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SUPPORT AS AN INVARIANT
FOR DYNAMICAL SYSTEMS

HORST MICHEL

In [3] H. Furstenberg introduced a notion of disjointness into ergodic theory,
which was transferred in a way from elementary number theory. With respect to
this connection we shall introduce a notion of:support of a dynamical system by
simulation of the fact that to every natural number n there corresponds the set
7t (n) of those prime numbers which are necessary in the prime number representa-
tion of n. In the same way as the equality of two natural numbers 7,, n, requires the
equality of w(n:) and m(n,), the isomorphism of dynamical systems requires the
equality of support. Thus support turns out to be an isomorphy invariant.

Of course the situation for dynamical systems is much more complicated than for
natural numbers. In most cases there is no representation of the given dynamical
-system as a product of prime systems (for some results with regard to this see [15]). )

It is the purpose of this paper to define this notion of support and to apply it to
some classes of dynamical systems with discrete and quasidiscrete spectra. Further,
all K-automorphisms (and therefore Bernoulli systems also) have the same support
but Halmos’ invariant for totally ergodic systems with a quasidiscrete spectrum is of
quite another kind.

1. Basic definitions and notations

Throughout this paper measure spaces (X, &, m), (X', &', m') are supposed to
be Lebesgue (=normalized and separable, see e.g. [14]).

A measure preserving transformation from (X,%,m) to (X'¥',m’) is
a mapping T: X—X' with T(E')e¥, (E'€¥') and m'(E')=m (T '(E")),
(E' e ¥’). If the two measure spaces are equal, then T maps X into itself and the
quadruple D = (X, &, m, T) is called a dynamical system. Let D, = (X,, &, m,, T,)
be the system with a normalized measure space (X, &, m.) and T, =idx,.

A measure algebra (X, ) is a pair, such that X is a (Boolean 0-) algebra and u a
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measure on it. A (0-) homomorphism t from (X, u) to (Z’, u') is a mapping t:
¥ —2" that respects the operations of X':

. (\Z si)=i\"/ 2(S), T(S)=[r(S)f, (Si,Se),

=1

and preserves the measure:

W (@S =u(S), (Se3).

The homomorphism 7t is an isomorphism if 7 is invertible. In case of ¥ = X", u =u'
a homomorphism is called endomorphism and an isomorphism is called an
automorphism.

Given a measure space (X, &, m) and identifying sets E, F € & if they differ only
on a set of m-measure 0 (i.e.: m(EAF)=0), we obtain a set £ of equivalence
classes E = {F € |m(EAF) =0}, (E € ¥), being a (Boolean o-) algebra. On X the
mapping u: £— R, defined by u(£)=m(E), (E € &) is a measure. In this way
every measure space (X, ¥, m) induces a measure algebra (2, u). Furthermore, if
X,¥,m), (X',¥',m') are measure spaces and (X, u), (', u') their induced
measure algebras, then a measure preserving transformation T from (X, &, m) to
(X', &', m') induces a homomorphism 7 from (2’, u') to (=, u) defined by

W(E)=T '(E'), (E'e¥).

Therefore, a dynamical system D = (X, &, m, T) induces a triple (£, u, 7), where T
is a certain endomorphism on (Z, u). Further, T: X— X" is called a homo-, iso-
endo- or automorphism, resp., if the induced T has the corresponding property.
Finally, D= (X, ¥, m, T) is said to be automorphic if T is an automorphism.

For more details concerning the connection between measure spaces and
measure algebras see [6], pp. 163.

In the following definitions all measure algebras and mappings between them are
supposed to be induced (in the obvious manner).

D, =(X1, %, mi, T1) is a factor of D,=(X>, 2, ma, T) if there exists
a homomorphism o from (Z, u;) to (22, u2) with 1,00 = oot:. This relation will be

denoted by D, <D, (or: D <D, if o is just not important). The notion of factor

fulfils the relation

DD, (reflexivity),

with 0o=idx and moreover

D:<D;, D,<D,>D, <D, (transitivity).
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Two dynamical systems D;, D, are said to be weakly isomorphic (Ja. G. Sinai
[16], [17]) if
D,<D,, D,<D, 1)

holds and isomorphic (=conjugate in Halmos’ terminology [5]) if there is an
isomorphism o with

D,<D..
We shall denote weak isomorphy with D, =7p, (or: D, =D;) and isomorphy with

o o1
D, =D; (or: D;=D,). Because of its definition and D,< D, isomorphy implies

weak isomorphy. A system D being isomorphic to D, is called trivial. D, is a proper
factor of D, iff D, is a factor of D, and nonisomorphic to D.. This will be denoted
by D; <D, and will be used especially for the case D, =D,.

2. Support and its simple properties

By the following two definitions we connect with every dynamical system
a notion of support.

2.1. Definition. For every dynamical system D let
N(D)={D'|D,<D’' <D}

be the system of all nontrivial factors of D. Then for given D,, D, a relation
D, <D, is defined by

D, <D< (D’ e N(D1) SN (D' )AN(D2) # 0) v (D, trivial). . )

If this is the case, D, is said to have equal support as or less support than D,.

2.2. Theorem. Let P be a class of dynamical systems. Then the support relation
< fulfils the properties
(a) D<D,
(b) D,<D,, D,<D;=>D,<D;
of a preorder (according to L. Fuchs [2], p. 1).

Proof. (a): If D is trivial, D <D follows immediately from (2). Otherwise /(D)
is nonvoid and therefore D' e N (D) implies ¥/ (D') =N (D) and N/ (D')nAN (D)
= N(D!)#0. :

(b): Let be D; <D3, D, <Ds. If D1 is trivial, nothing has to be proved. Otherwise
N(D;)#9 and
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D' e N (D)) SN(D') AN (D) # 0 : 3)

hold. In this implication at least D’ =D, is possible and therefore /' (D:) # @. Then
D, <D; implies

D e (D) >N (D )N (Ds) # 0.

Choosing D" e /(D')nN'(D;), which is possible according to (3), we get ¥(D") <
N(D') and @FN(D")NN(D3) = N(D')nAN(Ds), thus D, <Ds.
A preorder induces an equivalence relation, namely

2.3. Definition. If for two dynamical systems D,, D, the relation
D, ~D;:<D,; <D, and D,<D,

holds, then D, and D, are said to be of equal support.

In a fixed class & of dynamical systems the support of any De% can be
interpreted as the name of the equivalence class (modulo ~) containing D. As
simple relations concerning this notion we have for any two D,, D,

D1$D2§D1<D2, 4)
D12D2$D1~D2. (5)

The first of them follows from /' (D') = ¥ (D) = N (D) for all D' e /(D) and the
second is a corollary of the first. It should be remarked that at present examples of
nonisomorphic but weakly isomorphic dynamical systems still seem to fail. From
this there depends, of course, the question whether (5) is a sharper statement than

D] EDz #Dl ~D2.

3. Support invariants

Let 9 be a class of dynamical systems, Y aset and @: Y — Y a mapping. As it is
well known Y is said to be a system of isomorphy invariants of 9, if the implication

D1, DzE@ and D1§D2$¢(D1)=(D(Dz) (6)
holds. Further, Y is called complete if moreover @(2)=Y and the inverse
direction of (6), namely

Dl, D;e% and (D(D|)=(I)(D2)$DIED2

are valid. Well known examples of complete systems of isomorphy invariants are,
e.g.,

(a) the set R. of the extended nonnegative reals for the class of all automorphic
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Bernoulli systems (A.N. Kolmogorov [8], D.S. Ornstein [12]) with @
being the entropy mapping,

(b) the set M of all countable subgroups of K (= group of all complex numbers
with modulus 1) for the class of all ergodic systems with a discrete spectrum
(J. V. Neumann [11], P. R. Halmos [5]) with & defined by D— H(D),
where H(D) denotes the group of all proper values of D (i.e. of the isometric
operator induced by T in D= (X, ¥, m, T)).

In accordance with these facts we define

3.1. Definition. For a given class 9 of dynamical systems, a certain set Y and
a mapping @: 9 — 'Y, the set Y is said to be a system of support invariants of 9, if

Dl, DzG@ and Dl""’Dz:?q)(D]):(D(Dz) (7)

Y is called a complete system of support invariants (or : supportic) if moreover the
conditions

P(@)=Y, : (®)
D,, D;e% and (D(D1)=(D(D2)$D1~Dz (9)

are valid. A system Y of isomorphy invariants is called nbnsu'pportic if (7) doesn’t
hold. ‘

If in the example (b) presented above only the subclass of all totally ergodic
systems (i.e. in every D=(X, %, m, T) not only T but also T", (n =2, 3, ...) are
ergodic) is considered, then the corresponding invariants in M are constituting the
set M, of all torsionfree countable subgroups of K (see e.g. L. M. Abramov [1]).
The following theorem concerns this class:

3.2. Theorem. Let & be the class of all totally ergodic dynamical systems with
discrete spectrum and D,, D.e %. Then the following relations are valid:

D|<D2¢PH(D1)CH(D2), (10)
D, ~D,<H(D,)=H(D,), (11)

where H(D;) denotes the group of proper values of D; and H(D;) is the completion
of H(D;) in the following group-theoretical sense:

HMD)={heK|3neN: h" e HD;)}.*

*) For further completions of such types see, e.g., A. G. Kuro§ [9]. Concerning this theorem the
author is indebted to his collaborator M. Franke for some improvement.
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Proof. We use the fact that in the supposed class & the factor relation Dy <D; is
equivalent to H(D,) c H(D.). If, therefore, we call the subgroup H= {1} of K
trivial, we have triviality of D € @ iff H(D) is trivial. If D, is trivial in one of the
relations (10) and (11), these assertions are obvious. 1. Let be D, <D, and D,
nontrivial. Then we conclude from (2): for every nontrivial subgroup H' of H(D,)
there exists a nontrivial H*c H'nH(D:). Let be ce H(D,) and c# 1. Then ¢
generates a nontrivial subgroup H':={c} cH(D:). H* must be generated by
a certain ¢’# 1 (because of the nontriviality of the existing H*) and we have

{c} = H(D.). Further, ¢ € H(D,) since every solution of x” =c¢” is in H(D;) and
one direction is proved.

If on the other hand H(D,) = H(D,) is valid and H' is an arbitrary nohtrivial
subgroup of H(D,), then H*=H’'nH(D.) is a subgroup of H(D-) and of H’ and
only the nontriviality of H* has to be shown. The possible choice c € H' with c# 1

yields with the supposed inclusion ¢ € H(D,) and therefore ¢? € H(D,) for some g
because of the above mentioned definitions of completion and moreover ¢ # 1 (H'
as a subgroup of the torsionfree H(D,) has the same property!). Thus we have
1#c? e H'nH(D:) and the nontriviality of H* is shown.

2. (11) is an easy coroliary of (10) if we consider definition 2.3. and the

completion property H=H fulfilled for every torsionfree abelian group H.
3.3. Corollary. Let & be the class of all totally ergodic dynamical systems with
a discrete spectrum. Then the set M, of all countable complete torsionfree
subgroups of K is a complete system of support invariants of 9.
Proof. Firstly the mapping
d:D—-HD), (De®)
shows together with (11) the validity of (7) and the general assumption of

separability of all considered systems yields H(D) and H(D) countable. Therefore
we have @: 9 - M,.
On the other hand (8) is fulfilled: every element in M, is possible as a proper

value group of some D € 9, see e.g. [5], p. 48. Finally (9) follows from H(D,)=
H(D;) and (11).

4. Support and dynamical systems of positive entropy

As we have seen support simulates the set of those prime numbers (see
introduction) that occur in a certain integer. Of course, it is understandable if we
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also ask for invariants of quite another kind. Entropy, e.g., seems to be (in suitable
classes) an invariant simulating the power of a prime number in the correlation just
mentioned. If such a conjecture can be proved to hold, the support of all these
systems is constant.

In the following we will examine this for the class 2 (in Furstenbergs terminolo-
gy [3]) of all K-systems, i.e. the class of all dynamical systems D such that every
nontrivial factor has a positive entropy.

In his paper [16] Ja. G. Sinai formulated the following results: if % denotes the
class of all automorphic ergodic dynamical systems and if €. denotes the subclass
of those elements of € having a positive entropy, then

Dleg, Dze%, h(Dl)?h(Dz)instb (12)
D1 € g+$3D2 e? with h(Dz) =h(D1) (13)

are valid, where h (D) denotes the entropy of T in D = (X, &, m, T). This leads to
the following

4.1. Theorem. For any D, € ? and D, € €.D, has equal support as or less support
than D,:

Dley, D2€g+$D|<D2.

Proof. Let D, be nontrivial and D, <D’ <D,. Then D’ € ? with h(D')>0. Now
choosing D* e & in such a way that

h(D*)=min (h (D'), h(Dy)),

we have with (12) D*<D’, D, <D*=<D, and therefore D, <D, q.e.d.
Since ? = €., we have by changing D, and D, the following *

4.2. Corollary. Any two K-systems have equal support:
D, D,e ?=>D,~D,.
This especially (because of B = 2?) implies
4.3. Corollary. Any two automorphic Bernoulli systems have equal support:

D], D2€%$D1~Dz.

5. Non-supportic invariants

Suggested by the last properties in sect. 4 we give the following

5.1. Definition. Let & be a class of dynamical systems, Y a set, ®: 2> Y a
mapping and Y a system of isomorphy invariants of &. Then Y is called a strongly
non-supportic system of isomorphy invariants if the implication
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D, D;eP=>3AD;e 9P with D;~D, and ®(D;)=®(D,) (14)
is valid.

Since A, resp. P, consist of only one support class, it is obvious that h: 3 ——>R_+,

resp. h: ?—->R.,, produces with h(AB), resp. h(P), a strongly non-supportic system
of isomorphy invariants for %, resp. . We will consider in the following less
obvious cases. They are possible even in the class of dynamical systems with
entropy 0. As already remarked above, D = (X, &, m, T) is called totally ergodic
(as well as T) if all powers T", (n e N*) of T are ergodic. The proper value
mapping Rp defined by
foT
F
where L*(X) denotes the Hilbert space L*(X, &, m), induces a group G (D) of the
so-called quasiproper vectors defined by

Go(D)=K; G,.:(D)=Rp'G.(D), (neN);

R[)f=

(feL*X),|fl=1m —ae.),

G(D)= Q G (D).

If the elements of G (D) (they are pairwise orthogonal if D is totally ergodic) span
L*(X), D is said to have a quasidiscrete spectrum. The class of all totally ergodic
systems with quasidiscrete spectra are denoted by %*. In [1] it was proved that the

group
H®)= U H,(D) = U Ro(G, (D)

of quasiproper values together with Rp carry all information for a complete system
of isomorphy invariants of %*. H(D) is commutative and torsionfree. The proper
value mapping Rp works on H(D) as a group-theoretical endomorphism, being
locally nilpotent: if # € H(D), then there is an integer n with Rph = 1. Further, it
may happen that there is at least n e N* with H,(D)=H,..(D). Then H,(D) =
H,.«(D), (k e N*) is valid and this n (denoted by n(D)) is an isomorphy invariant
of J*, called Halmos’ invariant. For a detailed representation of the theory of ¥%*
see L. M. Abramov [1] or K. Jacobs [7].

To consider n(D) in relation to support we need a theorem on factors in ¥#*
proved by K. Hisler [4]: Let D,, D. be two dynamical systems in % *. Then
D, <D, holds iff there exists an injective (group-theoretical) homomorphism V:
H(D,;)— H(D,) with

Vf=f, (feHi(Dy)),
Ur,V=VU;g,

where Ur, =foT;, (fe L*(X:), i =1, 2).
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5.2. Theorem. In the class 3* Halmos’ invariant n(ID) is non-supportic.

Proof. To violate (7) in 3.1 it is enough to find two D,, D, e ¥* with equal
support and n(D,) # n(D.). We choose D, = (X, %1, m, T1) with X; =K, &, the
Borel sets in K, m; the normalized rotation-invariant measure, Ti(x)=cx
(¢, x € K) and ¢ being no root of unity. Then (see [5], p. 58) H(D,)={c"|meZ},
Rp,(c™)=1, (meZ) and n(D,)=1 are valid. Let D,= (X3, &2, m,, T>) be the
system with X; = K?, &, the Borel sets in K>, m, the product measure m; @m,

Tz(x, y)=(cx, xy), (c, x, y € K)
and c like above. Then ([5], p. 59) we have with f,(x, y)=x"
H®D,)={c"f.|m,neZ},

Rp,(c"f.)=c", (m, neZ) and n(D,)=2. However, the two dynamical systems
have equal support. D, <D, follows from (4) and the factor condition in ¥*,
mentioned above, if we define the homomorphism V: H(D,)— H(D;) as the
canonical embedding:

V(™) =c", (meZ).
To prove D, <D,
D’ e N(D2) SN (D' )AN(D;) + 0 (15)

has to be shown. By Abramov’s representation theory every nontrivial factor of D,
may be represented by a subgroup

Hiu={c"fulm,neZ, k,leN*, k|l}
or a subgroup
Hi={c""lmeZ, ke N*}

of H(D). But every such subgroup has with H(D,) the (sub)group Hj in common.
By this (15) is proved.

The groups H(D) possible as groups of quasiproper values of D € #* can be very
complicated. It therefore seems difficult to prove n (D) strongly non-supportic in
the whole class % *. But if we consider only the subclass of those D € % * for which
H(D) is Rp-direct decomposable, this can be shown.

5.3. Definition. Let D be in 3*, H(D) the group of all quasiproper values and
Ro the proper value mapping on H(D). H(D) is called Rp-direct decomposable, iff

H(D)= Q H.(D) with H,(D)= ® K., (neN%

and
RDKM+1=K,,,, (m EN, Ko:={1}).

27



The subclass of all such D € #* is denoted by J**. *\9** is nonvoid (see e.g.
[10], example 2.3.2). In % ** we have the following

5.4. Theorem. In the class #** Halmos’ invariant is strongly nonsupportic.

Proof. For the two Dy, D, chosen in the proof of 5.2 we have D, D, e ¥** and
therefore Halmos’ invariant is non-supportic on % **, in the same way as in ¥ *.

Now let D;, D, be two elements in #** with n(D,) <(D:). H(D.) is represent-
able in the Form

no,)

H(D:)= & Kn with RpKn=Kn-i, (m=1,2,....n(D,))  (16)
m=1

and the case n(D;) = « is not excluded. Obviously Rp, can be restricted to the
subgroup

"(Dl)
H;= ® K.
m=1

and Abramov’s theory yields a D; e %** with H(D:)= H;, Rp,,=Rp,, n(D3)=
n(D;) and with the factor theorem in ¥%* cited above we have D;<D, and
therefore D; <D,.

To prove D, <D; (we can suppose D, non trivial) we have to verify
D' e N(D) SN D' )NN(D3)# 0 (17)

Again with Abramov’s theory D' € A'(D;) may be represented by a subgroup of the
form

H'=®K/,
m=1

with n’ <n (D) and subgroups K,.c K., (m=1, ..., n') and with Rp, K=K 1,
(m=1, ..., n"). Of course, among these groups there are those belonging to ¥ (D3)
if n’ is chosen sufficiently small. This proves (17) and therefore D,<D5 and
altogether D; ~D,.

Recalling the fact that (14) is not symmetric in D,, D, we have now to consider
the case n(D.) <n(D,;). Again H(D.) is of the form (16) with finite n (D.). Here we
construct a group

n(>,) n(D,)
H;= ® Kn®@ & K
m=1 m=n(D)+1

with K., = K, @,, (m =n(D:) + 1, ..., n(D,) and R} being the extension of Rp, that

maps K,. isomorphically onto Kn.-1 (m=n(D;)+1, ..., n(D;)). In this case

Abramov’s results yield a D; with D;~D, and n(D3)=n(D,) is fulfilled, q.e.d.
Finally we remark that in the first part of theorem 5.4, namely
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D, D e%** and n(D)sn(D;)=>D:e¥** with
D;~D; and n(D;)=n(D,),

J** may be replaced by F*.
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OIIOPA B KAYECTBE MUHBAPUAHTA 151 TMHAMHWYECKUX CUCTEM
T'opct Muxensb
Pesome

IepeHOC NOHSATHS KMHOXKECTBO BCEX MPOCTBIX YHCEN BCTPEYAIOIIMXCS B HEKOTOPOM HaTypaJlbHOM
YHUCIIEe» U3 NIEMEHTAPHON TEOPHH YHCEI HA SHTPOAMYECKYIO TEOPHIO MPOBOAHT K MOHSITHIO ONOPBI. 3TO
MOHATHE MOXET ObITh UCTIOJIL30BAHO YISl CPAaBHEHHS IMHAMHHYECKMX CHCTEM Ha M3oMopdHocTs. Eciu
JiBE€ IHHAMHUYECKHE CHCTEMbI M30MOPMhHBI, TO OHH MMEIOT paBHblE Onopel. B Kiacce Bcex BronHe
3ProgM4ecKUX CHCTEM C AUCKPETHBIM CIIEKTPOM OMNOpa HAEHTU(ULIMPYEMA MOMOJIHEHUEM IPYNINbI BCEX
coOCTBEHHBIX YHceN cucteMbl. Bece aBTomopdu3Mel KonMoroposa, a noToMy, U BcE aBTOMOP(U3MbI
BepHymiu, UMEIOT paBHbIE ONOPBI.

Kpome Toro, onpegeneHo noHsTHE HEOMOPHOTO M CHILHO HEONIOPHOTO MHBAPHAHTOB M NPEMEHEHO
Ha MHBapWaHT XajibMolla.
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