
Mathematica Slovaca

Ján Plesník
Coloring of graphs by partitioning

Mathematica Slovaca, Vol. 30 (1980), No. 2, 121--126

Persistent URL: http://dml.cz/dmlcz/136234

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136234
http://project.dml.cz


Math. Slovaca 30, 1980, No. 2,121—126 

COLORING OF GRAPHS BY PARTITIONING 

JAN PLESNIK 

1. Introduction 

There are known many inequalities (bounds) for the chromatic number of 
a graph G (most of them can be found in [6, Chap. 12] and for others see [2, 3,4, 7, 
8, 11, 13, 16, 18, 19, 21, and 22]). Some of the bounds do not explicitly depend on 
the chromatic number of other graphs (related to G) , while the other bounds do so. 
Our results belong to the second group. We bound %(G) from above by the 
chromatic numbers of certain parts of G. A theorem is presented and then three 
partitioning algorithms are discussed. Finally the biparticity [7] is studied. 

Our terminology is based on H a r a r y [6]. Given a graph G, V(G) and E(G) 
denote its point set and line set, respectively. If U is a subset of V(G), then G[U] is 
the induced subgraph of G with the point set U. 

This paper is related mainly to the following two assertions. The first of them is 
a result due to Zykov [22, Th. 2] (see also [3]). 

Lemma 1. If a graph G is decomposed into factors Fu ..., Fk, then x(G)=^ 

nx(Ft). 
There is a trivial "sum" analogy: 

Lemma 2. If G,, ..., Gk are pairwise point-disjoint induced subgraphs of 
G including in union all points, then x(G)^Xx(Gt). 

2. A coloring theorem 

The main purpose of this section is to decrease the number of summands in the 
inequality from Lemma 2. 

Theorem 1. Let a graph G be point-decomposed into subsets Vu ..., Vk and 
line-decomposed into the induced subgraphs G[Vi], ..., G[Vk], and a spanning 
subgraph F. If G[Vt] is grcolorable (l^i^k) with g^g*^...^gk and F is 
f-colorable (clearly, we can always assume that f^k), then the graph G is 
(#1 + ... + gf)-colorable. 
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Proof. Let bu ...,bf be the colors used at some /-coloring of the spanning 
subgraph F and let c\, ..., c'gj be the colors used at some #y-coloring of the induced 
subgraph G[V^], j = 1, ..., k. Thus any point of G has a pair of colors. Now we 
form a coloring of G as follows. For every / = 1, ..., / and j = 1, ..., k, any point 
with a pair (bi9 c's) gets the color cs if s^gf and the color c'5 otherwise. One can 
easily verify that this is a coloring of G which uses only the colors c\, ..., cj„ 
c?, ..., Cg2, ..., c\, ..., cf

gf. This completes the proof. 

Remark 1. Obviously, the union of all G, (G, = G[ Vj]) has the chromatic number 
equal to x(Gi). Therefore, if %(Gi) = . . . = x(G/), then our theorem is 
a consequence of Lemma 1. 

Problem. It would be interesting to make an analogy of our theorem in the case 
when the sets Vt may intersect. V iz ing ' s theorem [20], considered as the 
point-coloring result for a line graph, can serve as a prototype of the desired results. 

It is a custom to test every new coloring result on the famous four color 
conjecture (which has only recently been proved; cf. A p p e l and H a k e n [1]). 
There is an extensive list of equivalent conjectures (see, e.g., O r e [17]). Using our 
theorem, we can immediately add the next result. 

Corollary. A planar graph G has %(G)^4 // and only if there are pairwise 
point-disjoint induced subgraphs Gu ..., Gk of G including in union all the points 
of G and a spanning subraph FofG consisting of the lines not in any G, such that at 
least one of the following conditions is fulfilled: 

(i) X(F)^3, x(G.)*£2, x(G2)=... = x(Gk)=l. 
(ii) X(F)^2, x(G,)^3, x(G2) = ... = x(Gk)=l. 
(iii) X(F)<2 and X(G>), X(G2), .... x(Gk)^2. 
Note that the part (iii) can be strengthened. Namely, Zykov [22, Th. 5] proved 

(on the base of Lemma 1): A planar graph G is 4-coIorabIe if and only if G can be 
decomposed into two bipartite factors. 

3. Partitioning algorithms 

A number of algorithms for finding a minimum coloring and thus the chromatic 
number of a graph are known; however, the computation time is exponential for all 
the methods (cf. Lawler [12]) and therefore often prohibitive. Thus faster 
(polynomial time) algorithms which do not always yield a minimum coloring are 
frequently used (see, e.g., M a t u l a et al. [14]). However, J o h n s o n [9] and 
Mi t chem[15] have shown that typical algorithms of this kind all have associated 
classes of graphs for which the upper estimate for %(G) can be, arbitrarily great 
multiple of the actual x(G) . The result of G a r e y and J o h n s o n [5] supports their 
conjecture that every polynomial time algorithms will do so. Here we suggest three 
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partitioning algorithms for coloring and then we prove that they also give bad 
estimations. 

The first algorithm is based on the proof of Theorem 1: first we find induced 
subgraphs G,, then F, and after coloring them, we use the recoloring procedure as 
in the proof. Since one can easily find a (set-wise) maximal bipartite induced 
subgraph of a graph, we suggest to proceed as follows. 

Algorithm 1. Given a graph G find a maximal 2-coIorabIe induced subgraph Gi 
of G, then a maximal 2-coIorable induced subgraph G2 of G — V(Gi), etc. In this 
way we partition all the points of G into induced subgraphs Gu ..., Gk. Then find 
an f-coloring of the remaining spanning subgraph FofG (e.g. this algorithm can be 
applied again). Finally, form a coloring of G by the recoloring procedure from the 
proof of Theorem 1. 

The algorithm is rapid; however, there are cases when it gives a very bad bound 
for x(G) as we shall show in the following example. 

Example 1. Let us consider a 3-partite graph G (Johnson [9]) with parts 
A = {au ..., an}, B = {bu ..., bn}, C={cu ..., c„}, and lines ajbl9 afil9 6,c, for all i, 
/ = 1, ..., n, where 1=,-/. Let us put n =2r for some integer r^2. According to 
Algorithm 1 we form Gi = G[{au a2, bub2, cu c2}], G2 = [{a3, a*, b3, b4, c3, c4}], 
..., Gfc = [{an-u an, bn-u bn, cn-u c„}] (k = 2r_1). The rest F is again 3-partite and 
we use our algorithm to color it. One sees that now we can generate induced 
subgraphs G[ = F[{au a2, a3, a*, bu b2, b3, bA, cu c2, c3, c4}],..., G'k =F[{an-3, an-2, 
an-u an, bn-3, bn-2, bn-u bn, c„_3, cn-2, cn-u cn}] with k' = 2r~2. Repeating this 
procedure for the new rest F', etc., we can show that the estimate for #(G) will be 
2r = n. This is a very bad result as G has 3n points and x(G) = 3. 

By Remark 1 if %(Gi) = x(Gfl), then Theorem 1 has no advantages against 
Lemma 1. Therefore in some cases the following algorithm can be better since we 
need not find induced subgraphs. 

Algorithm 2. Decompose a given graph G into (maximal) bipartite factors Gu 

G2,..., Gk. Then a point v gets a color c(v) = (d(v),..., ck(v)), where ct(v) is the 
color ofv in G,. (There are at most Tlx(Gi) such fc-tuples and a proof of Lemma 1 
follows.) 

In fact, this algorithm is a rough version of the following one, which is based on 
Lemma 2. We shall generate first F and then Gu ..., Gf, where Gf is the induced 
subraph on the points of F colored by i. More precisely, for / = 2 we can proceed as 
follows. 

Algorithm 3. Find a maximal 2-chromatic factor Fofa given graph G. Let Gk be 
the induced subgraph of G on the points with color i (i = 1,2). By Lemma 2 if Gf is 
Qi-colorable (i = 1,2), then G is (gt + g2)-colorable. To estimate x(&i) andx(G2) 
we can apply the same algorithm as for x(G). 
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Obviously, Algorithms 2 and 3 are fast, but we shall show that Algorithm 3 (and 
thus also Algorithm 2) gives a bad estimate for # (G) . 

E x a m p l e 2. For / = 1, 2, ... let us form a graph G(i) with 2' points as follows. 
Put G(1) = K2. If a graph G ( / - l ) is known, consider the cycle C2« which is 
bipartite with parts A and B (each of 2 , _ 1 points) and insert two copies of G(i - 1) 
into C2- in such a way that one copy will be placed (arbitrarily) on points of part A 
and the other on points of part B ; the result will be denoted by G(i). One can 
verify that any graph G(i) has 2' points, is regular of degree 2 / - 1 , and thus 
X(G(i))^2i. However, Algorithm 3 allows to take F=C2

t and d = G2 = 
G(i - 1), which gives: x(G(i))^2x(G(i - 1)). Repeating this process, we obtain 
X(G(i))^2,2x(G(i — ( / - 2 ) ) ) = 2', which is incomparable with 2/. Note that also 
Algorithm 2 gives in the worst case only the bound 2'. 

Remark 2. Matula et al. [14] have tested sequential algorithms on complete 
k-partite graphs and shown that such graphs will always be k-colored. As for our 
algorithms, only the first gives always a k -coloring (as it can be easily proved) while 
Algorithms 2 and 3 fail even for the complete 3-partite graph with 4 points. 

Remark 3. One might suggest a "union" of algorithms, i.e. an algorithm in which 
we apply the first algorithm for coloring, then the second algorithm, etc., and finally 
from the obtained colorings we choose a minimum coloring. However, it seems that 
if there is a "bad graph" for each partial algorithm, then the disjoint union of such 
graphs is a "bad graph" for the union of algorithms. This is certainly true if the 
partial algorithms are sequential [14] or (our) partitioning. 

4. Biparticity and chromatic number 

What happens in Algorithm 2 if we demand k to be the least possible ? We shall 
see that in this case Algorithm 2 gives a good upper bound. Namely, this question 
has already been studied by Matula [13] and Harary et al. [7]. According to [7] the 
biparticity (3(G) of the graph G is the minimum number of bipartite subgraphs 
covering E(G) (if G has no line, then /3(G) = 0). (Let [x] denote the least integer 
greater than or equal to x.) 

Lemma 3 ([13] and [7]). For any graph G, /?(G) = [log2 x(G)] . Consequently, 
2f*-1<x(G)^2p. 

Thus, having in Algorithm 2 k = /3(G), we obtain a very good bound for %(G). 
However, to determine P(G) is not easier than to find x(G), as we have: 

Theorem 2. For any graph G, X ( G ) = 2 ^ ( G ) - A I 4-1, where n is the minimum 
number such that (3(G + Kn) = P(G)+l. 

Proof. As well known, for the join (Zykov sum) we have x(G + Kn) = 
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X(G) + n. Hence by Lemma 3 we can write: 2p(G)<x(G) + n and (using the 
minimality of n) x(G) + n-l^2p(G\ which gives the desired result. 

Corollary. The problem of determining for any graph G the biparticity P(G) is 
NP-complete (see e.g. [10] for the notion). 

Proof. The determination of n from Theorem 2 demands only a polynomial 
number of steps. Thus the NP-completeness of the biparticity problem follows from 
Theorem 2, Lemma 3, and the NP-completeness of the chromatic number problem 
[10]. 
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РАСКРАСКА ГРАФОВ РАЗБИЕНИЕМ 

Ян Плесник 

Резюме 

На основании разбиения приводится простая теорема (т. 1) для раскраски вершин графа. 
Показаны некоторые декомпозиционные алгоритмы и примеры показывающие, что эти ал­
горитмы дают плохие оценки для хроматического числа. Теорема 2 связывает хроматическое 
число графа я(О) и минимальное число @(С) бихроматических факторов графа О, на которые 
можно С разложить [13,7]. Из этого сразу следует, что задача нахождения числа Р(С) является 
^-полной комбинаторной задачей. 
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