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THE MIN-MAX SUPERGRAPH 

GARY CHARTRAND—RONALD J. GOULD—S. F. KAPOOR* 

Let the degree set (the set of degrees of the vertices) of a graph G be denoted by 
#G in which A and 6 represent the maximum and minimum elements respectively. 
If S is a finite set of positive integers with A e S c= i?G, then there exists a graph H 
with degree set S containing G as an induced subgraph. In the case where 
S = {6, A } , necessary and sufficient conditions are presented for the order of H to 
be minimum. 

It is well known (see [1], Chap. 1, for example) that for any graph G with 
maximum degree A there exists a A -regular graph H containing G as an induced 
subgraph. (The graph H is called a supergraph of G.) Furthermore, E r d o s and 
Kel ly [3] have found a necessary and sufficient set of conditions which determine 
the minimum order of such a graph H. In this article we generalize the first of these 
results and extend the second. 

The degree set ftG of a graph G is the set of degrees of the vertices of G. If 
#G = {du #2, .., an}, where ax<a2<...<an, then <5(G) = <5 = ai is the minimum 
degree of G and A(G) = A =an is the maximum degree of G. As mentioned 
above, there exists a graph H with degree set {A} containing G as an induced 
subgraph. We first present a generalization of this result. 

Theorem 1. Let G be a graph with degree set ftG and maximum degree A and let 
S be a finite set of positive integers such that A e S c= i?G. Then there exists a graph 
H with degree set S such that G is an induced subgraph of H. 

Proof. First, observe that if S = §G, then we may take H= G. We have already 
noted that the result is true if S = {A } , so we henceforth assume that 2 ̂  |S | < | ftG \. 

Let #G = {ai, a2, ..., an} with 6 =ax<a2<...<an =A, where n^3. Define 
G 0 = G. For i"^l , define G, to be that graph consisting of two disjoint copies of 
Gi-i together with those edges joining corresponding vertices, say with the same 
label v if degG,._.i; £ S . For each i= 1, 2, ..., n, define 

kt =min {m\m^i,am eS} 
and 

k = max {akt-at\i = 1,2, ...,n}. 

* Research partially supported by a Faculty Research Fellowship from Western Michigan University. 
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Then H = Gk has degree set S and contains G as an induced subgraph. 
In the case where S = {A} E r d o s and Kelly described a method for determin­

ing the minimum order of the graph H mentioned in the statement of Theorem 1, 
We do the same thing if S = {6, A } . Prior to presenting a set of conditions which 
give the minimum order of H in this case, we find it necessary to introduce some 
terminology. 

Let G be a graph of order p and degree set #G = {ax, a2, ..., an}. Let the vertex 
set V(G) of G be expressed as V(G)= V ,uV 2 u. . .uV„, where for l^i^n, 

n - l 

\Vi\=mi'^\ such that veVt implies that degGu = a,. Let V* = | J V and let 
i = 2 

o = ^ (A - degGu) denote the regular deficiency of G. Further, let H be a graph 
veV* 

having degree set {6(G), A (G)} and containing G as an induced subgraph, and let 
/ = V(H)- V(G) be the set of vertices that need to be added to G in order to 
obtain H. From the s = \l\ vertices in H which are not in G, let si have degree 6 
and s2 = s - s i have degree A in H. Let j represent the number of vertices in Vx 

that have degree A in H. Then 0^j^mx, and / = mx forces si to be at least one. 
Let F = ( / ) denote the subgraph of H induced by the set / . With k = \E(F)\ 
denoting the size of F, we observe that 0^k=^s (s — l) /2. 

The graph H contains (mx—j + sx) vertices of degree 6 and (p — mx+j + s2) 
vertices of degree A. Hence 

<5(ra, — j + sx) + A(p —mx +j + s2) is even. (1) 

We may observe that H = G in case V* = 0. Otherwise, if u e Vx and degHw = A, 
then s^A-S; and, if v e V2 so that degGv = a2 and degHv = A, then s^ A -a2. 
Thus, 

^ {A -a2 if y = 0 , 0 . 
S=S'+S^\A-d i f /3 .1 . ( 2 ) 

We may count the number e of edges in H between the sets V(G) and / in two 
ways. The set V! has ; vertices of degree A in H and the vertices in V* result in the 
regular deficiency o. Then e = o + j(A - 6). Moreover the graph F has size k, and 
the set / contains si vertices of degree 6 and s2 vertices of degree A in H. So 
e = dsx + As2 — 2k. Thus 

dsx + As2-2k = o+j(A -5). (3) 

We also observe that these e edges induce a bipartite graph on the set V ( G ) u / . It 
is possible to describe this more precisely, which we now do. Let $\ fx, f2, ..., fs 

s 

denote the sequence of degrees of the vertices of F , where 2 / —2k. For each 
i - i 

permutation n on {1, 2, ..., s}, consider the sequence 5^,: bx, b2, ..., bs, where 

176 



b=(A-f„m if ls=is£í2 

' \ó-f„(0 if S2<Í^St + S2 

is nonnegative. Also consider the sequence Sf2 whose terms are (A - degov), where 
ve V* if y = 0, and l ^ y ^ m j implies that ve V*uVi(/)> where Vi(y) denotes 
a y-element subset of V-. Then Sf2 has n=p — (m1 + mn) + j terms. Let us write this 
sequence as Sf2: cl9 c2, ..., c„. 

The pair of sequences &>
1: bl9 b2, ..., bs and Sf2: cl9 c2, ..., c„ is called bigraphical 

(see [2]) if there exists a bipartite graph B with partite sets Ux = {ul9 u2,..., u,} and 
U2={wl9 w29 ..., H>„} such that degBwI = 6 l, 1 ^ / ^ s , and degsWj-c,, l^j^n. 
Necessary and sufficient conditions were obtained in [2] for a pair of sequences of 
nonnegative integers to be bigraphical. We state one such condition for later use. 

Theorem 2. Let 3>
1: bl9 b29 ..., bsandSf2: cl9 c2, ..., cn be a pair of sequences of 

nonnegative integers with 

and 

b1^Ь2^...^ЬS9 

C i ^ C 2 ^ . . . ^ C „ , 

5 П 

5> = 2>,-

Then the pair of sequences (&>

1; Sf2) is bigraphical if and only if the pair of 

sequences (Sf\; Sf'2) is bigraphical where 

Sf\: & i - l , b2- 1, . . ., bci- 1, bci+l9 . . ., bs 

and 

o2: c 2, c3, ..., cn. 

We can now state the following condition: 
there exists a graphical sequence $ for which some pair of 

sequences (Sfx; Sf2) is bigraphical. (4) 

We have now shown that the conditions (1)—(4) are necessary for a graph H of 
minimum order p + s (where s=sx+ s2) to exist. These conditions also prove to be 
sufficient. In order to see this let G be a given graph with degree set # G = {al9 a29 

..., an}9 where 6 =ax<a2 < . . . < an=A and n ^ 2 , and let s=s1 + s2 (where sl9 s2 

are nonnegative integers) be the least positive integer for which there exist integers 
y and k9 0^j^m1 and 0^k^s(s - l)/2 such that (1)—(4) are satisfied. By (4) 
there exists a graphical sequence $: fl9 f29 ...,/,. Let F be a graph having degree 
sequence $ where, then, the size of F is k. Also by (4) some pair of sequences 
(Sf\; Sf2) is bigraphical, so there exists a bipartite graph B with partite sets Ux = {ul9 

u2, ..., us} and U2={wl9 w29 ..., wn} such that degBi/I = 6 l, 1^/^.s, and 
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degflW/ = c/, l^j^n. We now define a graph H by V(H)= UiuV(G), where 
U, = V(F), l / 2 =V*uVi ( / ) and E(H) = E(B)uE(F)uE(G). Clearly G is an 
induced subgraph of H and &H = {8, A}. Thus, the following result has been 
verified. 

Theorem 3. Let G be a graph with degree set ftG = {ai, a2, ..., an}, where 
8=ax<a2 <...< a„=A and n ^ 2 . Let H be a graph with degree set &H = {8, A} 
containing G as an induced subgraph. A necessary and sufficient condition that 
p+s be the least possible order for H is that s=Si + s2 is the least integer 
satisfying: 

(1) 8(ml-j + Si) + A(p — mx+j + s2) is even, 

(3) 8s1 + As2-2k = o+j(A-6), and 
(4) there exists a graphical sequence $ for which some pair of sequences 

(Sf\; Sf2) is bigraphical. 
We illustrate the procedure by an example. Let G be a graph with degree 

sequence 

9, 9, 9, 8, 8, 6, 6, 6, 6, 6, 5, 5, 5. 

Here 8 = 5, A =9, a =17, rai = 3, p = 13 and a2 = 6. By (1), 5 ( 3 - / + s0 
+ 9(13 — 3 + / + s2) is even, and this implies that si and s2 have opposite parity and 
s is odd. Condition (2) implies that si + s2 ^ 3 if / = 0; and / = 1, 2 or 3 implies that 
si + s2 ^ 5, since s = si + s2 is odd and at least 4* Also, (3) states that 5si + 9s2 - 2k 
= 17 + 4/. 

Consider s = si + s2 = 3. Then / must be zero, and 0 ^ k ^ ( j = 3 . (i) If s, = 0 and 

s2 = 3 , then k = 5. (ii) If si = 1 and s2 = 2, then k = 3 and F=K3. This implies that 
3>: 2, 2, 2; Sfx: 7, 7, 3 ; and Sf2: 3, 3, 3, 3, 3, 1, 1. Here the conditions (1), (2) and 
(3) hold. Moreover the sequence $ is graphical. But a repeated application of 
Theorem 2 shows that the pair of sequences (Sfx; Sf2) is not bigraphical. So (4) fails 
to hold, (iii) If si = 2 and s2 = 1, then k = 1 and F=KXKJK2. Hence^: 1,1, 0; Sfx: 9, 
4, 4 or Sfx: 8, 5, 4 ; and SP2: 3> 3 , 3 , 3, 3 , 1, 1. Once again we use Theorem 2 to 
observe that (Sf\; Sf2) is not bigraphical. (iv) If si = 3 and s2 = 0, then k < 0 . Thus, 
s^5. 

We consider si = 0, s2 = 5, / = 2. Then k = 10 and F = K5. Now $: 4, 4, 4, 4, 4 ; 
Sfx: 5, 5, 5, 5, 5; and Sf2: 4, 4, 3 , 3, 3, 3 , 3 , 1, 1. The pair (Sfx; Sf2) is easily seen to 
be bigraphical (by Theorem 2). In the figure below we have shown the essential 
sequences and the graph B. (E(G) and E(F) are not shown.) Clearly #H = {5, 9} 
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MИHИMAKCHЫЙ HAДГPAФ 

Гapы Чapтpэнд-Poнaлд Дж. Гyлд-Ц. Ф. Kaпyp 

Peзюмe 

Пycгь ůa oбoзнaчaeт мнoжecrгвo вcex cгeпeнeй вepшин гpaфa G, max ůa = Л, min ůa = ô. Ecли 
S-мнoжecrвoтaкoe,чтоЛ eScůa,тocyщecгвyeтгpaфHcмнoжecтвoмůн = S,длякoтоporoG 
являeтcя пopoждeнным пoдгpaфoм. B cлyчae S = {ô, Л} нaxoдигcя нeoбxoдимoe и дocтaточнoe 
ycлoвиe для тогo, чтобы чиcлo вepшин гpaфa H былo минимaльным. 
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