

An application of the transfinite induction to the extension of functionals defined
on certain lattices is connected with a classification. The classical examples of this
classification are: the Baire and Young classifications of functions and the
Lebesgue classification of Borel sets [3], [4], [8], [9]. The Baire classification is
characterized by adding limits of sequences, the Lebesgue and Young classifica-
tions are characterized by adding limits of monotone sequences.

Certain functionals defined on systems of sets or functions can be investigated
simultaneously as functionals defined on certain lattices [2], [5].

In the first section of the paper it is shown that the obtained sublattices, closed
with regard to limits, monotone limits, respectively, are the same, when both of the
mentioned types of classifications are used.

The generalized classification of Baire type has been used [1]. In the present
paper the generalized classification of the Young type is used to the extension of
certain functionals.

The assumptions made in the present paper seem to be weaker than those in [1],
however, at the end of the paper it is proved that they are equivalent. These
assumptions are, of course, easier to verify. The obtained results can be used for
extension of a measure and an integral [1], [2].

1. Classification

Let S be a lattice. As usually, x Uy (xny) denotes the supremum (infi‘mum) of x,
yeS. If {x,} is a sequence of elements of S, then [Jx, ([ W.) denotes the
supremum (infimum) of the sequence {x,}, if it exists. Denote lim x, =x or x,, »>x
if J Mx=U ()x =x and if all of the used elements exist. If {x, } is an increasing

n=1i=zn n=1i=n

(decreasing) sequence, i.e. x, <x,,; (x. =x,,,) and lim x, = x, then we shall write
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x, /'x (x,\x). Note that for any x = x, (x = .) a sequence {x,} can be found
such that x,."x (x,\.x).

Now suppose: X,—X, y,—y>Xx,Uy,—xuUy, X,.Ny,—xNy and let C be
a sublattice of S. We define:

(C)*={x €S, for which there is {x.}, x, € C, x, »>x}
(C)~={x €S, for which there is {x.}, X, € C, x, /'x}
(C)-={x €S, for which there is {x.}, X, € C, x,\.x }.

Let A be a sublattice of S. We define three transfinite sequences as follows:
. Ay=B,=C,=A |

Ay =(Aq-1)", Ba=(B,-1)- if a is an odd ordinal;

Ay =(Aq-1)-, Ba={(Bs-1)" if a is an even non-limit ordinal ;

A.=JAs, B.=JB; if a is a limit ordinal;

B<a B<a

C,=J (Gy)* for any ordinal a.

B<a
Symbolic: .
A=A,/"ANA,/...A,/Avi\i...
A =B,\\B:/B:\\...B,\\B,.1./"...
A=C,—>C,—»C,—»...C,—»C,p,1—...

Note that the limit ordinals are taken for even.
It is evident that A, = Ag, B, = Bq, C, = C, (£2 is the first uncountable ordinal)
for a>Q (x,€A,,, a,<=> there is a, such that a, <a,<$ [6]).

Proposition 1. A, = B, = C,.

Proof: We prove the stronger proposition: A, = B, = C, for any limit ordinal y.
Evidently, A, = C,. First, we prove C,cA,, n=1, 2, 3, ... using the induction.

If xeC,, thenx=(] Jx;, x;€ A. Since [Jx; € A, and | Jx,\.x, we have x € A,.

n=1 i=zn i=n i=zn

Now let C,_,cA,,, and x€C,. Then x =[] Ux:;, x;€ C,_;. Thus Ux: € A,,._,

n=1 i=n i=n

and Jx,\\x € A,,. This implies C, = A,,, which is the first step of the transfinite

induction. Further, let for the limit ordinals 6, 6 <y the proposition hold. If o <y,
then a =6 +n, where f is the limit ordinal, n<w [7]. As C;=As, we have

Coin ©Apizn, B+2n<y. Therefore C,=|JC, = |JA.=A,. The proof of the

a<y a<y
equality C, =B, is dual.
In the following sections we shall apply the classification of the type {A, }a<a to
an extension of a finite functional defined on a certain lattice.
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2. Assumptions

Let S be a conditionally o-complete lattice with two further binary operations
+, — such that:
I.a. There is an element o € S such that 0o =x —x for any x € S.
b.a,a, b,./'b=>a.nb, anb,a,+b,/a+b
a,\ua, b,\\b >a,ub,\aub, a,+b,\ua+b
a,/a,b,\\b=>a,—b,/a—b,b,—a,\\b—a
Let A be a sublattice of S closed under +, —, satisfying the condition:
II. To any x € S there are a, b € A such that a<x <b.
Let J be a real-valued finite functional defined on A fulfilling the following
conditions:
(1) a,beA,asb=>J(a)<J(b)
(2) a,beA>J(a)-J(b)<J(a—-b)
(3) a,beA=>J(a)+J(b)=J(aub)+J(anb)
4) a, €A, a,\o=>limJ(a,)=0. \
Note that from (2) and (4) we have: a,,”a or a,\.a=> lim J(a,)=J(a).

3. The first step

We define two transfinite sequences of sublattices of S (see Section 1.):

Symbolic:
A =AO/'A1\A2/A3\A'--Am/'Au)+1\--~
A :BO\BI/'B2\BJ/---Bw\lvw+l/'-"

We shall use the first sequence only to the extension.
Lemma 1. A,, B, are the sublattices of S closed under +.
Lemma 2. If a <f, then A, = B, B, = Ag.

Lemma 3. IfaeA,, beB,, thena—beA,, b—aceB,.

Proof: We use the transfinite induction. Let a be an odd ordinal, then there are
{a.}, {b.}, a. € As_y, b, € B,_, such that a, /a, b,\\b. Since a, — b, € A,_;, b, —a,
eB,_,anda.—b, " a—b,b,—a, \\b—a,wehave:a—beA,, b —a € B,. The
proof is dual if a is non-limit even ordinal. If a is a limit ordinal, the proof is trivial.

Corollary 1. If ae A,, b€ Ay, then b —ae A,
Corollary 2. If a, b e A,, where a is a limit ordinal, then a—b € A,.

Lemma 4. Let a, # be odd ordinals. Then A,, B (B, A«+1) are closed under

limits of increasing (decreasing) sequences. )
Proof: We shall prove the first part only. Let a, /a, a, € A,. For any n there is
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a sequence {a.};, a./'a, (i—>»), ai,€ A._i. Put ¢, =Ja}. Evidently a=|Jc, =
j=1

Ua, =a. Thus ¢,/ a, ¢, € Aq_s.

Now we define a functional J,: A,— R as follows J,(a) =lim J(a,), where a, /a,
a,€A, aeA,. We shall have to prove that the definition is correct. The existence
of the limit follows from (II) and (1). We shall prove that the functional J, is
unambigously defined in the known way [5]. -

Let {a.}, {c.} be increasing sequences of elements of A converging to ac A,.

Then a,.n¢, / a,Nna=a,. Therefore J(a,)=Ilim J(a.nc,) < lim J(c,), i.e. lim

J(a,) < lim J(c,). Analogously, we can prove the reverse inequality.

Theorem 1. The functional J, is an extension of J satisfying (1), (3) and

2") aeA,beA>T (a)—J(b)<J(a—Db)

4') a./a,a,e Ay>aeA, and limJ,(a,)=J,(a).

Proof:(1):a,/"a,c./c,a<c,a,, c.€Aa,=a,nc,/a and J\(a) = lim J(a,)
< lim J(c,) = Ji(c).

(2", (3) — trivial.

4'): a,/a, a,€A,. By Lemma 4, we have ae A,.

We construct the sequence {c,} (see the proof of Lemma 4). Then J,(a) = lim
J(c,) = lim J(a,) < Ji(a).

Corollary 3. If a,\0, a, € A,, then limJ,(a,)=0.

Proof: Let £¢>0. For any a, an element a.,€ A can be found such that
£
2"
o<als<a,<a, and ai\o. Hence, by (4), limJ(a2)=0. Using the induction we
prove

1

o<a,<a, and J,(a,) — J(a}) < If we put ai=aina;n ... na,, then

J.(a,.)—](ai)sz 23

Indeed, Ji(a,) — J(al) = Ji(a,) — J(a.nazi) = Ji(a,) — J(a,) — J(ai-))
+ J(ayvaji-y). Using the hypothesis of the induction and the fact that a,ua; | <
a,_, we have:

J(a)—J(@) <z 3 5=
2" &2
Hence, limJ,(a,)<IlimJ(a2)+¢=¢.

Corollary 4. If a,\\a; a,, a€ A,, then limJ,(a,)=J,(a).
Proof: Asa € A,, there is asequence {b,}, b, € A, b, /a and J,(a) = limJ(b,).
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Then o <a,—b,eA, (Corollary 1) and a, —b.\o. Therefore, by Corollary 3,
limJ,(a, — b,)=0. Since 0<J,(a,)—J(b,) < J:(a.—b,), we have:

limJ,(a,) =limJ(b,) =Ji(a).

4. The second step

Now we define a functional J,: A,—R as follows: J,(a)=lim Ji(a,), where
a,\\a, a, € A, a € A,. The existence of the limit is clear ((I), (1)). We shall show
the independence of J, on the choice of the sequence. It is sufficient to prove: a,,
b.€A,, aeA,, a,\a, b,\.a imply: limJ,(a,) = limJ,(b,).

(L.b) implies: a,uUb,,\\a,va =a, € A,. According to Corollary 4, li’{'n Ji(a,ub,,)

= Ji(a,). Therefore J,(a,) = lim Jy(a,ub,,) = lim Jy(b,,) i-e. li:n Ji(a,) = lim
Ji(b.,). We show similarly that limJ,(a,) < limJ,(b,.).

Theorem 2. The functional J, is an extension of J, satisfying (1), (3) and

(2") a€eA,, be A>T (a)—J(b)<J,(a—Db)

4" a,\a,a,e A,>a€A, and limJ,(a,)=J,(a).

Proof: The proof of (4”) is dual to the proof of (4') and the other assertions are
easy.

5. The transfinite induction

Theorem 3. For any a, the functional J extends to a functional J,: A,— R, such

that:

() a,beA,, asb=>J.(a)<J],(b)

(ii) a€eA., beA., (beA,), a-non-limit (limit) ordinal =>J,(a) — J.(b) <
J.(a—b)

(iii) a, be A,>J,(a) + J,(b) = J.(aub) + J.(anb)

(iv) If >0, a € A,, then there is b € A,, b<a such that J,(a) — J,(b)<e

) a,\o, a,e A,>lim J,(a,)=J.(0)=0

i) a,/a (a,\\a), a, € A,, a-non-limit odd (even) ordinal —>>a €A, and lim
J.(a,) = I,(a).

Proof: We are using the transfinite induction. Define: If a € A,, a-non-limit
odd (even) ordinal, then J,(a) = lim J,_,(a,.), where a, € A,_, a,/a (a,\\a). If
a € A,, a-limit ordinal, then J,(a) = Js(a), B <a. The first and second step have
been proved in sections 3 and 4, respectively. Let the theorem be true for any 3,
B <a. First, we show that J,(a) depends on the element a only. If a —1 is a limit
ordinal, then the independence J,(a) from the choice of a sequence {a.} can be
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proved as it was proved for J,. The required implication:
a./'a; a,a,eA,,>limJ, . (a,)=J.-1(a),

follows from (i), (ii), (v) and Corollary 2.

Let a —1 be a non-limit even ordinal. Let a,,”a, b, /a; a,, b,€e A,_,, ae A,.
From the definition of J,_,, one can found a sequence {a,}, ar€ A._,, a,=a, and
Jei(ay) — Joa(a,) < 21,, . We construct a sequence {a2}, where a;=aluasu ...
vare Aq_,. Using (I), there is c € A, c =a. Therefore, the elements a, may be
chosen such that a, < c. Because the sequence {a2} is bounded above by ¢, we have
a’,/a € Aq—,. Using the induction we prove: limJ,_,(a2) — limJ,_,(a,)<¢ (Simi-
larly as in the proof of Corollary 3). Hence b,<a<a and limJ,_,(a.)
+ e=limJ,_(al) = J,.,(@) = J,_(b,) for any m. Since ¢ is arbitrary,
limJ,_,(a,) = limJ,_,(b,). By symmetry, we have the inverse inequality.

If a is an even non-limit ordinal, the proof is analogous to the proof of the
independence of J, from the choice of a sequence. (The implication: a,\a ; a,
a, €A, > limJ, y(a,) = J.—.(a), follows from (i), (ii), (v)).

In the case of a limit ordinal a the definition of J,(a) is evidently correct (the
assumption J,(a) # Js(a) y <B <a contradicts the hypothesis of the induction).
The proof of (i), (ii), (iii) is trivial. (iv) — Obviously, the statement is true for
a=1, 2. If a>2 is an odd ordinal and a € A,, then there are ce A,_,, be A,,
b <c=<a such that:

J.(a)—T,(c)+Ju(c)—J.(b)<Ee.
Ifaisa non-limit even ordinal, then there is {a,}, a, € A._,, a,\\a. To any n we
can find a,€ A,, a:<a, such that J,(a,) — Ja(a,l.)<2£,.- We construct a sequence

{a}} (see the proof of Corollary 3), a’\.a, a € A, and J,(a) — J.(a)<e. The proof
of (iv) for limit ordinals is trivial.
(v) — Let a,\o, a,€A,. Using (iv), we construct a sequence {a,}, a,€ A,,

£ . .
J.(a,)—T.(a)) < o - Putting a2=aina;N ... Na,, we obtain the sequence {a3},

aZ\o such that limJ,(a,) — limJ,(a2)<e. The proof of (vi) is analogous to the
proof of (4).

Theorem 4. There is a lattice A, A cA c S, closed under the operations +,
— and a functional J: A — R, which is the unique extension of J satisfying (1), (2),
(3) and

(5) Ifa, €A, a,/a or a,\a, then ac A and limJ(a,) = J(a)

Proof: We put A = Ag, J =J,. It is sufficient to prove the uniqueness only. Let
K: A — R be another extension of J satisfying (1) and (5). Denote G ={x € A, for
which K(x)=J (x)}. We shall prove: G>A., for a<$£2, using the transfinite
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induction. Let G o A, for any ¥, y<a. If x € A, then there is {a.}, a. € A,_; and
a,/'x or a,\.x. We have: J(x) = limJ(a,) = limK(a,) = K(x). Hence x € G. It
implies G o A,.. If a is a limit ordinal, the proof follows from the definition of A,
and the hypothesis of the induction.

6. The conclusion

The conditions required for the lattice in the present paper and those in [1] are
equivalent. Namely, if x, - x and y, — y, then it can be shown that x,, + y,—x +y,
Xn —Ya—X =Y, X,Uy,—xUy and x,Nny,—xNy, using (I) and the conditional
o-completness of S.

It is clear that the results of [1] and those of the present paper are equivalent,
too. The apparent difference is in (5) and (P) only. Evidently (P)=(5). We shall
show the reverse implication. Let x, —>x, x, € A. From the definition of A we have

xeA. Asx=Ux = U Mx:, we have: Ufi\x, Nx./x,J <Ux,-> = J(x,)

n=1 izn n=1 i=n i=zn i=zn izn

> j (ﬂx,) . Thus J(x) = lim J <ﬂx,-> < lim inf J(x,) < limsup J(x,) < lim

izn izn

J <Ux,») = J(x)ie. limJ(x,) = J(x).

i=n
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KJIIACCUPUKALIMSI U MMPOOOIKXEHUE METOJOM
TPAHCO®UHUTHOMN MHAYKIIUU

Muxan llla6o
Pe3omMme

IlycTh A — NOACTPYKTYpPa 0-MOHOTOHHOHM CTPYKTYpbl S. HauMeHbliee MHOXECTBO Hal A, 3aMK- -
HYTO€ OTHOCHTEJILHO MPENENOB MOCNEN0BATENBHOCTEH HITH MOHOTOHHBIX MOCIEA0BATENBHOCTEN MOXHO
NONYy4YUTh TMOCTENEHHBbIM ROOABIEHUEM IPEAEJIOB MOCIENOBATENBHOCTEN, WM MOHOTOHHBIX MOC-
nenoBaTelbHOCTE. B nMTeparype 3TO 3HaKOMO Kak kinaccudukauus ¢yHkuuit Bepa unu knac-
cudukauus 60peneBcKUX MHOXECTB. B nepBoi 4acTH NMOKa3bIBAEM, YTO B OOLLEM Clly4ae NMony4yeHHbIe
CTPYKTYypbl ofHakoBbl. C ki1accudukaumeid TECHO CBA3aH METOX TPAHCUHUTHON MHIYKLIMH, KOTOPBIi
NpUMEHsSEM B 4acTax 2-5, BMecTe ¢ KjaccuHKalMed BTOPOro THNA, K MPOAOJKEHUIO HEKOTOPOro
KOHEYHOTrO (hYHKLMOHAJA ONPEAETEHHOr0 Ha HEKOTOPOH NOACTPYKTYpE A, 3aMKHYTOH OTHOCHTEIBHO
onepauuit +, —. B 4yacTu 6 moka3seIBaeM, 4TO pe3yabTaT paboThbl, M3 KOTOPOTO BbITEKAIOT TEOPEMbI
O MPOAOJKEHUH MEPBI B MHTErpana, HE 3aBUCHT OT BbIOOpAa THNa KJ1acCH(UKaLMH.
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