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ON THE ASYMPTOTIC BEHAVIOUR
OF A SOLUTION OF A DIFFERENTIAL EQUATION
IN A HILBERT SPACE

IGOR BOCK

1. Introduction

We shall be dealing with the initial value problem

a d
(1.1) Ao(t) St o+ A (1) 24 A (Ou =£(2)
dt de
du
(1.2) F t=0—-u,, r—O, 1,...,m—1

with the abstract functions u:(R*— X), f:(R*— X*), the operator functions
A.():(R">L(X, X*)) and the elements u, € X, where R* =[0, ), X is a Hilbert
space, X* is a dual space to X and L(X, X*) is a space of all linear bounded
operators mapping X into X*.

We shall analyse the behaviour of a solution of (1.1), (1.2) for ¢t — . Due to the
results obtained in this paper the solution behaves in the same way as the deflection
of a viscoelastic plate made of aging material. These results generalize the results of
paper [1], where the problem (1.1), (1.2) with the stationary operator functions
A,(t)=A, was considered.

First we shall introduce some results from the theory of differential equations in
a Banach space proved in [3]. |

Let X be a complex Banach space, R *.=[0, ). We denote by C(R", X) the
space of all continuous functions mapping R * into X and by C“”(R*, X) the space
of all m-times continuously differentiable functions mapping R* into X.

Consider the initial value problem for the differential equation in the space X

(1.3) %‘:A(:)u +f(t), teR”
(14) u(0)=uo
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Theorem 1.1 ([3], I1L. 1.2). Let fe C(R*, X), A(-)e C(R", L(X, X)), uoe X.
Then there exists a unique solutionu € C”(R ", X) of the problem (1.3), (1.4).

A solution u of the problem (1.3), (1.4) can be expressed with the help of
a solution U e C”(R", L(X, X)) of the homogeneous operator differential equa-

tion in the space L(X, X)

dU
(1.5) 3 =A@)U
(1.6) U(0)=1I (the identical operator)

There exists for each t € R* the inverse operator U~ '(t). The operator function
V(.) is a solution of the problem

(1.7) dE:-{=—VA(t)

(1.8) V(0)=1I

A solution u of (1.3), (1.4) can be expressed in the form

(1.9) u(t)= U(t)u0+L U(t, t)f(z) dr,
where

(1.10) ue,1)=U0U (7).

The following theorem plays an important role in our further considerations of
the asymptotic behaviour of a solution of the problem (1.1), (1.2).

Theorem 1.2 ([3], III.6.3). Let A()eC(R*, L(X, X)), A.eL(X,X),
lim ||JA(t) — Ax||=0. Re A < —v,<0 for all A e 6(A.), where 0(A.) is the spec-

trum of the operator A, ||-|| is the norm in the space L(X, X).
Then there exist such constants v >0, N depending only on A (t) that

(1.11) U, 7)]|<Ne™™,  Vt=t,¥reR”

2.The existence and the uniqueness of a solution

Let X be a complex Hilbert space with the scalar product (.,.) and the norm || -||
and X* with the norm ||-]|- the antidual space of all linear bounded functionals

over X.
We formulate a theorem of the existence and the uniqueness of a solution of the

problem (1.1), (1.2)
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Theorem 2.1. Let fe C(R", X*), Ai()eC(R",L(X, X*)), i=0, 1, ...,m;
u,eX,r=0,1, ..., m— 1. If there exists such a real positive and continuous on R

function a(t) that
(2.1) a@®|x|I’sl[(Ao(t)x,x), VxeX,teR",

then there exits a unique solution u € C™(R™, X) of the problem (1.1), (1.2).
Proof. Due to (2.1) the operators A(¢) and A (¢)* (the adjoint operator to
A (¢)) satisfy the inequalities
a(®)llx|l< |A(©)x]«
(2.2)
a@®|lx||s |A@)*x|lx, VxeX,teR”

Using (2.2) and the theorem on the solvalibility of the operator equations ([6],
VIL. 5) we obtain that there exists the inverse operator A, (t)eL(X*, X)

satisfying

(2.3) A () leeem o <a(t)”, VieR™,

where the function a(¢)”' is continuous on R”. Using the relation
Ag' ()= A’ (t) = Ad'(t0) (Ao(to) = Ao())A o' (¢)

we can verify easily that the operator-function Ag'(.) is continuous in each point

toe R™ and hence
(2.4) Aq'()eC(R", L(X*, X)).
Consider the initial value problem in the Hilbert product space y =[X]"

d
d—':=d(t)u +F(1)

(2.6) u(0)=uo
with the operator function &/(.):(R"—L(x, x)), the function F(.):(R*— ) and
the element uo € x defined by

0, I, 0, .., 0
0, 0, I, .., 0
(2.7) @)= | e
' 0, 0, 0, .., I
—AG() An(D), ..., =AGNE) Ai)
(2.8) F(t)=(0,0, ..., As'()f(2))",
(2.9) o= (Uo, U1, «.vy Um—y)T

Using (2.4) we obtain (.)€ C(R", L(x, x,)), F(.)e C(R", x). There exists, due to
295



Theorem 1.1, a unique solutionu € C'(R™, %) of (2.5), (2.6) which has the form

(2.10) u(®)=w @), u'(t), ..., u" " P@)".
The function u € C™’(R™, X) is then a unique solution of the problem (1.1), (1.2).

3. On the asymptotic behaviour of a solution
Using the result of Theorem 1.2 we shall investigate the asymptotic behaviour of
a solution of the problem (1.1), (1.2).

Theorem 3.1. Assume that the assumptions of Theorem 2.1 are fulfilled.
Assume, moreover, that there exist such a constant a,>0 and the operators
A;eL(X,X*),i=0,1, ..., m, that

(31) ao||x||25|(Ao(t)x,x)|, VXGX,t€R+,
(3.2) lim [|A(t) = A..|=0, i=0,1,...,m

and the polynomial operator
(3.3) DA)=ATAo ot ... ¥ AA 1wt Am =} AeC

possesses the inverse operator D()™' e L(X*, X) for all A e C with Re 1 =0.
Then the estimate

m-—1 m—1 t
(3.4) S luC@l<iMe™ (3l + [ emlf@le dz)
of a solution ue C™(R*, X) of (1.1), (1.2) holds with the constants M, v >0
depending only on Ai(t), i=0, 1, ..., m.
If there exists such a functional f. e X*, that

(3.5) ~tim [If(0) = full«=0,
then
(3.6) 11:3 [I(llee(t) = Al of | + Zﬂ lu®®I)=0

Proof. Consider the problem (1.1), (1.2) as the problem (2.5),(2.6)inthe
space x =[X]". Using (3.1), (3.2) we can see that there exists the inverse operator
Ag'we L(X*, X) satisfying the relation

(3.7) lAo.l<as’
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Using the relations (3.1), (3.7) we obtain

(3.8) 1A () = AT = [ ATL(A0 .~ ADAT Ol <
<ao ||Ao-—Aot)|, VteR"

and combining with (3.2) we arrive at |

(3.9) lim |AG (1) — As]|=0

Let us define the operator .e€ L%, &) by

0, I, 0, , O
0, 0, I, cees 0

(B.10)  sfe=| o
0, 0 0, T

—AalmAm.m’ _A(;.lmAm—I,cn, N
Combining (2.7), (3.2), (3.8), (3.9) we obtain
(3.11) }im [l£(t) = Al o=0-

We apply now the results of Theorem 1.2. We must therefore find such a number
Vo> 0 that

(3.12) Re A < —v,, VA eo(As).

It can be verified easily that A € 0(s4.) if and only if 0 € (D (1)), which means that

there does not exist the inverse operator D (1)'. Using the assumption (3.3) we
obtain that

(3.13) Rel <0, Vieo(sd.)

The set 0(A-) is closed in the complex plane ([6], VIII. 2). Then there must exist
such v,>0 that (3.12) holds. Otherwise there exists such a sequence A, € 0(H)

that lim A, =40, Re 40=0, Ao€ 0(s=), which is in contradiction to (3.13).

t—

We can now use Theorem 1.2. Combining (1.9), (1.11), (2.5), (2.6) we obtain

(3.14) lu(o)l< Me_"(lluo||+f e"|F(2)|| dr), VieR*

(]

Using (2.8), (2.9), (2.10), (3.1) we obtain the estimate (3.4) with the constants M,
v >0 depending only on A;(¢), i=0,1, ..., m.
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It remains to verify the second part of the theorem. Let f. be such a functional
from X* that (3.5) holds. We express a solution u of the problem (1.1), (1.2) in the
form

(3.15) u)=v(t)+ A, of.

The operator A,'.eL(X* X) exists, because D(0)=A, .. A function
veC™(R", X) is a solution of the initial value problem

m a4
EA«'(!)FE?GU)
1=0
(3.16) .
dv
v =i, i=0,1,....,m—1
ar | v i=0,1 m

with v; e X and

(3.17) g(O)=f(t) = An()A ! of .

Due to the first part of the theorem a function v satisfies
m—1 m-—1 t
(3.18) S I @I <Me™( 3 lull + | e la (@« dr).

The relations (3.2), (3.5), (3.17) imply

(3.19) lim [[g(£)|]x=0.
If
m-—1 .
(3.20) lim > [lv@(@®)| =0,
t—oo i=()

then the conclusion of the theorem follows from (3.15). Considering (3.18) we see
that it suffices to verify

t

(3.21) lim e_"f e”|lg()||* dr=0.
0

t o

If f e"[|g (t)]|* dt < o, then (3.21) follows immediatly. If lim J’ e”|lg ()| dT =
0 t—o JO

oo, then (3.21) follows from (3.19) after using the L’Hospital rule and the proof is
complete.

There arise difficulties with verifying the assumption about the operator D (1) by
applying Theorem 3.1. The following corollaries show that under some conditions
the polynomial operator D(A) defined in (3.3) satisfies the assumption of
Theorem 3.3. We shall be dealing with the problem of the first and the second
order. :
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Corollary 3.1. (m=1). Assume that the operators A; .eL(X, X*), i=0,1
satisfy the assumptions :

(3.22) (Ao ox,y)={({A0 =y, X), Vx,yeX,
(3.23) 0<(Ao «x,x), VxeX,
(3.24) ail|x]’<Re (A, -x,x), a,>0,VxeX.

Then the operator
(3.25) DA)=AAo -+ A1 =
possesses the inverse operator D ()" for all A € C with Re 1 =0.
Proof. Using (3.22) we obtain
(3.26) Re (D(A)x,x)=ReA{(A¢x,x)+Re (A .x,x).
Considering (3.23), (3.24) we arrive at
(3.27) Re (D(A)x,x)=ailx]>, AeC,RerA=0,¥xeX.

The last inequality implies the existence of the inverse operator D(A)™ ' forallA e C
with Re A =0 and the proof is complete.

Corollary 3.2. (m =2). Assume that the operators A; e L(X, X*),i=0,1,2
satisfy the next assumptions

(3.28) (Aj=x,y)=(Aj =y, x), j=0,2,Vx,yeX,
(3.29) 0<(Apx,x), VxeX,

(3.30) aillx]’<Re (A, x,x), a:>0,¥xeX,
(3.31) alx|’<{A..x,x), a,>0VxeX.

Then the operator

(3.32) D(A)=A’Ap«+AA| .+ A

possesses the inverse operator D (L)™' for all . € C with Re 1 =0.

Proof. Assume first that A =0. Then D(1)=D(0)= A, . There exists due to
(3.31) the inverse operator A3 w%=D(0)".

Let A#0, ReA=0. Consider the operator T(A)=A"'D(X). T(L) can be
expressed in the form

T(A)=AA0,,°+A1,M+M%A2_W, A#0

With the help of (3.28) we obtain
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(3.34) Re (T(A)x,x)=ReA(Aq.x,x)+Re (A, .x,x)+

ReA

Ml (Az.x,x), A#£0,xeX

Using (3.29), (3.30) we obtain the inequality
(3.35) Re (T(AM)x, xy=a||x]||?, VxeX,AeC,ReA=0,1+0,

which implies the existence of the operator T(1) '. Then, however, there exists the
inverse operator D(A)™' = A '"T'(A)™" for all A # 0 with Re A =0 and the proof is
complete.

Remark 3.1. The previous results can be applied to the case of the real Hilbert
space X, too. We can extend the space X onto the complex Hilbert space
X={i={x,x,) eXXX) with the scalar product [£,y] = (xi, y1) + (x2,y2)
+ i((x2, y1) — (xi1,y2)). The operator A € L(X, X*) can be extended onto the
operator A e L(X, X*) by (A%.9) = (Ax,,y.) + (Ax., y.) + i((Axi,y,)
— (Axz, y1)).

4. Bending of viscoelastic plates with aging

The previous theory can be applied to the initial boundary value problem, which
expresses a bending of a viscoelastic plate made of aging material with a short
memory ([5], IV.). We suppose, that the central surface of the plate is the bounded
region £ c E, with the Lipschitz boundary 3 (def. [4]). We assume that
3Q =T ul,, I''nI, =0. A plate is clamped on I'; and simply supported on I'>. The
case I'y =0Q, or I’ =3Q is always possible. The bending u(x,, x2, t) of the plate is
a solution of the initial boundary value problem

m—r

(41) ? Kllkl(t) m r sukl f(xl, X2, t) (x;, X2, t)EQ X R+
d’u

(4.2) ar l:O—u,, r=0,1,...,m-—1

4.3) u=0 on 3Q XR"

(4.4) g—::=0 on I'xR"*

4.5) M(t)u=2 ,(,'k),(t) g W €OS (n, x)cos (n,x,)=0
r=0

on FzXR+
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We denote by n the exterior normal to 3Q2. The above problem with constant

'u
coefficients is investigated in [2]. We use the notation u ,ju=——"—7"—"—"7",1, ], k,
& [ ] ikl ax,»axiaxk ax,-; J

l e {1, 2}. Summation over repeated subscripts i, j, k, [ is implied. We assume that
the coefficients K,,k,(t) are symmetric

(4.6) K =Ki(t)=Ku(t), VteR",

continuous on R™ and uniformly positive definite, i.e.

(4.7) K Q) eien = c i€, ¢ >0,
r=0,1,...,m, {g;)€E,, &i=¢;, teR"

We introduce a weak solution of the problem (4.1)—(4.5). Let H*(2) be the
Sobolev space of all functions from the space L,(€2), whose generalized derivatives
up to the 2-nd order belong to L,(£2). The scalar product in H,(£2) is defined by

(4.8) (u,v)= fDuDv dQ
Jl*
( 8"
(Du=gmgm, =G i lil=i+is),

We denote by W(€) the space of all functions from H’() which satisfy the
essential (or geometrical) boundary conditions (4.3), (4.4) in the sense of traces
(def. [4]). It can be verified with the help of the Fridrichs and Poincarré inequalities
([4]), that W(L) is a Hilbert space with the scalar product

(4.9) (u, v)=“ZJQ D'u D'v dQ
and the norm 2
(4.10) lell=( 3, [ @wrae) .

which is equivalent to the original norm in the space H*(L2). Let us denote by
W (£2)* the space dual to W(Q). We define now a weak solution of the problem
(4.1—(4.5).

Definition 4.1. Let feC(R", W(2)*), weW(Q), i=0,1,...,.,m—1,

Ki()eC(RY), r=0,1,....,m;i,j, k,le{l1,2)}. A functionu e C"(R*, W(R)),
which is for each h e W(Q) a solution of the initial value problem
. dm r .
(411) 2 Kl(lk)l dtm—ruul(t)h’k’ dg:(f(t)’h>
du
(4.12) ar ‘=0—u,, r=0,1,....m—1,

is a weak solution of the problem (4.1)—(4.5).
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If we define the operators A, (t) by

(4 13) (Ar(t)u’ h> = jﬂ K‘!;Zl(t)u’iih,kl d'g’

u,he W(Q), teR*, r=0,1,...,m,

then the operators A,(t) (extended to A.(t) according to Remark 3.1) satisfy all
the assumptions of Theorem 2.1 with X = W(L), X*= W(£2)* and hence there
exists a unique weak solution of the problem (4.1)—(4.5).

If lim K(t)=Kir,r=0,1,...,m; lim [|f(¢) = fellx= 0, f~ € W(£2)*, then the

assumptions of Corollaries 3,1, 3.2 are fulfilled and hence a weak solution u of
(4.1)—(4.5) satisfies in the cases m =1, 2 the relation

(4.14) lim ||u(¢) — u=|| =0,
where u.e€ W(€) is a weak solution of the corresponding elastic problem, i.e.
(4.15) J Kii"u,i hya dQ = (fo, h), VYheW(Q).

Q

This result corresponds with the physical experience.
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ACHUMIITOTUYECKOE NOBEJEHHUE PEMEHUA TUPPEPEHIIMAJILBHOTO YPABHEHMUSA
B IMMPOCTPAHCTBE T'MBbBEPTA

Hrops Bok
Pe3ome

B aToit paboTte u3y4aeTcd HayanbHas 3afayva (1.1), (1.2) B npoctpancTBe I'mnb6epra X ¢ onepatop-
HbiMu dyHkumamn A, () e C(R*, L(X, X*). Ecau onepatop A, KO3PUMBHBIHA 1JIst 1o6Goro t € R™, To
s mo6oi dyskuun fe C(R™Y, X*) U s moGbIX 31EMEHTOB U, € X CYLIECTBYET EJUHCTBEHHOE
pewenue 3anauu (1.1), (1.2). Ecniyu BHINONHEHBI HEKOTOPBIE MPEANONIOXEHUS M €CITH

lim |A, () - A, -[|=lim [|f() = f.ll+=0, To lim |lu(t)— A7} f.|lx=0.

Honyqubee pe3ynbTaThl UCNOJIBL3YKOTCA AJIS1 PEIUCHUA HAYaAJIbHO KPAaeBbIX 3a/1a4, PEIICHUA KOTOPbIX
ONpERENAAOT U3rNObI BA3KOYINIPYIrUxX IJIMT CO CBOWMCTBAMM 3aBUCSILMMHU OT BPEMEHU.
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