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ON CONVERGENCE GRUPOIDS 

JAN SIPOS 

The present paper deals with some type of convergence grupoids. As a result we 
obtain a generalization of some basic facts which are valid for compact topological 
semigroups, for not necessarily compact semigroups, and for grupoids of a certain 
type. 

The idea of studying such grupoids has been inspired by the usefulness of some 
non-associative algebras. 

§ 1. Preleminaries 

A grupoid is a set 5 together with a binary operation (i.e. a function from the 
Cartesian product S xS into 5), which in the following will be denoted multip-
licatively. 

A grupoid 5 is a quasigroup iff each of the equations 

ax = b and ya = b 

(a and b are from S) have unique solution with respect to the unknows x and y. 
A grupoid is a semigroup provided the multiplication is associative, i.e., if 

a(bc) = (ab)c for all a, b and c in S. 
A subset T of a grupoid is called subgrupoid iff 

TTaT. 

If A is a subset of a grupoid, the intersection of all grupoids including A is called 
the subgrupoid generated by A. It consists of all finite products of elements of A. 

In this paper we shall deal only with grupoids which are "almost" associative in 
the following sense: Let a and b be arbitrary elements of 5. Let us assume that all 
posible products in S which one can construct by the help of these two elements are 
independent of the way in which brackets are used. For example, this means that 

(ab)b = a(bb) 
(ab)(ba) = a(b(ba)), 

and so on. Such grupoids will be called alternative grupoids. In other words, the 
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grupoid S is alternative iff every its subgrupoid, generated by two elements, is 
a semigroup. There is another important class of grupoids we shall deal with. We 
say that the grupoid S has associative powers iff every its one element generated 
subgrupoid is a semigroup. 

In such grupoids the power an of an element a is unambiguously defined. 
We say that an element e of a grupoid S is an idempotent iff ee = e. If e and / are 

idempotents of S we put e^-f iff ef = fe = e. The set of all idempotents will be 
denoted by E. An idempotent e from S is called a primitive idempotent if there 
exists no idempotent f eS,f±e ( /^zero if S contains a zero element) for which 
etzf holds. 

A convergence space F is a set F with a distinct class of sequences {an} (an e F) 
which are called convergent. We assume that to each convergent sequence there 
corresponds a unique element a of F called the limit of the sequence and denoted 
by a = limna„ (sometimes we write simply an —.>a) such that limnan =a if an = a for 
n = l,2,.... 

We assume also that if an —> a, then ank —» a, where {ank} is a subsequence of {an}. 
We do not assume that this convergence is determined by a topology. 
The closure vA of a set A cz F is a set of all limits of all convergent sequences 

{an} taking their values in A (i.e. an e A) . 
A is called closed if vA = A. By A we denote the smallest closed set containing 

A . 
Let (0, Q) be the set of all countable ordinals and the first uncountable ordinal 

Q. We put v°A = A , vlA =vA, v*A =vv^~1A or v^A = [Jv~A according to 
n<| 

whether £ — 1 exists or not. It is a well-known fact that vaA=A. We note that the 
closure operation A-+A defines a topology for F in the usual way. 

A convergence grupoid is a grupoid S provided with a convergence structure in 
which multiplication is continuous, i.e., if an—>a and bn-*b, then anbn^>ab (the 
elements an, bn, a and b being in S). 

A convergence grupoid S is called sequentially point compact iff S is with 
associative powers and iff every subsequence of {a"} contains a convergent 
subsequence for every a in S. 

A convergence grupoid S is called sequentially compact iff every sequence {an} 
of elements from S contains a convergent subsequence. 

§2. Examples 

We give examples to present objects we are interested in. 
E x a m p l e 1. Let S be a sequentially compact or compact topological semigroup. 

Clearly S is a sequentially point compact grupoid. 
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E x a m p l e 2. Let S be the family of all real functions / defined on a space X, 
which takes only rational values from ( — 1, 1). We define fg by (fg)(x) = f(x)g(x), 
the convergence being pointwise. S is clearly a sequentially point compact 
convergence semigroup. The only idempotents of this semigroup are the charac­
teristic functions of subsets of X. Note that S is not sequentially compact. 

E x a m p l e 3. Let <£ be the unit ball of Cayley numbers (hypercomplex numbers 
of real dimension 8). It is known that with respect to the multiplication <£ is 
a compact alternative grupoid. Let us denote by c€1 the set of all Cayley numbers 
with absolute value one, then clearly ^ i is an alternative quasigroup which is 
compact. 

E x a m p l e 4. Let 9 be the following subset of L ^ O . l ) . &= {/; | / | - §1} . Define 
the multiplication as in Example 2. 

Then 3* is a commutative semigroup. 5F is a convergence semigroup with respect 
to the almost everywhere convergence. 

E x a m p l e 5. S is a finite grupoid with respect to the trivial convergence 
(convergent sequences are exactly the constant sequences). 

E x a m p l e 6. Let S be a torsion grupoid (i.e. a grupoid with associative powers in 
which every element is of finite order). Then S is a sequentially point compact 
grupoid with respect to the trivial convergence. 

§3 . Basic results 

Lemma 7. Let Sbea convergence grupoid. Let TczSbea subgrupoid ofS. Then 
(i) vT is a grupoid; 

(ii) If T is commutative, then vT is also commutative; 
(Hi) If T is a semigroup, then vT is also a semigroup; 
(iv) If Tis a quasigroup and S is sequentially compact, then vTis a quasigroup. 
Proof, (i) and (ii). Let a, b evT. Then there exist an, bneT such that flrt—>a 

and bn-*b. Clearly anbneT and an • bn —> ab. If now T is commutative, then 

ab = limrt anbn = lira, bnan = ba. 

(Hi) Let T be a semigroup. By (i) of this lemma vT is a grupoid. We must show the 
associativity of vT. Let a, b and c be in vT. Choose an, bn and cn from T with 
an-+a, bn-+b and cn-+c. We have 

a (be) = limrt an (bncn ) = lin^ (anbn)cn = (ab)c. 

(iv) We show that the equations ax = b and ya = b have solutions in vT if a and b 
are in vT. Let an—>a and bn-*b, an, bneT. Then, since T is a quasigroup, there 
exists an xn e T such that anxn = bn. Let xnk be a convergent subsequence of {xn } 
with \imkxnk=x. Then clearly xevT and ax = b. The argumentation for the 
solvability of ya = b is similar. 
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Lemma 8. Let Sbea convergence grupoid. Let Tbea subgrupoid ofS; then 
(i) T is a grupoid; 
(ii) If Tis commutative, then T is also commutative; 

(Hi) If T is a semigroup, then T is also a semigroup; 
(iv) If Tis a quasigroup and S is sequentially compact, then Tis a quasigroup. 
Proof. Let {Ta; aeA} be a family of grupoids (commutative grupoids, 

semigroups, quasigroups) which is directed by inclusion. Then clearly u{Ta; 
aeA} is also a grupoid (commutative grupoid, semigroup, quasigroup). The proof 
of the lemma follows now from the preceding lemma and the fact that T = vQT = 

IVr. 

Lemma 9. Let Sbea sequentially point compact grupoid. Let a be in S. Let A (a) 
be the set of all limits of subsequences of {an}. Then A (a) is a commutative 
subgroup of S. 

Proof. Let B = {a,a2, ...,an, ...}. B is clearly a commutative subsemigroup of 
S. Since A(a)czB, we have that A (a) is also a commutative semigroup. We shall 
show that for every x, y eA(a) there exists a z e A (a) such that xz=y. 

Let an*-»jc and am* —>y. We may assume that the sequence {mk-nk} is 
increasing and that the sequence {a"1*""*} is convergent. Denote the limit of the last 
mentioned sequence by z. Then obviously z e A (a) and xz = y. 

An immediate consequence of the last lemma is the following theorem which 
generalizes the existence theorem of idempotents (see Nukamura [1] and Schwarz 
[2]). 

Theorem 10. Every sequentially point compact grupoid contains at least one 
idempotent. 

Let S be a sequentially point compact grupoid. We say that an element a e S 
belongs to an idempotent eeS iff there exists an increasing sequence {nk} such 
that an"-+e. We denote by K* the set of elements from S belonging to e. Since 
every sequence has at most one limit, we obtain that every element of S belongs 
exactly to one idempotent, and so the following theorem holds true. 

Theorem 11. Every sequentially point compact grupoid may be written as 
a disjoint union of its subsets 

. S = {Ke;eeE}, 

where E is a set of all idempotents from S. 
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§ 4. Maximal semigroups ami maximal groups 

Let e be an idempotent of a sequentially point compact grupoid S. We say that 
P c S is a maximal semigroup belonging to e iff P is a semigroup which contains 
only one idempotent e and P is a maximal semigroup with this property. 

Lemma 12. Let e be an idempotent of a sequentially point compact grupoid S. 
There exist at least one maximal semigroup belonging to e. 

Proof. The proof is a standard application of the Hausdorff maximality 
principle. 

It is obvious that every element of P belongs to the same idempotent. We note 
that the idempotent e need not be a unit element of the semigroup P. It is also true 
that two maximal semigroups Pe and Pf belonging to the idempotents f4=- § are 
disjoint. 

By Lemma 9 there exists in every sequentially point compact grupoid at least one 
group. Using again the Hausdorff maximality principle it is easy to see that every 
subgroup of S is included in a maximal one. The question arrises: Which elements 
may be covered by a subgroup of S ? 

We say that an element a e Ke is regular iff ae = ea = a. We shall show that e¥ery 
regular element (and only these elements) can be covered by a subgroup of S. 

Lemma 13. An element a e Ke is regular iff the closure of the set (a, n2, ..., a", 
...} is a group. 

Proof. If the set v{a, a2, ..., an
y...} is a group then a is clearly regular, since in 

this case e is a unit of this group and so ae = ea = a. Let now a be a regular element 
from Ke. By Lemma 9 A (a) the set of all cluster points of {a, a2, ..., an, ...} is 
a group. We show that v{a, a2, ..., an, ...}=A(a). Let «r,fc-»e. Thee n-n"*-^ 
e - a == a by the regularity of a and so a is in A (a). It is now clear that an e A (a) and 
so A (a) = v {a, a2,,.., an,...}, which proves the assertion, since A (a) is a group.. 

Using again the Hausdorff maximality principle we get: 

Lemma 14. Every regular element a € S of a sequentially point compact grupoid 
S is contained m a maximal subgroup of S. • 

The following is also obvious. 

Lemma 15. The sequentially point compact grupoid S is a union of its subgroups 
iff every its element is regular. 

Let us denote by H€ the set of all regular elements from Ke9 thee He is a union of 
all subgroups containing the idempotent e. 

Lemma 16. Ke - e = e • Ke = He. 
Proof. Let a eHe; thee a • e = a and so a e Ke • e. Let now a eKe. By Lemma 7 

(Hi) v{a, a2, ..., an, ...} is a semigroup which contains a and e9 so 
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(ae)e = a(e-e) = ae. 

Since v{a, a2, ..., an, ...} is commutative, we get that a • e is a regular element, i.e., 
ae eHe. The argumentation for e-Ke = He is similar. 

The question arises whether He is a grupoid ? The answer is negative even if S is 
a finite commutative grupoid with associative powers as the following example 
shows. 

E x a m p l e 17. Let S = {e, a, b, x, 0} be the grupoid with the multiplication table 

e a b x 0 
e e a b x 0 
a a e x x 0 
b b x e x 0 
JC JC JC JC 0 0 
0 0 0 0 0 0. 

In this example Ke = He = {e, a, b}, which is not a grupoid. Since a • b = x and x 
is not a regular element, we get that the product of two regular elements belonging 
to the same idempotent need not be even regular. Observe that the grupoid S is not 
alternative since a(ab) = ax=x and (aa)b =eb =b. 

§ 5. The alternative case 

We turn now our attention to the sequentially point compact alternative 
grupoids. We shall show that in this case the structure of S is much similar to the 
case when S is a compact semigroup. In what follows we give a necessary and 
sufficient condition for Ke being a grupoid if S is alternative. 

Lemma 18. Let S be an alternative sequentially point compact grupoid. Let the 
elements x and y from S belong to the idempotent e and let xy belong to the 
idempotent f. Then ef = fe = e and xye belongs to e. 

Proof. Denote by P the subgrupoid of S generated by the elements JC and y. P is 
a subsemigroup of S and so by Lemma 8 P is also a subsemigroup which contains 
the elements x and y. Let Ge be a unique maximal subgroup of P containing the 
idempotent e. By the assumption 

jcnfc->e, ymfc->e and (jcy ) '"-»/ 

for suitable sequences {nk}, {mk} and {lk}. Since jc"k+1—>xe and ymfc+1—>ye, we 
have jceeA(jc) and yeeA(y) (see Lemma 9). A(JC) and A(y) are groups 
containing the idempotent e and so they must be included in the maximal group Ge. 
Thus jce and ye are in Ge and by this we get 
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(xe)(ye) = xye eGeczKe, 

(note that e commutes with all elements from Ke) and so 

(xye)lk = (xy)lk-e-*fe. 
Similarly 

(ery )'*->£/ 

but exy = xye and so fe = ef. It is now clear that ef is an idempotent. It must 
coincide with e since every element (hence xye too) from Ge belongs to e. So we 
have ef = fe = e. This completes the proof, since the second assertion of the lemma 
has been established above. 

We say that an idempotent e is maximal iff ef = fe = e implies f = e. As 
a corollary of the last lemma it follows: 

Lemma 19. If e is a maximal idempotent of a sequentially point compact 
alternative grupoid (especially if e is a unit of S), then Ke is a grupoid. 

Lemma 20. Let S be a sequentially point compact alternative grupoid which 
satisfies the following condition: Ifx and y are from S, x belongs to the idempotent 
e and if xy belongs to the idempotent / , then f commutes with x. Then ef = f. 

Proof. Let P be the same as in the last lemma. Let Gf be the maximal subgroup 
of P containing / . Clearly xyfeGf and so xyGf = xy(fGf) = (xyf)Gf = Gf. Thus 
there exists an a e Gf with xyfa =f. Put yfa = t. Then f = xt and 

f = f = f(xt) = xft = xxtt = x2't2. 
Similarly 

Fk=xnk-tnk. 

We may assume that t"k —> b and so / = eb. Multiplying the last identity from the 
left by e we have 

ef = e(eb) = eb =f 

and the lemma is proved. 

Theorem 21. Let S be a sequentially point compact alternative grupoid. The 
following condition is necessary and sufficient for Ke being a grupoid for every 
idempotent e in S: 

If x and y belong to the same idempotent, e and xy belong to the idempotent f. 
Then xf = fx. 

Proof. The necessity is trivial. If now the condition of theorem is valid, then 
ef = e by Lemma 18 and ef = f by the last lemma, and so e = / . 

We shall need some other notions. A grupoid S is said to be normal iff xS = Sx 
for every x in S. S is said totally noncommutative iff E contains at least two 
elements and ef+fe for every e and f in E with e±f (E denotes the set of all 
idempotents from S). 
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Theorem 22. Let S be a sequentially point compact alternative grupoid. Each of 
the following conditions implies that the sets Ke are grupoids: 

(i) S is totally non-commutative; 
(ii) E is contained in a centre; 
(Hi) S is commutative; 
(iv) S is normal. 
Proof, (i) Let S be totally non-commutative. Let x, y e Ke9 and let xy e Kf. By 

Lemma 18 ef = fe, and so e = / . (ii) is a clear consequence of the last theorem. (Hi) 
follows from (ii) of this theorem, (iv) Let S be normal. We show that E is 
contained in a centre. Let x be from S and e from E. By eS = Se there exists an 
element u e S with ex = ue, and an element v e S with xe = ev. Now ex = ue implies 
(ex)e = (ue)e = ue = exy and xe = ev implies e(xe) = ev =xe. Hence ex =xe by the 
alternativity of S, which proves that e is contained in a centre. The assertion now 
follows by (ii) of this theorem. 

§ 6. The structure of regular elements 

Recall that an element a in Ke is called regular iff ae = ea=a. In his paper [2] 
Schwarz proved that the set of all regular elements belonging to e forms a maximal 
group included in Ke. This is not true in a general alternative grupoid. In fact the 
grupoid of all unit Cayley numbers demonstrates a situation when the unit is 
contained in more than one maximal subgroup. In spite of this fact we are able to 
give a theorem which completely describes the structure of all regular elements 
belonging to the same idempotent. 

Lemma 23. Let S be a sequentially point compact alternative grupoid. Let He be 
the set of all regular elements from Ke. Then He is a union of all maximal subgroups 
containing e, and He is a quasigroup, (the only maximal quasigroup in S containing 
e). 

Proof. Using the Hausdorff maximality principle it is easy to see that every 
group is included in a maximal group and that every quasigroup is included in 
a maximal quasigroup. A union of all maximal subgroups containing e is clearly 
a subset of He. If now aeKe is regular, then by Lemma 13 a is contained in 
a subgroup and so in a maximal subgroup of ~~,. Thus we have proved that He is 
a quasigroup. Let a,b eHe. Let P be the grupoid generated by the elements a and 
b. By the alternativness of S and by Lemma 8. P is a semigroup. Clearly a, a~\ 
b and b~x are in P (where a-1 is the inverse element of a with respect to the 
idempotent e (the meaning of b~x is similar)). Let G be the subgroupoid of S, 
generated by the elements a, b, a-1 and b~l. Then G is a group which contains e. 
Hence by the first part of the proof ab eGczHe. The equations ax = b and ya=b 
have always a solution in G and hence also in He. 
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As an immediate consequence of the last theorem we obtain: 

Theorem 24. A sequentially point compact grupoid S is a disjoint union of its 
sub-quasigroups iff every element of S is regular. 

The following lemma is an interesting consequence of the last theorem. 

Lemma 25. If a sequentially point compact grupoid has a unit and contains only 
one idempotent, then it is a quasigroup. 

The equivalence relation connected with the partition of S into sets Ke need not 
be a congruence in general. Hence a question arises under which condition the 
following is valid. 

To every pair e and / of idempotents there exists an idempotent g such that 
Ke' Kf cz Kg. 

We give now a sufficient condition. 

Theorem 26. Let S be a sequentially point compact alternative grupoid in which 
the set of all idempotents E is contained in a centre. Then x e K. and y eKf implies 
xyeKtf. 

Proof. Denote by P the subgrupoid of S generated by the elements x and y. By 
Lemma 8 P is a subsemigroup of S. 

Let *"*->£, ym*->/ and (xy)l*-*g. Then (xffk =x"k -f-*ef and (eyTk = 

e.y
mk_>ef (The idempotents e, f and g are in P). And so xef and yef are in Hef. 

Since Hef is a quasigroup (xef)(yef) = xyef is in Hef also but 

(xyef)'k^>gef. 

Hef contains only one idempotent, hence gef = ef. Now by Lemma 20 we have that 
eg = g. Similarly one can get gf = g and so ef = efg =eg fg = g g =g, which 
completes the proof. 

§ 7. The sequentially compact case 

Lemma 27. If S is a sequentially compact grupoid, then every its maximal 
quasigroup is closed. 

Proof. Let H be a maximal quasigroup of S. Then by Lemma 7 vH is also 
a quasigroup of S and so vH = H, since H is maximal. 

Combining this result with Lemma 23 we have: 

Theorem 28. IfSis a sequentially compact alternative grupoid, then the sets He 

are closed. 
For the rest of this paper S will be a sequentially compact alternative grupoid. 
Now we will study the sets Ke with respect to the convergence. It is obvious that 

Ke need not be closed. In this case, as we shall show, Ke contains an idempotent 
different from e. 
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Lemma 29. Let Ke be non closed. Then v2Ke contains an idempotent f different 
from e. 

Proof. Let a evKe —Ke. Then an evKe for all n. According to lemma 9 there 
exists an idempotent / for which a"*—•/ holds. Clearly fev2Ke and f±e, since 
a does not belong to e. 

It is true that v2Ke czKe and so we have: 

Theorem 30. IfK^ is not closed, then Ke contains an idempotent different from e. 

Lemma 31. Let § be a countable ordinal. Let v*KenKf+0; then fev*+1Ke. 
Proof. Let aev*KenKf: Then an ev*KenKf. Let a"k—>f; then clearly 

fev*+lKe. 
The consequence of this lemma is the following: 

Theorem 32. Let KenKf+0; then feKe. 

Theorem 33. e Ke =Kee =He. 
Proof. Let a evKe; then there exists a sequence an eKe with an-+a. Obviously 

ane eHe and an e—>a e. By Theorem 28 He is closed and so ae eHe. We get 

(vKe)e = He. 

Similarly one can get that 

(v*Ke)e = e(v*Ke) = He 

for every countable ordinal £, and so 

Kee = eKe=He. 

Theorem 34. Let f be an idempotent with feKe. Then ef = fe = e, i.e. e=/. 
Proof, ef ee-Ke =He, and so ef is in the quasigroup He. Since S is alternative 

and e is a unit of He, 

efef=((ef)e)f = eff = eff = ef, 

and so ef is an idempotent of the quasigroup He, it must coincide with the unit of 
He. We have ef = e. The argumentation for fe = e is similar. 

It is now interesting whether K^nKf+0 implies KfCzK*. We are able only to give 
a partial solution of this problem. 

Lemma 35. Let E be included in the centre of S. Then a eKf and b eK* implies 
abeKef. . 

Proof. Let a e Kf and b e vKe. Then there exists a sequence {bn} in K* such that 
bn—>b. By theorem 26 abneKef for n = \,2, 3, .... Hence abev^ because 
abn-*ab. By transfinite induction one can prove that a eKf and b ev^K* implies 
ab e v*Kef and so a eKf and b eKe implies ab eK^f. 
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Theorem 36. Let E be included in the centre of S. Then KenKfi=0 implies 
HfaKe. 

Proof. By Theorem 32 /eK e. Let aeHf\ then a eKf and f eKe implies by the 
last lemma that a = afeKef (since a is regular). By Theorem 34 ef = e which 
completes the proof. 
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Резюме 

Целью этой статьи является в основном перенесение некоторых результатов о строении 
хаусдорфовых бикомпактных полугрупп на специальные группоиды сходимости. 
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