Štefan Černáč
On the maximal Dedekind completion of a lattice ordered group

Mathematica Slovaca, Vol. 29 (1979), No. 3, 305--313

Persistent URL: http://dml.cz/dmlcz/136216

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
ON THE MAXIMAL DEDEKIND COMPLETION OF A LATTICE ORDERED GROUP

ŠTEFAN ČERNÁK

Let G be a partially ordered group. The group operation will be written additively. We denote by $M_1(G)$ the set of all Dedekind cuts of the partially ordered set (G, \leq). The set G can be considered as a subset of $M_1(G)$ under the canonical embedding. The set $M_1(G)$ is partially ordered under the set-inclusion. It is possible to define the operation $+$ on $M_1(G)$ such that $M_1(G)$ turns out to be a partially ordered semigroup having the property that G is a subgroup of the semigroup $M_1(G)$. Denote by $M(G)$ the set of all elements of $M_1(G)$ possessing inverses in $M_1(G)$. Then $M(G)$ is the greatest subgroup of the semigroup $M_1(G)$ (cf. Fuchs [6]). If G is an Abelian group, then $M_1(G)$ is a commutative semigroup and so $M(G)$ is an Abelian group.

C. J. Everett [5] has proved the following theorem:

(A) Let G be a commutative lattice ordered group. Then $M(G)$ is a lattice ordered group.

In this note it will be shown that the assertion (A) holds true for all lattice ordered groups (without supposing the commutativity).

Let G be an l-group and suppose that G can be expressed as a mixed product $\Omega A_i (i \in I)$ of linearly ordered groups A_i. We denote by K the set of all maximal elements of I. It will be proved that $M(G)$ is (up to isomorphisms) the mixed product $\Omega B_i (i \in I)$, where $B_i = M(A_i)$ if $i \in K$ and $B_i = A_i$ if $i \in I - K$. A similar result has been proved by J. Jakubík [8] for the maximal Dedekind completion of an Abelian l-group which is the direct product of l-groups. Analogous results concerning the Cantor extension are obtained in [3] and [4].

1. The maximal Dedekind completion $M(G)$ of a lattice ordered group G

In this paragraph there will be constructed the maximal Dedekind completion $M(G)$ of an arbitrary lattice ordered group G.

305
Let G be a lattice ordered group. Let us denote by $X^u(X^l)$ the set of all upper (lower) bounds of a subset $X \subseteq G$ in G. Let $G^#$ be the system of all ideals in G of the form (X^u), where X is a nonempty and upper bounded subset of G. The system $G^#$ is partially ordered under the set-inclusion. Then $G^#$ is a conditionally complete lattice. The lattice operations in $G^#$ will be denoted by \land, \lor. If a system of sets $\{Z_\lambda\}_{\lambda \in \Lambda} \subseteq G^#$ has an upper (lower) bound in $G^#$, then

$$\lor Z_\lambda (\lambda \in \Lambda) = (\lor U_\lambda)^u (\land Z_\lambda (\lambda \in \Lambda)) = \land Z_\lambda (\lambda \in \Lambda).$$

The mapping $q : G \rightarrow G^#$ defined by $q(a) = (\{a\})^u$ is one-to-one and it preserves all intersections and joins existing in G. In the next we shall identify a and $q(a)$. Then G is a sublattice of $G^#$ and the following conditions are satisfied:

(i) Every nonempty subset of G bounded from above (below) has the least upper bound (greatest lower bound) in $G^#$. (ii) For each element $z \in G^#$ there exist nonempty subsets M_1, M_2 of G such that M_1 is bounded from above in G, M_2 is bounded from below in G and $\sup M_1 = z = \inf M_2$ in the partially ordered set $G^#$.

For an element $z \in G^#$ we denote

$$U(z) = \{h \in G : h \geq z\}, \ L(z) = \{g \in G : g \leq z\}.$$

Let $z_1, z_2 \in G^#$. From (ii) it follows that the sets $L(z_1)$ and $L(z_2)$ are nonempty and bounded from above in G. Then also the set $Z = \{g_1 + g_2 : g_1 \in L(z_1), g_2 \in L(z_2)\}$ is nonempty and bounded from above in G. By (i) there exists $\sup Z$ in $G^#$. Define the operation $+$ in $G^#$ by putting $z_1 + z_2 = \sup Z$. Then $G^#$ is a semigroup (cf. Fuchs [6]). For each $z \in G^#$ we have

$$\text{if } z_1 \leq z_2, \text{ then } z_1 + z \leq z_2 + z, \ z + z_1 \leq z + z_2.$$

If $z_1, z_2 \in G$, then the operation $z_1 + z_2$ in $G^#$ coincides with the operation $z_1 + z_2$ in G. Thus G is an l-subgroup of $G^#$. It should be observed that $G^#$ is not a group in general (cf. [5]).

Let $M(G)$ be the set of all elements of $G^#$ that have an inverse in $G^#$. Then $M(G)$ is a group; $M(G)$ is a maximal subgroup of the semigroup $G^#$. With respect to (1) $M(G)$ is a partially ordered group. In the following will be shown that $M(G)$ is an l-group.

Let X_1, X_2 be subsets of G such that $z_1 = \sup X_1, z_2 = \sup X_2$. In a similar manner as above we get that the set $Z' = \{g_1' + g_2' : g_1' \in X_1, g_2' \in X_2\}$ is nonvoid and bounded from above in G. Hence by (i) there exists $z' = \sup Z'$ in $G^#$. We intend to show that $\sup Z = \sup Z'$, i. e. that the following statement is true:

1.1. $z_1 + z_2 = z'$.

Proof. The relations $X_1 \subseteq L(z_1), X_2 \subseteq L(z_2)$ imply $Z' \subseteq Z$ and so $z' \leq z_1 + z_2$. It remains to prove that $z_1 + z_2 \leq z'$, i. e., $U(z') \subseteq U(z_1 + z_2)$. If $u \in U(z')$, then $u \in G$, $u \geq z' \geq g_1' + g_2'$ for every $g_1' \in X_1, g_2' \in X_2$. Hence $-g_1' + u \geq g_2'$ and thus $-g_1' + u \geq$
z_2 \geq g_2 \text{ for each } g_2 \in L(z_2). \text{ From } u - g_2 \geq g_1 \text{ we get } u - g_2 \geq z_1 \geq g_1, u \geq g_1 + g_2 \text{ for each } g_1 \in L(z_1), g_2 \in L(z_2). \text{ Therefore } u \geq z_1 + z_2. \text{ Then } u \in U(z_1 + z_2).

Jakubík [7] introduced the notion of a generalized completion \(D_1(G) \) of an \(l \)-group \(G \). For the operation + on \(D_1(G) \) a relation analogous to 1.1. is valid ([7], Lemma 2.1). Observe that if \(G \) is an Abelian \(l \)-group, then \(D_1(G) \) is an \(l \)-subgroup of \(M(G) \) (see [8]).

For \(H \subseteq G \) denote \(-H = \{-g \in G : g \in H\} \). If \(z \in G^* \), then by (ii) there exist nonvoid subsets \(X, Y \) of \(G \) with the property

\[
(2) \quad z = \sup X = \inf Y.
\]

1.2. Let \(z \in G^* \) and let \(X, Y \) be as in (2). If \(\wedge(y - x; x \in X, y \in Y) = 0 \) in \(G \), then \(z \) has a rightinverse in \(G^* \).

Proof. From (2) it follows that \(-Y \) is a nonvoid and bounded from above in \(G \). According to (i) there is \(z' \in G^* \), \(z' = \sup (-Y) \). We shall show that \(z' \) is a rightinverse to \(z \).

By 1.1. we obtain \(z + z' = \sup \{x + y; x \in X, y \in -Y\} = \sup \{x - y; x \in X, y \in Y\} \) in \(G^* \). Since \(0 = \inf \{y - x\} = -\sup \{x - y\} \) in \(G \), we conclude that \(\sup \{x - y\} = 0 \) in \(G^* \). Hence \(z + z' = 0 \).

Remark 1. In an analytical way we obtain that \(z' = \inf (-Y) \) is a left-inverse to \(z \) whenever \(\wedge(-x + y; x \in X, y \in Y) = 0 \) holds in \(G \).

1.3. Let \(z \in G^* \) and let (2) be fulfilled. Then \(z \in M(G) \) if and only if the following conditions are satisfied in \(G \):

(a) \(\wedge(y - x; x \in X, y \in Y) = 0 \),
(b) \(\wedge(-x + y; x \in X, y \in Y) = 0 \).

Proof. If \(z \in G^* \) and if both conditions (a) and (b) are fulfilled, then 1.2 and Remark 1 imply that \(z' = \sup (-Y) \) is an inverse to \(z \), hence \(z \in M(G) \). Conversely, let \(z \in M(G) \). We shall show that (a) holds true. The assumption implies that \(0 \leq y - x \) for each \(x \in X, y \in Y \). Let \(g \in G \), \(0 < g \leq y - x \) for every \(x \in X, y \in Y \). Hence \(g + x \leq y \). From (2) it follows \(g + x \leq z \) and by (1) we get \(x \leq -g + z \). Then \(z \leq -g + z \) because of (2). From the hypothesis \(z \in M(G) \) we conclude that there exists an inverse to \(z \) in \(G^* \). Hence by (1) we have \(0 \leq -g \), a contradiction. The proof of (b) is analogous.

The question of the independence of the conditions (a) and (b) remains open.

Everett [5] proved the assertion 1.3 under the assumption that (i) \(G \) is commutative and (ii) \(X = L(z), Y = U(z) \).

1.4. If \(z \in M(G) \), then \(z \wedge 0 \in M(G) \) (the operation \(\wedge \) being considered with respect to \(G^* \)).

Proof. Suppose that \(z \in M(G) \) and let \(X, Y \) be as in (2). Since \(G^* \) is a lattice, \(z \wedge 0 \in G^* \). First we prove that \(\wedge(y \wedge 0 - x \wedge 0; x \in X, y \in Y) = 0 \) in \(G \). Using 1.3 and the assumption we get \(\wedge(y - x; x \in X, y \in Y) = 0 \) in \(G \). It is clear that \(0 \leq y \wedge 0 - x \wedge 0 \). Let there exist \(g \in G \) such that \(0 < g \leq y \wedge 0 - x \wedge 0 \) for each \(x \in X, y \in Y \),
y \in Y. Applying the result from [1] (p. 296) we get $0 < g \leq y \wedge 0 - x \wedge 0 \leq y - x$ for each $x \in X$, $y \in Y$, a contradiction. Thus $\wedge (y \wedge 0 - x \wedge 0) = 0$ in G. Then from the relations $z \wedge 0 = \sup L(z \wedge 0) = \inf U(z \wedge 0)$, $(x \wedge 0)_{x \in X} \subseteq L(z \wedge 0)$, $(y \wedge 0)_{y \in Y} \subseteq U(z \wedge 0)$ it follows $\wedge (y_1 - x_1; x_1 \in L(z \wedge 0), y_1 \in U(z \wedge 0)) = 0$ in G. In a similar way it can be proved that $\wedge (-x_1 + y_1; x_1 \in L(z \wedge 0), y_1 \in U(z \wedge 0)) = 0$ in G. Then 1.3 completes the proof.

From 1.4 we infer that the partially ordered group $M(G)$ is an l-subgroup of G^*. Hence G is an l-subgroup of $M(G)$. The l-group $M(G)$ will be called the maximal Dedekind completion of G.

2. The maximal Dedekind completion of the mixed product of linearly ordered groups

Jakubík [8] studied the maximal Dedekind completion of an Abelian l-group G, which is a direct product of l-groups. In this section there will be investigated the maximal Dedekind completion of an l-group (without assuming commutativity) that is a mixed product of linearly ordered groups.

The concept of the mixed product of partially ordered groups is a common generalization of the concepts of the complete direct product and the lexicographic product (see Fuchs [6], Conrad [2]). Let us recall the definition of the mixed product.

Let $I \neq \emptyset$ be a partially ordered set and let A_i be a partially ordered group for each $i \in I$. Form the system H of all mappings $f: I \to \bigcup A_i (i \in I)$ such that $f(i) \in A_i$ for each $i \in I$. We denote by G the set of all $f \in H$ such that the set $\sigma(f) = \{i \in I: f(i) \neq 0\}$ fulfills the descending chain condition. If for each $f, g \in G$ and each $i \in I$ we put $(f + g)(i) = f(i) + g(i)$, then G is a group. The set of all minimal elements of the partially ordered set $\sigma(f, g) = \{i \in I: f(i) \neq g(i)\}$ will be denoted by $\min \sigma(f, g)$. Further, we denote $\sigma(f) = \sigma(f, 0)$. We put $f < g$ if and only if $f(i) < g(i)$ for each $i \in \min \sigma(f, g)$; then G is a partially ordered group. It is said to be the mixed product of partially ordered groups A_i and it is denoted by $G = \otimes A_i (i \in I)$.

If I is a trivially ordered set, then the mixed product is the direct product of partially ordered groups A_i. If $I = \{1, 2\}$, then for the direct product we shall use the symbol $G = A_1 \times A_2$.

2.1. If G is a linearly ordered group, $z_1, z_2 \in G^*$, $z_1 < z_2$, then there exists $g \in G$ with the property $z_1 < g \leq z_2$.

Proof. Let G be a linearly ordered group. From the relation $z_1 = \sup L(z_1)$, $z_2 = \sup L(z_2)$, $z_1 < z_2$ it follows that $L(z_1)$ is a proper subset of $L(z_2)$. Hence there exists $g \in L(z_2)$, $g \notin L(z_1)$. Linearity of G implies $z_1 < g \leq z_2$.

If G is an l-group, the assertion 2.1 need not hold.

308
Example. Let C, Q and R be additive groups of all integers, rational and real numbers (with the natural order), respectively. If $G = C \times Q$, then in view of [8] (Theorem 2.7) and [5] (Theorem 7) we obtain $M(G) = M(C) \times M(Q) = C^* \times Q^* = C \times R$. It suffices to set $z_1 = (0, \sqrt{2})$, $z_2 = (1, \sqrt{2})$.

Let I be a partially ordered set and let A_i be a linearly ordered group for each $i \in I$, $A_i \neq \{0\}$. Suppose that G is an l-group such that

$$G = \Omega A_i \quad (i \in I).$$

2.2. Let $i_0 \in I$, $\{x_\lambda\}_{\lambda \in \Lambda} \subseteq G$, $\wedge x_\lambda = 0$. Then there exists $\lambda \in \Lambda$ with the property $x_\lambda (i) = 0$ for each $i \in I$, $i < i_0$.

Proof. Assume that for each $\lambda \in \Lambda$ there exists $i \in I$, $i < i_0$ such that $x_\lambda (i) \neq 0$. Then $i_0 \in \min \sigma(x_\lambda)$. There are $a \in A_{i_0}$, $a > 0$ and $g \in G$ such that $g(i_0) = a$, $g(j) = 0$ for each $j \in I$, $j \neq i_0$. Therefore $0 < g \leq x_\lambda$ for each $\lambda \in \Lambda$, contrary to $\wedge x_\lambda = 0$.

From 2.2 it follows that the set $\Lambda(i_0) = \{\lambda \in \Lambda : x_\lambda(i) = 0 \text{ for each } i \in I, i < i_0\}$ is nonempty.

Denote by K the set of all maximal elements of I.

2.3. Let $i_0 \in K$, $\{x_\lambda\}_{\lambda \in \Lambda} \subseteq G$, $\wedge x_\lambda (\lambda \in \Lambda) = 0$. Then $\wedge x_\lambda (i_0) (\lambda \in \Lambda(i_0)) = 0$.

Proof. The assumption implies that $x_\lambda \geq 0$ for each $\lambda \in \Lambda$. We have either $x_\lambda (i_0) = 0$ or $i_0 \in \min \sigma(x_\lambda)$ for each $\lambda \in \Lambda(i_0)$. Hence $0 \leq x_\lambda (i_0) = 0$ for each $\lambda \in \Lambda(i_0)$. If there exists $\lambda \in \Lambda(i_0)$ such that $x_\lambda (i_0) = 0$ the statement is evident. Let there exist $a \in A_{i_0}$ such that $0 < a \leq x_\lambda (i_0)$ for each $\lambda \in \Lambda(i_0)$. If g is as in 2.2, in the same way as in 2.2 we arrive at a contradiction with $\wedge x_\lambda (\lambda \in \Lambda) = 0$.

2.4. Let $j \in I - K$, $z \in M(G)$. Then for each $i \in I, i \leq j$ there exists $a_i \in A_i$ with the following properties:

(a) There exist elements $g \in L(z)$, $h \in U(z)$ such that $g(i) = h(i) = a_i$ for each $i \in I$, $i \leq j$.

(b) If $g_1 \in L(z)$, $h_1 \in U(z)$, $g_1(i) = h_1(i)$ for each $i \in I$, $i \leq j$, then $g_1(i) = a_i$ for each $i \in I$, $i \leq j$.

Proof. From $z \in M(G)$ and from 1.3 we get $\wedge (h - g ; h \in U(z), g \in L(z)) = 0$. There exists $j' \in I$, $j' > j$. According to 2.2 there is $h \in U(z)$, $g \in L(z)$ such that $(h - g) (i) = 0$ and so $g(i) = h(i)$ for each $i \in I, i \leq j$. For the elements g, h with the mentioned property and for each $i \leq j$ denote $a_i = g(i) = h(i)$. Thus (a) is valid. Let g_1 and h_1 fulfill the assumption of the condition (b). Suppose that there exist $i' \in I$, $i' \leq j$ such that $g_1(i') \neq a_i$. Hence $g(i') = h(i') \neq g(i') = h(i')$. Let $i_0 \in I$, $i_0 \leq i'$, $i_0 \in \min \sigma(g_1, h)$. Then $i_0 \in \min \sigma(g_1, h)$. Since $g_1(i) < h(i) = g(i_0)$, $g(i_0) < h_1(i_0) = g_1(i_0)$, a contradiction.

From (b) it follows that for each $i \in I - K$ the element a_i is uniquely determined by $z \in M(G)$ (it does not depend on $j \in I$).

Let $z \in M(G)$, $i_0 \in I$ and suppose that i_0 is not minimal in I. Denote
Now let \(i_0 \) be a minimal element of \(I \). We define

\[
L^{i_0}(z) = \{ g \in L(z) : g(i) = a_i \text{ for each } i \in I, \ i < i_0 \}, \quad U^{i_0}(z) = \{ h \in U(z) : h(i) = a_i \text{ for each } i \in I, \ i < i_0 \}.
\]

if \(i_0 \) is not maximal in \(I \) and

\[
L^{i_0}(z) = L(z), \quad U^{i_0}(z) = U(z)
\]

if \(i_0 \) is a maximal element of \(I \). Further, for any \(i_0 \in I \) denote

\[
L^{i_0}(z)(i_0) = \{ u \in A_{i_0} : \text{there exists } g \in L^{i_0}(z), g(i_0) = u \}, \quad U^{i_0}(z)(i_0) = \{ v \in A_{i_0} : \text{there exists } h \in U^{i_0}(z), h(i_0) = v \}.
\]

From 2.4 we infer that \(U^{i_0}(z) \neq 0 \), \(U^{i_0}(z) \neq 0 \) and so \(U^{i_0}(z)(i_0) \neq 0 \). Because of \(u \leq v \) for each \(u \in L^{i_0}(z)(i_0), v \in U^{i_0}(z)(i_0) \), we have that \(l^{i_0}(z)(i_0) \) (\(U^{i_0}(z)(i_0) \)) is a set bounded from above (below). Hence there exist \(c \in A^\#_{i_0} \) and \(d \in A^\#_{i_0} \), \(c = \sup L^{i_0}(z)(i_0) \), \(d = \inf U^{i_0}(z)(i_0) \) in \(A^\#_{i_0} \). Clearly \(c \leq d \). According to 1.3 we obtain \(\wedge (h - g ; g \in L(z), h \in U(z)) = 0 \).

Let \(i_0 \) be a maximal element of \(I \). Using the definition of the sets \(L^{i_0}(z) \) and \(U^{i_0}(z) \) we obtain that the equality \((h - g)(i) = 0 \) is valid for each \(i \in I, \ i < i_0 \) and for each \(g \in L^{i_0}(z), h \in U^{i_0}(z) \). We conclude from 2.3 that \(\wedge (h(i_0) - g(i_0) ; g \in L^{i_0}(z), h \in U^{i_0}(z)) = 0 \). Similarly we get \(\wedge (-g(i_0) + h(i_0) ; g \in L^{i_0}(z), h \in U^{i_0}(z)) = 0 \). Using 1.3 it is easily verified that \(c \in M(A_{i_0}) \). Analogously it can be proved that \(d \in M(A_{i_0}) \). We intend to show that \(c = d \). If \(c < d \), i.e., \(d - c > 0 \), then by 2.1 there exists \(a \in A_{i_0} \), \(0 < a \leq d - c = h(i_0) - g(i_0) \) for each \(g \in L^{i_0}(z), h \in U^{i_0}(z) \), a contradiction. Let us denote \(a^*_{i_0} = c = d \). The definition of \(a^*_{i_0} \) implies that \(a^*_{i_0} \in M(A_{i_0}) \).

\[
(3) \quad a^*_{i_0} = \sup L^{i_0}(z)(i_0) = \inf U^{i_0}(z)(i_0).
\]

From (3) we conclude that for each \(i_0 \in K \) the elements \(a^*_{i_0} \) are uniquely determined by \(z \in M(G) \).

2.4'. Let \(j \in I - K, \ z \in M(G) \) and let \(X, Y \) be as in (2). Then the following conditions are valid.

(a') There exist elements \(x \in X, y \in Y \) such that \(x(i) = y(i) = a_i \) for each \(i \leq j \).

(b') If \(x_1 \in X, y_1 \in Y, x_1(i) = y_1(i) \) for each \(i \leq j \), then \(x_1(i) = a_i \) for each \(i \leq j \).

The proof of this assertion is analogous to that of 2.4.

If the symbols \(X^{i_0}, Y^{i_0}, X^{i_0}(i_0), Y^{i_0}(i_0) \) have an analogical meaning with \(L^{i_0}(z), U^{i_0}(z), L^{i_0}(z)(i_0), U^{i_0}(z)(i_0) \), in the same way as above we get the following statement.

2.5. \(a^*_{i_0} = \sup X^{i_0}(i_0) = \inf Y^{i_0}(i_0) \) for each \(i_0 \in K \).

2.6. \(a_i \) is the greatest (least) element of the set \(L^i(z)(i) \) (\(U^i(z)(i) \)) for each \(i \in I - K \).

Proof. Let \(i \in I - K \). By 2.4 there exist elements \(g \in L(z), h \in U(z) \), \(g(j) = h(j) = a_j \) for each \(j \in I, j \leq i \). Since \(g \in L^i(z), h \in U^i(z) \), we have \(a_i = g(i) \in 310 \)
Let X, Y be as in (2). Since $X \subseteq L(z), Y \subseteq U(z)$, with respect to 2.6 the following assertion is valid.

2.7. a_i is the greatest (least) element of the set $X'(i)$ ($Y'(i)$) for any $i \in I \setminus K$.

2.8. There exists an element $a \in G$ such that $a(i) = a_i$ for each $i \in I - K$.

Proof. Let us denote $A = \{i \in I - K : a_i \neq 0\}$. We have to show that each nonempty set $I_1 \subseteq A$ contains a minimal element. If $i_0 \in I_1$ is not minimal in I_1, then $I_2 = \{i \in I_1 : i < i_0\} \neq \emptyset$. By 2.4 there exists $g \in L(z)$, $g(i) = a_i$ for each $i < i_0$ and we have $I_2 \subseteq \sigma(g)$. From the fact $g \in G$ it follows that every nonempty subset of $\sigma(g)$ has a minimal element. Consequently, I_2 contains a minimal element i'. Hence i' is a minimal element of I_1, too.

Let us form $B = \Omega B_i$ ($i \in I$), where $B_i = A_i$ for each $i \in I - K$ and $B_i = M(A_i)$ for each $i \in K$. In view of 2.8 there exist elements $z_1, z_2 \in B$ such that $z_1(i) = a_i$, $z_2(i) = 0$, whenever $i \in I - K$ and $z_1(i) = 0$, $z_2(i) = a^*_i$ whenever $i \in K$. Hence $z_1 + z_2 = z' \in B$.

(4) $z'(i) = a_i$ if $i \in I - K$ and $z'(i) = a^*_i$ if $i \in K$.

Let X, Y be as in (2). Let X_i, Y_i be in (2). Since $A_i \subseteq M(A_i)$, we have $X \subseteq B_i, Y \subseteq B_i$.

2.9. $z' = \sup X = \inf Y$ in B.

Proof. We intend to show that $z' = \sup X$ in B. Pick out any $x \in X$. If $x = z'$, then in view of (4), 2.7 and (3) z' is the greatest element of X and the assertion follows. Let $x \neq z'$, $i_0 \in \min \sigma(x, z')$. Hence $x(i) = z'(i) = a_i$ whenever $i \in I, i < i_0$. Since $x \in X_0$, we get $x(i_0) \in X^{0}(i_0)$. If $i_0 \in I - K$, we infer from 2.7 that $x(i_0) < a_0 = z'(i_0)$. If $i_0 \in K$, by using (3) and 2.5 we obtain $z'(i_0) = a^*_0 = \sup X^{0}(i_0)$ and thus $x(i_0) < z'(i_0)$. Therefore $x \leq z'$. Let $u \in B$. $u \geq x$ for each $x \in X$ and let $i_0 \in \min \sigma(u, z')$. If $i_0 \in I - K$, by 2.4 there is $x \in X, x(i) = a_i$ for each $i \leq i_0$. Hence $x \in X^{0}$ and $i_0 \in \min \sigma(u, x)$. Then $u(i_0) > x(i_0) = a_0 = z'(i_0)$. If $i_0 \in K$, then either $u(i_0) = x(i_0)$ or $i_0 \in \min \sigma(u, x)$. Thus $u(i_0) \geq x(i_0)$. This inequality is valid for each $x \in X^{0}$. From $a^*_0 = \sup X^{0}(i_0)$ it follows that $u(i_0) > a^*_0 = z'(i_0)$. Thus $u \geq z'$. The proof of the relation $z' = \inf Y$ is analogous.

Denote $A = \{g \in G : g \leq z'\}$.

2.10. $L(z) = A$.

Proof. Since $z = \sup L(z)$ in $M(G)$, by 2.9 we get $z' = \sup L(z)$ in B. Hence $L(z) \subseteq A$. Let $g \in A$. Because of $z = \inf U(z)$ in $M(G)$, by 2.9 we obtain $z' = \inf U(z)$ in B. Thus $g \leq h$ for each $h \in U(z)$. Then $g \leq z$, i.e. $g \in L(z)$.

2.11. If $z_1, z_2 \in M(G)$, then $z_1 + z_2 = \sup Z$ in B, where $Z = \{g_1 + g_2 : g_1 \in L(z_1), g_2 \in L(z_2)\}$.

Proof. From $z_1 = \sup L(z_1), z_2 = \sup L(z_2)$ in $M(G)$ and from 2.9, we infer that $z'_1 = \sup L(z_1), z'_2 = \sup L(z_2)$ in B. Hence $z'_1 \geq g_1, z'_2 \geq g_2$ for every $g_1 \in L(z_1), g_2 \in L(z_2)$. Thus $z'_1 + z'_2 \geq g_1 + g_2$, i.e. $z'_1 + z'_2$ is an upper bound of Z in B. Let
Let \(b \in B, b \geq g_1 + g_2 \) for each \(g_1 \in L(z_1), g_2 \in L(z_2) \) and let \(i_0 \in \min \sigma(b, z'_1 + z'_2) \). For \(z_n \) \((n = 1, 2)\) let \(a_n \) and \(a^*_n \) have an analogous meaning as \(a \) and \(a^* \) have for the element \(z \). If \(i_0 \in K \), then by 2.4 and (4) there exists \(g_1 \in L(z_1), g_2 \in L(z_2) \) such that \(g_1(i) = a_{i_0} = z'_1(i_0), g_2(i) = a_{i_0} = z'_2(i_0) \) for each \(i \in i_0 \). We will show that \(b(i_0) > (z'_1 + z'_2)(i_0) = z'_1(i_0) + z'_2(i_0) \). If \(b(i_0) < z'_1(i_0) + z'_2(i_0) = g_1(i_0) + g_2(i_0) \), then because of \(i_0 \in \min \sigma(b, g_1 + g_2) \) we obtain \(b \neq g_1 + g_2 \), which is impossible. Now we prove that \(b(i_0) > z'_1(i_0) + z'_2(i_0) \) for \(i_0 \in K \). Suppose that \(b(i_0) < z'_1(i_0) + z'_2(i_0) \). According to (4) we get \(z'_1(i_0) = a^*_i(i_0) = sup L'^0(z_1)(i_0), z'_2(i_0) = a^*_i(i_0) = sup L'^0(z_2)(i_0) \) in \(M(A_{i_0}) \). The definition of the operation \(+ \) in \(M(A_{i_0}) \) and 1.1 imply \(b(i_0) < z'_1(i_0) + z'_2(i_0) = sup \{g_1(i_0) + g_2(i_0) : g_1 \in L'^0(z_1), g_2 \in L'^0(z_2)\} \) in \(M(A_{i_0}) \). From the fact that \(A_{i_0} \) is a linearly ordered set it follows that we can find \(g'_1 \in L'^0(z_1) \subseteq L(z_1), g'_2 \in L'^0(z_2) \subseteq L(z_2) \) with \(b(i_0) < g'_1(i_0) + g'_2(i_0) \). From \(g'_1 \in L'^0(z_1), g'_2 \in L'^0(z_2) \) we conclude that \(g'_1(i) - a_{i_0} = z_1(i_0) \) for each \(i \in I, i < i_0 \). Then \(i_0 \in \min \sigma(b, g'_1 + g'_2) \). Thus \(b \neq g'_1 + g'_2 \), a contradiction.

Define a mapping \(\varphi: M(G) \rightarrow B \) by the rule \(\varphi(z) = z' \). With respect to 2.10 we have \(L(z_1) = \{g \in G : g \sim z'_1\}, L(z_2) = \{g \in G : g \leq z'_2\} \). Then \(z'_1 = z'_2 \) if and only if \(L(z_1) = L(z_2) \). Hence \(\varphi \) is a one-to-one mapping. Since \(z_1, z_2 \) if and only if \(L(z_1) \subseteq L(z_2) \), by 2.9 and 2.10 we obtain \(z_1 \leq z_2 \) if and only if \(z'_1 \sim z'_2 \). Now we show that \(\varphi \) is a mapping \(M(G) \rightarrow B \). Let \(b \in B, B_1 = \{g \in G : g \leq b\} \). Since \(b(i) \in M(A_i) \) for each \(i \in I \), the sets \(\{a \in A_i : a \leq b(i)\}, \{a \in A_i : a \geq b(i)\} \) are nonempty for any \(a \in A \). There are elements \(g, h \in G \) such that \(g(i) = h(i) = b(i) \in A_i \) for \(i \in I - K \) and \(g(i) = u_i \), where \(u_i \in A_i \in A_i \), \(v_i \geq b(i) \) for \(i \in K \). Then \(B_i \neq \emptyset, B^*_i \neq \emptyset \), since \(g \in B_i, h \in B^*_i \). Hence by (i) there is \(z \in G^*, z = sup B_1 \). Now we show that \(z \in M(G) \). Denote \(U_i = \{u \in G : u(i) = b(i) \} \) for each \(i \in I - K \) and \(u(i) \in A_i, \in A_i \). Also \(u(i) \leq b(i) \) for each \(i \in K \), according to 1.3 we obtain \(\wedge(u(i) - v(i)) = 0 \) for each \(i \in I - K \) and \(v(i) \in A_i, v(i) \geq b(i) \) for each \(i \in K \). Therefore \(u(i) - v(i) = 0 \) for \(u \in U_i, v \in V_i \) for each \(i \in I - K \). Since \(b(i) \in M(A_i) \) for each \(i \in K \), we have \(\wedge(u(i) - v(i)) = 0 \) for each \(i \in K \). From \(U_i \subseteq U(z), V_i \subseteq L(z), z = sup L(z) = inf U(z) \) and from 1.3 we conclude \(z \in M(G) \). In view of 2.9 we obtain \(z' = sup B_1 = b = \varphi(z) \). It is easily seen that \(\varphi \) preserves the group operation. In fact, using 2.9 and 2.11 from \(z_1 + z_2 = sup Z \) in \(M(G) \) it follows that \((z_1 + z_2)' = sup Z = z'_1 + z'_2 \) in \(B \).

We have proved that the following theorem is true.

Theorem. Let \(G \) be a lattice ordered group that can be written as a mixed product \(G = \Omega A_i \) \((i \in I)\), where \(A_i \) is linearly ordered for each \(i \in I \). Put \(B_i = M(A_i) \) if \(i \) is maximal in \(I \) and \(B_i = A_i \), otherwise. Then there exists an isomorphism \(\varphi \) of \(M(G) \) onto \(\Omega B_i \) \((i \in I)\) such that \(\varphi(g) = g \) for each \(g \in G \).
REFERENCES

Received October 6, 1977

Katedra matematiky Strojnickej fakulty VŠT
Švermova 9
040 01 Košice

МАКСИМАЛЬНОЕ ДЕДЕКИНДОВО ПОПОЛНЕНИЕ СТРУКТУРНО УПРАЯДОЧЕННОЙ ГРУППЫ

Штефан Чернак

Резюме

Эверетт доказал, что максимальное дедекиндово пополнение коммутативной структурно упорядоченной группы есть структурно упорядоченная группа. В этой статье результат Эверетта обобщается для всех структурно упорядоченных групп. Доказаны некоторы свойства максимального дедекиндового пополнения смешанного произведения линейно упорядоченных групп.