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ON DECOMPOSITIONS OF COMPLETE GRAPHS
INTO FACTORS WITH GIVEN DIAMETERS AND RADII

LUDOVIT NIEPEL

1. Introduction

In the present paper we study the existence of a decomposition of the complete
graph into factors with given diameters and radii. The cases where the diameters
and the radii of the factors are investigated separately are studied in [1] and [2],
respectively. The first part of the present paper deals with the general case. There is
shown the existence of a decomposition of the complete graph and its hereditary
property. In the second part the case of two factors is completely solved.

2. General case.

All graphs considered in this paper are finite and undirected, without -loops or
multiple edges. The distance o (u, v) between vertices 4 and v in a graph is defined
as the length of a shortest path joining these vertices. If such a path does not exist,
we put ¢ (u, v) = . By the eccentricity of a vertex v in the graph G we understand
the maximum eg(v) of distances from v to each vertex in G. The maximal
eccentricity in G is called the diameter of G and denoted by ds. The minimal
eccentricity in G is called the radius of G and denoted by rs. In a disconnected
graph we put rg = dg = . For the diameter and the radius of a connected graph G
the following inequalities hold:

(1) 2r=n,
2 d+1=n,
A3) r=d=2r,

where n is the number of vertices of G, r and d are the radius and the diameter of
G, respectively.
The first inequality is proved in [2]. A path of the length d contains d + 1 distinct
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vertices and this fact implies the second inequality. The third inequality follows
from the triangle inequality for distances in a connected graph.

A relation between the diameter, the radius and the number of vertices in
a connected graph is given by the following lemma:

Lemma 1. Let r and d denote the radius and the diameter of a connected graph
G, respectively. Then for the number n of vertices of G the following inequality
holds :

1 if 2r=d+2,
4) n=Zd+1+s(r—1), where s—{ 0. otherwise.

Proof: A.Let2r =d + 1. Then s = 0. The graph G contains at least one path of
the iength d and hence at least d + 1 distinct vertices.

B. Let 2r=d +2. Then s = 1. In the graph G we consider a path of the length d
as an induced subgraph G’ of the graph G. As the inequality d =2(r — 1) holds,
there exists in the graph G’ at least one vertex u with eccentricity ec-(u) =r — 1 and
a vertex u' with the eccentricity ec-(u')=r adjacent to u. We denote by u" the
second vertex adjacent to u in the graph G'. Moreover, we denote the end-vertices
of G’ by w and w' in such a way that gg(w, u')=r.

In the graph G there holds the inequality eg(u)=r so that exists a vertex v such
that gg(u, v)=r. We show that there exists a u —v path containing the edge
(u, u"). In the graph G there exists a v — w path of the length =d. Denote by u, the
first vertex of this path contained in the graph G'. There hold the inequalities:

oc(v, ur)) +oc(ui, u)+oc(u, w)=Zr+r—1>d.

That means the vertex u; belongs to the u —w path contained in the graph G’ and
u: # u. Now it is easy to construct a u — v path using the vertex u; and containing
the edge (u, u"). A .

Similarly we show that there exists a u — v path in G containing the edge (u, u').
Consider an arbitrary v — w' path of the length =d. Denote by u, the first vertex of
this path contained in the graph G’. There hold the following inequalities :

06 (v, uz) + 06 (uz, u) +0c(u, w)=gc(v, u)+
+QG(u, W')>QG(W, u)+QG(u, W’)=d.

That means the vertex u. belongs to the u — w' path contained in the graph G’ and
u># u. It is easy to construct a u — v path using the vertex u, and containing the
edge (u, u’).

Let p: denote a u — u; — v path such that the u — u, path belongs to G’ and the
u; — v path is disjoint with G’ except for the vertex u,. Let p, denote a u —u, —v
path such that the u — u, path belongs to G' and the u, — v path is disjoint with G’
except for the vertex u,. Moreover, let (p1np2) —{u} be a path or a vertex.
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Leti=p(u, u1), j=0(u, uz). Denote by u; the first common vertex of p; and p,
different from u. Let q = g,,(u1, us), t =0,,(uz, us) and p =g,,(us, v). Then the
following inequalities hold:

(5 i+q+p=r
(6) j+t+p=r
(7) q+t=i+j.

The first and the second inequalities follow from the condition that the length of
p1 and p, is at least r. A subgraph of G’ joining the vertices u; and u, is a shortest
path joining the vertices u; and u; in the graph G. Using the vertices of p; and p.,
we construct a u, —us;—u, path. As the length of this path is q +¢, the third
inequality follows. By a short calculation one can obtain the following inequality :

(8) p+q+t=r.

Thus the path p, and p, contains at least r — 1 vertices not contained in G’ and
the proof follows.

A subgraph of G containing all vertices of G is called a factor of G. The
complete graph with n vertices will be denoted by (n ). Under a decomposition of
a complete graph into factors we mean a system of its factors such that every edge
of this graph is contained in exactly one factor of that system.

Now we try to find conditions for the existence of a number n such that the
complete graph (n) can be decomposed into m factors Fi, ..., F,, with diameters

dy, ...,d, and radii ry, ..., r., respectively. ,
Denote by H(d,, ..., dm, 1, ..., I'm) the smallest number n such that.the graph
(n) is decomposable into m factors with diameters d1, ..., d. and radii ry, ..., 1. If

such a number does not exist, we put H(di, ..., dm, 71y --es 'm) = ©.

Theorem 1. Let m=2, N=n=2,d;=r.=1 fori=1, ..., m be natural numbers.
If the complete graph with n vertices is decomposable into m factors with given
diameters and radii, then for all N =Zn the complete graph (N) is decomposable
into m factors with the same diameters d; and r;.

Proof. We can suppose that 2=r, =d, for everyi=1, ..., m. The case 2=d, =
ri =1 for some index i is trivial. Set G = (N), let K be a clique of the graph G such
that K has n vertices. Denote by A the set of its vertices and by B the set of all
remaining vertices of G. Let us choose an arbitrary vertex u of A. If F, ..., F,, is
a decomposition of the graph K into factors with diameters d, and radii r;, we can
construct factors F; of G in the following way.

1. F} contains all the edges contained in F;.

2. Ifv#u,v eA,w e B, then the factor F; contains the edge (v, w) if and only if
the edge (v, u) is contained in F;. All the remaining edges of G are contained in
Fo.



Now we are going to relate the eccentricities of the vertices of Fi, ..., F,, to those
of Fi, ..., F,. The eccentricity of any vertex of B in F; is the same as the
eccentricity of the vertex u in F;. It remains to consider vertices of A. Let ve A
and v # u, then the distances or;(v, w) and gr,(u, v) are equal for any w € B. Now
let w € A. It is evident that the inequality gr,(v, w)=pr (v, w) holds. Therefore it
is sufficient to prove that gr (v, w) Z 9or(v, w). Assume that gr(v,w) <
or (v, w). Then in F; there exists a v —w path of the length less than gg (v, w).
This path obviously contains vertices from the set B and has the following form:
Vov1...v,, where p =og;(v, w) and vo=v, v, =w. Let k be the smallest integer
such that vx+: € B. Similarly let s be the greatest integer with v,_; € B. Then the
v — v, — w path is of a length less than gg (v, w), which is a contradiction. The
case r; = » is obvious. Therefore our construction does not change eccentricities of
vertices in factors F;. This completes the proof of the theorem.

From Theorem 1 it follows that the graph (n) is decomposable into factors with
diameters d, ..., d» andradiir,, ..., r, ifandonlyif n ZH(d:, ..., dm, r'1s ..., T'm)-

Lemma 2. Let m, d;, r: be natural numbers such that r;=d; =2r; for every
i=1,...,m. Then H(d,, ..., dm, 11, ..., 'm)=max (2m, max (d; +1+s:(r: — 1))),
where s;=1 if 2r;=d; +2 and s; =0, otherwise (i=1, ..., m).

Proof. The proof follows immediately from Lemma 1, Theorem 2 of [1] and
from Theorem 1.

For H(di, ..., dm, 1, ..., I'm), where m =3, d; =3, we can find also an upper
bound. Results concerning the case of diameters d; =2 are the same as in [1]. In
that case we can suppose r; =2, as the case r; =1 is trivial.

Theorem 2. Let m, d., ..., dn, 11, ..., I'm be integers, where m =3, d; =3 and
ri=d;=2r; for every i=1,...,m. Then H(d:, ..., dm, I, ..., I'm) is finite and we
have:

m

H(dl, ceey dm, Tiy ooey r,..)éZ(d,- +1 +S,‘(r.‘ - 1)),

i=1
where the symbol s; has the same meaning as in Lemma 2.

Proof. The proof of this theorem is based on a construction of a decomposition
of (n) into factors with diameters d,, ..., d. and radii ri, ..., .. Denote the
vertices of (n) by the symbols v;; where 1=i=m and 1=j=d; +1+s:(r.—1).
Let us form the factors Fi, ..., F,, of (n) in the following way. In the factor F; we
have:

1) The vertex v,,, is adjacent to all vertices of (n) except for the vertices v...
vs,3, Wwhere x > i, except for the vertices v, 2, Vx4, Where x <i and also except
for all the vertices v ., where x#2 and if s; =1, then also x# 2r;.

2) The vertex v, - is adjacent to all the vertices of the graph (n ), except for all the
vertices vy, 1, Ux,3, Where x <i, except for the vertices vx,2, Vx4, where x >i, and
except for the vertices vi,., where x# 1, x# 3.



3) The vertex v;,3 is adjacent to all the vertices vx, 1, Vs, 3, Where x <i, the vertices
V.2, Ux,4, Where x >i and the vertices v; 2, Vi 4.
4) The vertex v;, 4 is adjacent to all the vertices vx,1, U, 3, Where x >1i, the vertices
Ux,2, Ux,4, Where x <i and the vertices v; 3, vi,s (if any).
S) The factor F; contains all the edges (vi,x, Vi,x+1) and in the case s; =1 also the
edge (vi,1, Vi 2n).
6) The factor F; contains all the edges (Vi+1.x Vi+1.y), Where x —y =2, except for
the edge (Vi+1,1, Vis1,2n,,) in the case siv1=1.
7) If i =m —2, then the vertices vi+1,3, Vi+1,4 are adjacent to all the vertices v,,.
where x >4, y>i+1.
8) If i =m — 2, then the vertices vi+1,x(x >4) are adjacent to all the vertices v,,.
where y>i+1, z=3.
9) If i =m — 1, then the vertices v..,.(x >4) are adjacent to the vertices v,,,(z =
3). The vertices v,.,3, Um, 4 are adjacent to the vertices v, , where x >4.
10) All the edges not included in 1) to 9) are contained in the factor F,,. We have
- constructed a decomposition of the complete graph (n) into the factors
Fi, ..., F,. The radius of F; is r; because the vertex v;,, where p=
r;+ 1+s:(r; — 1), has eccentricity r;, which is the minimal eccentricity in the
factor F;. The maximal eccentricity of F; is d:. The vertex vi,, q=
d; + 1 +s:(r: — 1) has eccentricity d;, which is the maximal eccentricity in F; this
completes the proof.
This theorem gives us an answer to the question of the existence of
a decomposition of (n) into m connected factors (m =3). In the following
theorems we formulate conditions for the existence of a decomposition of
a complete graph into factors which may be disconnected.

Theorem 3. Let m=3, d,=r,=...=d, =r., = . Then we have:

3 if d1=71=°°,
H(dl,...,d,,.,rl,...,r,,.)= d1+1+s1(r1—1), if 1_5_-r1§ 1§2r1<00,
o, otherwise

Proof. The proof follows from Lemma 1, Theorem 1 and the following con-
struction.

We construct a decomposition of (k), k =d,+ 1+s:(r1—1) into factors with
prescribed diameters and radii. The factor F; contains the edges (vi, vi+1) i =
1, ..., k —1, in the case s, =1 also the edge (vi, v2,,). The factor F, contains all the
edges (v:, v;) i# 1, j# 1 not contained in F;. All the remaining edges of (k) can be
divided in an arbitrary way into factors F5, ..., F... As the decomposition of (3)
into disconnected factors is trivial, the proof follows.

Theorem 4. Let m=3, d:=...=d,,, 11, ..., I'm be natural numbers such that
ri=di=2r,d, =3 ord, (and also r;) be symbols ©,i=1, ..., m. Then H(d,, ..., dn,
ri, ..., Im) Is finite.



Proof. a) If ds;# o, then we can use the construction from the proof of
Theorem 2. The following inequality holds:

H(dl, cany d,,., Ty, «ovy r,,,)§H(d1, esey dk, Ty «oes rk),

where di is the last finite diameter in the sequence of diameters.
b) Let d,# , d3;= . Now we shall prove the inequality:

H(@dy, coos Quy Ty ooy Tm) =
§d1+d2+3+sl(r1— 1)+s2(r2- 1)=k.

It is sufficient to construct a decomposition of the graph (k) into the factors F;
with diameters d; and radii »; for i =1, ..., m. Choose an arbitrary vertex v of the
graph (k). Divide all the remaining vertices into two groups: In the first group
there are d;+1+s,(r1—1) vertices and in the second group d,+1+s2(r.—1)
vertices of (k). Denote the vertices of the i-th group by v, ; where 1=j=d;+ 1 +s;
(rni—1),i=1,2.

The factor F; contains edges (v1,x, V1,x+1) Where 1=x =d, + s:(ri—1), in the
case s; =1 it contains also the edge (vi,1, v1,2,,). The factor F; contains also the
edges (v1,3, v), (V1.4, V), (V1,3, V2,1), (V1,3, V2,2), (V1,4, U2,1), (V1,4, V2,2) and all the
edges (v1,1, V2,x), (V1,2, V2,x), where x =3.

The factor F;, contains the edges (v2,x, V2.x+1), Where 1 =x=d, + s.(r.—1) and
if s,=1 also the edge (v2,1, v2,2,,). The factor F; contains also the edges (v2,1, V1.x),
(v2,2, V1.x), (V, V1,2 ), where x # 3, x # 4, the edges (v2,3, V1,3), (V2,3, U1,4), (V2.4, V1,3),
(v2,4, V1,4), and the edges (v, v2,1), (V, V2,2).

All the remaining edges of the graph (k) can be divided in an arbitrary way into
the factors Fs, ..., F,,.

The radii of F, and F, are r; and r», respectively, because the eccentricities of the
VETtiCes V2., +1+s¢—1) @NA V2,r,4145002-1) @re 7y and r, respectively. Analogously F
and F, have diameters d, and d,, respectively. The factors Fs, ..., F, are
disconnected.

c) In the case d, = o the assertion follows from Theorem 3. This completes the
proof. '

3. Thecasem =2

In this part we shall consider 4-tuples d,, d-, ri, r, of numbers or symbols o, such
that d; =d, and moreover if d, =d,, then ri=r..

Lemma 3. Let 1=r,=d,=2r,,i=1, 2, d2=4, d,# . Then we have:

d2+1+s2(r2— 1)1f d1=r1=2;

H(d,, d2, 11, r2) = { oo, otherwise.



Proof. In the case d,=r,=2, s2=0 the factor F, consists of d,+ 1 various
vertices v; and all the edges (vi, vi+1) fori=1, ..., da.

In the case d;, =r; =2, s, =1 the factor F, consists of d- + r, various vertices v;, all
the edges (vi, vi+1) for i=1, ..., d2+r.—1 and also the edge (v, v2.,).

In both these cases the factor F; contains all the remaining edges.

If d,=4, then by Lemma 3 of [1] the complement of a graph with a diameter
greater or equal to 4 has diameter 2. It follows that if d,# 2, then H(d,, d, r1,

r2)=°0.

Lemma 4. If G is a disconnected graph, then its complement G is connected and
for its radius re and diameter ds we have: 1=rs =ds =2.
Proof. The proof follows from Lemma 2 of [1] and Lemma 2 of [2].

Lemma 5. If rg is the radius of a graph G, rc = 3, then for the diameter dg of the
complement G of G we have ds =2.

Proof. We can assume that G is connected (Lemma 4).

a) If dg =4, then from Lemma 3 of [1] we obtain dgs =2.

b) Let dc =rc =3. We shall show that the distance between two arbitrary
vertices in G is not greater than 2. Suppose that for some couple of vertices u, v we
have gs(u, v)=3. In the graph G the eccentricity of every vertex is equal to 3. It
means that there exists a vertex w such that og(v, w) = 3. Obviously the graph G
contains the edge (1, v) and the graph G the edge (v, w). The edge (u, w) is
contained in one of the graphs G or G. If this edge belongs to G, then
oc(v, w)=2. If the edge (u, w) belongs to G, then gs(u, v)=2. Both cases give
us a contradiction. Hence dg =2.

Lemma 6. Let d,, di, ri, r- be natural numbers satisfying the inequalities
r,—éd.-§2r.-, i= 1, 2. Then:

H(d,, d2, r1, r2) >4,

except for the case H(3, 3, 2, 2)=4.
Proof. The proof follows by checking all the decompositions of (4) into two
connected factors.

Theorem 5. For the natural numbers d, d», r1, r; or the symbols « satisfying the
inequalities r; =d; =2r;, i =1, 2, we have:

(a) H(1,d>, 1, r;)=o for d;# o,
(b) H(1, 0, 1, 0)=2,
(C) H(Z, o, 1, oo)=3,
(d) HQ2, =,2, ©)=4,
(e) H(dy, ©,r, ©)=0 for d,=3,
f) H2,2,2,2)=5,
(g) H(2,3,2,2)=6,



(h) H(Q,3,2,3)=6,
() H(3,3,2,2)=4,
() HG3,3,2,3)=,
(k) H(3,3,3,3)=oo,

() HQ,ds, 1,r)=0 for d;+ o,
d2+1+5(r.—1), if di=r1=2,
(m) H(d., d>, r, r2)={ 4=d,+ o,
o, if di=3 and d,=4.

Proof. The proof follows from Theorem 1, Lemmas 1, 2, 3, 4, 5, 6 and from the
decompositions drawn in Figs. 1, 2, 3.

() ¥ xC

Fig. 1. The case (f). Fig. 2. The case (g)-

1K

Fig. 3. The case (h).

In the case (g) the graph (5) is not decomposable into factors with those
diameters and radii, because a graph with five vertices and diameter 3 contains at
least one vertex of degree 3 and so this vertex is an endpoint in the graph G. If G
has diameter 2, then at least one degree of its vertices is 4, which is a contradiction

with the connectedness of G. This completes the proof.
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O PA3JIOXEHHH ITIOJTHOTI'O T'PA®PA HA PAKTOPHI
C DAHHBIMHU MTMAMETPAMH U PATINYCAMU

JroposuT Hunen
Pe3ome

B npemnaraemoii paGoTe MCCIERYETCS CYLIECTBOBAHHME Pa3lIOXEHHs MOJHOrO rpaga Ha ¢akTopsl
C 3apaHee 3aJJaHHbIMH INaMETPaMH M pafycaMi. HaxosaTcs ycJIoBHs I CYILECTBOBAHHUS PA3IOXKEHHS
M OrpaHUYEHMs I YMCJIa BEPLIMH NMOJHOrO rpacga AOMyCTHMOTO PazIOXEHHs.

Bo BTOpO# 4acTH NOKa3aHO HAaCJIEACTBEHHOE CBOMCTBO Pax/IOXKEHMs NOJIHOTO rpacda M laHa BEpXHsA
rpaub mia ¢yskumu H(d,, ..., d,., 1y, ..., I,,) MMHHIMQIBLHOTO YHMCJIa BEPIIMH MNONHOrO rpagpa gomyc-
KaIOLLETO COOTBETCTBYIOLIEE Pa3IOKEHHUE.

B TpeThed 4acT¥M MONHOCTBIO PElIEH Clyyad pa3ioXeHusi Ha fiBa ¢akTopa. 3HAYMT, TOYHO
onpefeieHsl 3HayeHus dyskunn H(d,, d,, r,, r,).
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