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THE MIN-MAX SUPERGRAPH

GARY CHARTRAND—RONALD J. GOULD—S. F. KAPOOR*

Let the degree set (the set of degrees of the vertices) of a graph G be denoted by
¢ in which A and § represent the maximum and minimum elements respectively.
If S is a finite set of positive integers with A € S =5, then there exists a graph H
with degree set S containing G as an induced subgraph. In the case where
S ={8, A}, necessary and sufficient conditions are presented for the order of H to
be minimum.

It is well known (see [1], Chap. 1, for example) that for any graph G with
maximum degree A there exists a A -regular graph H containing G as an induced
subgraph. (The graph H is called a supergraph of G.) Furthermore, Erd6s and
Kelly [3] have found a necessary and sufficient set of conditions which determine
the minimum order of such a graph H. In this article we generalize the first of these
results and extend the second.

The degree set Js of a graph G is the set of degrees of the vertices of G. If
d6 ={a, a,, ..., a,}, where a,<a,<...<a,, then §(G)= 94 =a, is the minimum
degree of G and A(G)= A =a, is the maximum degree of G. As mentioned
above, there exists a graph H with degree set {A} containing G as an induced
subgraph. We first present a generalization of this result.

Theorem 1. Let G be a graph with degree set 9 and maximum degree A and let
S be a finite set of positive integers such that A € S ¢ %¢. Then there exists a graph
H with degree set S such that G is an induced subgraph of H.

Proof. First, observe that if S =, then we may take H = G. We have already
noted that the result is true if S = {A }, so we henceforth assume that 2<|S| <|].

Let 9 ={ay,a,, ..., a,} with d=a,<a,<...<a,=A, where n=3. Define
Go,=G. For i=1, define G; to be that graph consisting of two disjoint copies of
Gi_, together with those edges joining corresponding vertices, say with the same
label v if degs,_,v ¢S. For each i=1, 2, ..., n, define

k;=min {m|m=i,a, eS)
and
k=max {a, —ali=1,2, ..., n}.
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Then H = G, has degree set S and contains G as an induced subgraph.

In the case where S = {A} Erdos and Kelly described a method for determin-
ing the minimum order of the graph H mentioned in the statement of Theorem 1.
We do the same thing if S = {8, A}. Prior to presenting a set of conditions which
give the minimum order of H in this case, we find it necessary to introduce some
terminology.

Let G be a graph of order p and degree set ¢¢ = {a,, a,, ..., a,}. Let the vertex
set V(G) of G be expressed as V(G)=V,uV,u...uV,, where for 1<i<n,

n—1
|Vi|=m;=1 such that veV; implies that degsv =a,. Let V*=|J V; and let
1=2

o= > (A —degsv) denote the regular deficiency of G. Further, let H be a graph

vev*
having degree set {§(G), A(G)} and containing G as an induced subgraph, and let
I=V(H)— V(G) be the set of vertices that need to be added to G in order to
obtain H. From the s = |I| vertices in H which are not in G, let s, have degree &
and s,=s —s, have degree A in H. Let j represent the number of vertices in V,
that have degree A in H. Then 0<j=<m,, and j = m, forces s, to be at least one.
Let F=(I) denote the subgraph of H induced by the set I. With k =|E(F)|
denoting the size of F, we observe that 0k <s(s —1)/2.

The graph H contains (m, —j+s,) vertices of degree 6 and (p —m,+j+s,)
vertices of degree A. Hence

S(m—j+s)+A(p—m+j+s,) iseven. (1)

We may observe that H= G in case V*=@. Otherwise, if u € V, and degnu=A,
then s=A — 6 ; and, if v € V, so that degsv =a, and degav = A, then s= A —a,.
Thus,

A—a, if j=0

= = e .
$=$i1+5, {A—é if j=1.

(2)

We may count the number e of edges in H between the sets V(G) and I in two
ways. The set V; has j vertices of degree A in H and the vertices in V* result in the
regular deficiency 0. Then e = 0 +j(A — §). Moreover the graph F has size k, and
the set I contains s, vertices of degree 6 and s, vertices of degree A in H. So
e=0s,+ As,—2k. Thus

8s,+ As,—2k=0+j(A - 9). 3)

We also observe that these e edges induce a bipartite graph on the set V(G)uUI. It
is possible to describe this more precisely, which we now do. Let #: f,, f5, ..., f

s

denote the sequence of degrees of the vertices of F, where >.f, =2k. For each
=1

permutation & on {1, 2, ..., s}, consider the sequence %,: b,, b,, ..., b,, where
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bz{A —f,,(,') if 1$i$52
! 6_f,,(,-) if s2<i$Sx+Sz

is nonnegative. Also consider the sequence &, whose terms are (A — degsv ), where
veV* if j=0, and 1<j<m, implies that ve V¥uUV,(j), where V,(j) denotes
a j-element subset of V. Then &, has n =p — (m, + m,) +j terms. Let us write this
sequence as &»: €j, €z, ...y Cu.

The pair of sequences &, : by, b, ..., b, and &»: ¢y, c, ..., ¢, is called bigraphical
(see [2]) if there exists a bipartite graph B with partite sets U, = {us, u,, ..., 4, } and
U,={wi, w,, ..., w,} such that degsu;, = b;,, 1 <i<s, and degegw; =¢;, 1<j<n.
Necessary and sufficient conditions were obtained in [2] for a pair of sequences of
nonnegative integers to be bigraphical. We state one such condition for later use.

Theorem 2. Let &,: by, b, ..., b, and &;: ¢,, c,, ..., ¢, be a pair of sequences of
nonnegative integers with

b,=b,=...=2b,,
C1=Cr=...2=C,,
and

ib, = ic,-.

i=1 j=1

Then the pair of sequences (¥:; &,) is bigraphical if and only if the pair of
sequences (¥1; &5) is bigraphical where

Fi:by—-1,b,—-1,..,b,—1,b.,41, ..., b,
and
S Cay Cay vy Cpe

We can now state the following condition:
there exists a graphical sequence # for which some pair of
sequences (& ; &) is bigraphical. 4)

We have now shown that the conditions (1)—(4) are necessary for a graph H of
minimum order p + s (where s =s, +s,) to exist. These conditions also prove to be
sufficient. In order to see this let G be a given graph with degree set ¥ = {a,, a,,
..., .}, where 6 =a,<a, <...< a,=A and n=2, and let s =s, + 5, (Where s, s,
are nonnegative integers) be the least positive integer for which there exist integers
j and k, 0<j<m, and 0<<k <s(s — 1)/2 such that (1)—(4) are satisfied. By (4)
there exists a graphical sequence #: fy, fz, ..., f.. Let F be a graph having degree
sequence # where, then, the size of F is k. Also by (4) some pair of sequences
(%15 &2) is bigraphical, so there exists a bipartite graph B with partite sets U, = {u,,
uz ..., u,} and U,={w,, w,, ..., w,} such that degsu,=b;,, 1<i<s, and
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degsw; =¢;, 1<j<n. We now define a graph H by V(H)=U,uV(G), where
U,=V(F), U,=V*uV,(j) and E(H)=E(B)UE(F)UE(G). Clearly G is an
induced subgraph of H and #4 = {8, A}. Thus, the following result has been
verified. ‘

Theorem 3. Let G be a graph with degree set 9¢ ={a,, a,, ..., a,}, where
0=a,<a, <...< a,=A and n=2. Let H be a graph with degree set 3y ={6, A}
containing G as an induced subgraph. A necessary and sufficient condition that
p +s be the least possible order for H is that s=s,+s, is the least integer
satisfying :

(1) 6(mi—j+s)+A(—m,+j+s,) is even,

A—a, if j=0

2) s=s1+322{A —62 if ;.21,

(3) 8s,+As,;—2k=0+j(A-9), and

(4) there exists a graphical sequence ¥ for which some pair of sequences
(%15 &) is bigraphical.

We illustrate the procedure by an example. Let G be a graph with degree
sequence

9,9,9,8,8,6,6,6,6,6,5,5,5.

Here 6=5, A=9, 6=17, m;=3, p=13 and a,=6. By (1), 53—j+s)
+ 9(13 -3 +j +s,) is even, and this implies that s, and s, have opposite parity and
s is odd. Condition (2) implies that s, + s,=3if j=0; and j =1, 2 or 3 implies that
s1+5,=5, since s =5, + 5, is odd and at least 4. Also, (3) states that 5s, + 9s, — 2k
= 17+4j.

/

Consider s =s, + 5, = 3. Then j must be zero,and 0k < (3) =3.(i) If s,=0and

2
s2=3, then k=5. (ii) If s, =1 and s, =2, then k =3 and F =K. This implies that
F$:2,2,2;%:7,7,3;and &,: 3, 3, 3, 3, 3, 1, 1. Here the conditions (1), (2) and
(3) hold. Moreover the sequence # is graphical. But a repeated application of
Theorem 2 shows that the pair of sequences (¥ ; &) is not bigraphical. So (4) fails
to hold. (iii) If s,=2 and s, =1, then k =1 and F=K,UK,. Hence $: 1,1,0; %,:9,
4,40r %:8,5 4;and &,: 3, 3, 3, 3, 3, 1, 1. Once again we use Theorem 2 to
observe that (¥, ; &,) is not bigraphical. (iv) If s, =3 and s, =0, then k <0. Thus,
s=5.

We consider s, =0, s,=5,j=2. Then k=10 and F=K;. Now $: 4, 4,4,4,4;
% :5,5,55,5;and %,: 4, 4,3, 3, 3, 3,3, 1, 1. The pair (¥, ; &) is easily seen to
be bigraphical (by Theorem 2). In the figure below we have shown the essential
sequences and the graph B. (E(G) and E (F) are not shown.) Clearly 3y = {5, 9} .
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MMHHUMAKCHBIA HAOTPAD
I'apst YapTpaua—Ponang Ix. Fynp—1I. . Kanyp
Pe3iome

IMycTts #5 0603HaYaeT MHOXECTBO BCEX CTeneHe# BepliuH rpaga G, max &, = A, min d; =4. Ecm
S — MHOXECTBO Takoe, 4To A € S c ¥, To cymectByeT rpacd H ¢ MHOXecTBoM B = S, it koToporo G
SIBIETCA NMOPOXAECHHLIM NoArpadom. B ciyyae S = {8, A} HaxoauTcs HEOGXORUMOE H HOCTATOYHOE
YCJIOBHE JUIS TOrO, YTOG6bI YHCIIO BepmuH rpada H 6bU10 MHHMMAJIBHBIM.
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