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THE EXISTENCE OF A SOLUTION OF
A NONLINEAR BOUNDARY VALUE PROBLEM

MICHAL GREGUS jr.

In this paper a nonlinear singular boundary value problem with the third order
differential operator DL? is studied, where D = %, L=x % Hence the equation
is of the form
(1) Xy +3xy"+y' =f(x,y,y'), x€(0,1)

and the conditions which are considered are either

@ lim xy(x)=0, sup lxy'(x)| <o, y(1)=y'(1)=0,
or
(In lim y()| <, sup ly'(n)l<e, y(1)=0.

This problem is a generalization of a problem studied in [5]. The existence of
a solution is investigated with the help of the Green function, constructed on the
basis of the theory and results given in [4], Tichonoff fixed point theorem [1] and
Ascoli-Arzeld’s theorem [3].

Part I. Let us consider the problem (1)—(I). The Green function of this
problem is

—n’t+Intlnx O<x=t=1,
iln’x 0<t=x=1.

6x, ) =|
The function G(x, ¢) has the following properties :

G(x,)Z0 foreach (x,1), G(1,))=G(x,1)=0, limx G(x,r)=0,
G.(x,t)=0 foreach (x,f), G.(l,1)=G,(x,1)=0,
lir(r);xG,(x,t)=lnt, and for x#t: G.(x,1)=0, G.(x,1)=0,

lim x? Gy (x, t)= —Int.
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. m
When g is a real continuous function on (0, 1) such that |g(x)| §‘3—, x€(0,1),

1
m >0, then the function y(x), y(x)=f G(x, t)g(¢t) dt satisfies the inequalities
(1]

|xy(x)|=m, |xy'(x)|=m for x € (0, 1) and is a solution of the linear differential
equation DL’y = g(x). Moreover, y(x) satisfies the conditions (I).

Suppose that the function f(x, u, v) is continuous and bounded by m/3 on
(0, 1) X R X R and consider the space &, of all real continuous functions with

continuous first derivatives on (0, 1) and with the finite norm ||y||*= sup
K x€(0, 1)

{lxy(x)|, |xy'(x)|}, y €Z:. On an arbitrary compact interval € (0, 1) we can

define the seminorm p¢(y)=sup {|xy(x)|, |xy'(x)|}, y € %.. The convergence in &,
x€e€

with the topology defined by these seminorms is the uniform convergence on each
compact set €. The system {pg, }n=1, €. = <%, 1>, n € N is a countable family of

seminorms on (0, 1), satisfying Hausdorff’s axiom of separation [3]. The system
{{y eZ\|pe,(y)<e}}nr-; is a subbase of neighbourhoods of the point zero (i.e. of
y=0 on (0, 1)). %, with this topology is a complete space.

Let us take a closed ball  with a radius R=m, ie.: F={yeZ||yl|*=R}.
The set & is closed, bounded and convex in the topology defined by the system of
seminorms {pe, }n=1. It is convenient to consider the operator T: ¥— % deter-
mined by

Ty()= [ G, 0f y (0, y' ) dt, y e,

T is continuous if for any y,, each € >0 and n € ¥, there exists 6,>0 and noe N,
no=n such that p¢ (¥ — yo) <6, implies p¢, (Ty — Ty,) <e.

The function f is uniformly continuous on any compact set €,, X %, X %, , where
F$e=(—k, k), keN. Therefore if we choose 6>0 sufficiently small and

, £

ly () = yo()] <6, |y (1) = ya(0)] <&, then |f(z, y (£), y'(8)) = f(t, yolt), ya(t)| <3,

t € 6,,. For 8 there exists §,>0 such that if the functions y, y, satisfy p«no(y -y <

80, where 6o=6 min {x} = né’ then |y(t) — yo(t)| <8, |y'(t) — yi(t)| < 6. But then
x € €,0 0

for x € €,,= 4. we have x|Ty(x) — Tyo(x)|=¢ and x|(Ty(x))' — (Tyo(x))'|=e.
Hence T is continuous.

To show the relative compactness of T(%) we use Ascoli-Arzeld’s theorem.
Since for x € (0, 1)

1 1
OéjG(x,t)dt<°o and ogf G.(x, 1) dt > oo,
0 0
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the sets T(%) and [T(¥)]’ are equibounded on 4,. Equicontinuity follows from the
fact that f is bounded on 4, and G(x, ¢) and G, (x, t) are uniformly continuous
functions on €,.

Hence there follows from Tichonoff theorem the ex1stence of y € ¥ such that
Ty =y. Since y satisfies the conditions (I), we have

Theorem 1. Let f(x, u, v) be bounded and continuous on (0, 1) X R X R. Then
there exists a solution y(x) of the boundary value problem

xlylll+3xy"+y’=f(x’ y,y’), XE(O’ 1)
y)=y'(1)=0, lim xy(x)=0

such that sup |xy'(x)| <.
x€(0,1)

Remark 1. If we consider more closely the solution y(x) of problem (1)—(I),
we can see that on every compact set € < (0, 1)‘ y(x), together with its derivatives

y',y",y""" is a bounded function, and lim x’y’(x)=0and sup |x’y"(x)|<c.
= x€(0,1)
If we considered the space &, of functions with continuous second derivatives
and the finite norm

llyll+= sup {Ix'y ()|, [x'y’ (x)l, |x?y"(x)]},

i=1or2,j=1or2,and with the system of seminorms on compact subsets of (0, 1)
defined in a similar way as before, respectively, we could prove the existence of the
solution of equation (1) with the right-hand side equal to f(x,y,y’,y"),
f continuous and bounded. Then the proof proceeds as follows:

(a) For m>0 and |g(x)|<— we have |x’y"(x)|=m.

(b) ogj G (x, £) dt=%<oo for x (0, 1).
0

(c) In the proof of the equicontinuity of [T(%)]" we cannot proceed as in the
proof of Theorem 1, because G..(x, ¢) has a jump for x =¢. However, it is possible
to prove it otherwise:

Let us take an arbitrary € >0 and an arbitrary function y”e€[T(%)]". For
x1=x,€ %, we have |y"(x,)—y"(x,)| =

[ -z - 521 ~tnx))fe, y@, y' 0. y7@) de+
[@ mose yo, @,y de-
[ a-me)fe v, y@.yo) et
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[[ a2 mofte y©, v 0.0 a2

Ix (1 =1Inx,) —x3°(1 = Inx,)|x, — x1 ?|xz Inx; — x2—
x,lnx,+x,|+ |x32(1 = Inx,)| |x.— x1l+4|x —x? 1=
x;lnx2+x2|< |Py(x,) - P,(xz)l-*'—nzlpz(xx) Py(x2)| +

;—" n*(1+ n)|Ps(x1) — Ps(x2)| +7{ 2+ n)|Py(x;) — Pu(x2)],

where
Py(x)=x"?(1-Inx), P,(x)=x (Inx — 1), Ps(x)=x, Ps(x)=x"".

=1, 2,3, 4 on ¥4, there follows the existence of
—2

a 6 >0 such that for |x, —x,| <8 we have |PAx,)—Pi(x;)| < 2+ ie i=1,2,

From the uniform continuity of P;, i =

3, 4. Now it is easy to show that for |x;, — x,| <&, x,<x,€ %, |y"(x,) — y"(xz)l <eis
true. This result can be formulated in the form of the following existence theorem :

Theorem 2. Let f(x, u, v, w) be bounded and continuous on (0, 1) X & X R x
R. Then there exists a solution y(x) of the boundary value problem

y"+3xy"+y' =f(x,y,y',y"), x€(0,1)
y(M)=y'(1)=0, lim xy(x)=0, lim x’y'(x)=0

such that sup |x?y"(x)]| <.

x €(0,

Part II. Let us consider now the problem (1)—(II). Its Green function is

1 2
—‘lnt x§t9

H(x, t)= ?
. 1) {—lntlnx+%ln2x x=t.

Note that H(x, t) = —G(t, x). Other properties of H(x, t) are:
H(x, t)=0, lilg; H(x,t)= —3In’t, and H.(x,)=0,

lirg; H.(x, ¢)=0.

The solution of the differential equation DL’y =< p(x), where h(x) is a real
continuous function on (0, 1), is

y@)= [ Hex, Ao dt

130



m -
If [h(x)| <7, m positive, x € (0, 1), then [y(x)|=m, |y'(x)|=m and y satisfies
the boundary condition (II), too.

Let f(x, u, v) be continuous and bounded by % on the set (0, 1) x (-K, K)
X (=K, K), KZm. Consider the space 9, (;ll-, 1) of all real functions with the

first derivative continuous on <%, 1>, n €N and the norm |y|,= sup {|y(x)|,

xe(h 1)

ly’(x)|}. The space 9, (%, ‘1) is a Banach space [2]. Let Z be the space of all real
functions with continuous first derivatives on (0, 1) and the finite norm [|y||.=

sup {ly@)|, ly’'(®)|}, y e%. Take a ball B ={y eZ| |lyll-=K} and define the
x€(0,1)
1
operator S: B— %A by Sy(x)=f H(x, t) f(t, y(t), y'(t)) dt, y e Z. S is well-def-
0

1
ined, S is continuous (this follows from the uniform continuity of f on <;’ 1>
x (-K,K) X (-K,K)) and S(9) is relatively compact (this follows from

1
Ascoli-Arzeld’s theorem, as well as the fact that 0= j H(x,t)dt=—x>— o,
0
1
f H,(x,t)dt=1 and that H(x,¢) and H,(x,?) are uniformly’ continuous on
0

<%, 1>) Therefore we have

Theorem 3. Let f(x, u, v) be a bounded and continuous function (6, 1) XR X
R. Then there exists a solution y(x) of the nonlinear boundary value problem

X’y +3xy"+y'=f(x,y,y'), x€(0,1)
lig y(»)|<, sup y')l<e, y(1)=0
such that sup |xy"(x)|<oo.

x€(0,1)

Remark 2. It is interesting to note that in the case of conditions (II) li_gl y(x)

exists and is finite. This fact follows from the boundedness of y’(x). From the mean
value theorem we then have that y(x) is uniformly continuous on (0, 1). Therefore
each solution y(x) of (1)—(II) is continuously extendable on {0, 1) and bounded.
On the other hand, in problem (1)—(I) difficulties arise. Generally we can say
about a solution of that problem only that it is on the left end bounded by the

N . . e
function L in other words that its “growth” is not arbitrarily large.
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CYUECTBOBAHUE PEUIEHUS OOHOW HEJIMHEMHOW KPAEBOW 3A0AYU
Muxan [peryu, mu.
Pesiome
ITp1 noMolM TEOpeMbl O HEMOABIKHON TOYKE AOKa3aHbl TEOPEMbI O CYLIECTBOBAHWK PELICHMS
nuddepenuuanbHoro ypasHenus (1) ¢ kpaeBbiMu ycnoBusmu (I) unn (II). Pewrenue kpaeBoit 3agauu
(1), (I) cymwecrByeT B TOM ciydyae, korna ¢yHkums f HenmpepbiBHa M orpanudeHa (Tteopemal,2).
HanpoTus Toro, pewuenue kpaepoi 3agayuu (1), (II), npu ycnoBuu HEMPEPHIBHOCTH U OTPaHUYEHHOCTH |,

OrpaHMYEHO M MPONOKMTENLHO Ha OTpe3ok (0, 1) (Teopema3). B craThe TOXE HCCIENOBaHBI
cBoiicTBa ¢yHkuuu ['puHa BbIle yNOMsSHYTOro ypaBHenus (1).
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