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ON A LEMMA OF G. CHOQUET

BELOSLAV RIECAN

0. Introduction. Let & be an algebra of subsets of a set €, m be a measure on &,
m* be the outer measure induced by m. Then m* is continuous from below i.e.

A cAn(n=1,2,..)>m* (CJ A,.) = lim m*(A.).
n=1 n—o®

This fact has been used implicitly and in a more general form in many papers as
a lemma. In this note we prove a general form of the lemma and then using it we
present straight-forward proofs of some results appearing in literature. Hence the
lemma seems to be useful for future applications, too.

1. Theorem. Let H be a lattice, X, Y c H, X be a sublatticcof H,a, e Y (n=1,
2, ..), a,./'a,*) aeXuUY. Let uy: XuY— (—o, o) satisfy the following con-
ditions :

(i) u is non-decreasing.

() uxX)+u@)=u(xvy)+u(xay) for every x, y e X.

(iii) u|X is continuous from below i.e. x,/'x, x,€ X (n=1,2, ...), x € X implies
u(x.)/ 1 (x).

(iv) u(y)=inf {u(x); y=xe X} for every ye Y.

(v) u(a))>—co. ,

(vi) Either ae X or X is monotonously upper o-complete (i.e. every non--
decreasing bounded sequence has the supremum) and there is x € X such that
x=a. :

Then p(a.)/ 1 (a).

Proof. Since u(a,)=p(a), we have lim u(a.) = pu(a). Hence we can assume that

lim pu(a,) <. Then to every £ >0 there are b, € X, b, =a, such that
£
(@) +5=>p(bn).

*) a,/a means that a, =a,,, (n=1,2,...) and a =sup a,.

209



Put ¢, = \n/b; (n=1, 2, ...). Using (ii) it is easy to prove by induction that
i=1

() u(a,.)+§§>u(c,.) (n=1,2,..).

Now we must distinguish between two cases.
Let a € X. Then we can assume that b, =a (in the reverse case we could take
b,Ana). Hence a,=b,=c,=a and therefore c,/a. Now (%) and (iii)

give lim u(a,) + e =lim u(c,)=pu(a).

Let the second alternative in (vi) be satisfied. Then we can assume b, =x

(n=1,2,...).Putc=supc, = sup b,. Thenc € X, c Za, hence by (x) and (iii)
u@)=u(c)= lim u(c,.)élirg u(a,)+e.
2. Evidently the dual assertion regarding Theorem 1 holds too.

Theorem. Let H be a lattice, X, Yc H, X be a sublattice of H, a, €Y
(n=1,2,..), a,\a, aeXuUY. Let u: XuY—(—o, o) satisfy the following
conditions :

(i) u is non-decreasing.

(i) u(x)+u(y)=Su(xay)+u(xvy) for every x, ye X.

(iii) u|X is lower continuous, ie. x,\x, x,€ X (n=1,2,...), x € X implies
() N\ (x ).

(iv) u(y)=sup {u(x); y=xeX) for every yeY.

(v) u(a))<oo.

(vi) Either a € X or X is monotonously lower a-complete (i.e. every non-increasing
bounded sequence in X has the infimum) and there is x € X such that x =a.

Then p(a.)\u(a).

3. Let B be a boundedly o-complete sublattice of a given lattice H. Let there
exists to every x e H a b € B such that b=x. Let J,: B— (—, ») satisfy the
following conditions :

(i) Jo is non-decreasing

(11) Jo(x)+Jo(y)ZJo(x vy)+Jo(x Ay) for every x, y € B.
(iii) If x, /'x, x, € B, x € B, then Jo(x,),/ Jo(x).
Define further for ye H

J*(y)=inf {Jo(x); y=x € B}.

Now we can put X =B, Y =H, u=J*. Evidently 1| X = J,, hence all assumptions
of Theorem 1 are satisfied by the second part of (vi). Therefore
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/'y, yn€H, yeHJ*(y.)/J*(y).

The last implication is the assertion of Lemma 1.4 of [3].
4. Let 2 be an algebra of subsets of a set E, m be a measure on 2. Denote by H

o

the family of all subsets of E, by B the family of all sets of the form [ A,, where
i =1

n

A, €R and define J, by the formula

Jo (,!;J.A") =lim m ('L:J]A,) .

n—sc

It is not difficult to prove that the definition is correct and that B and J, satisfy the
assumptions of the assertion presented in 3. Therefore J* is upper continuous. But
J* is the outer measure induced by m. Hence we have obtained the result stated in
the Introduction.

5. In [4] M. Sabo starts with a sublattice A of a given lattice S and a mapping J:
A — R which is non-decreasing, satisfies the valuation identity J(a)+J(b)
= J(avb) + J(aab) and is lower continuous. Moreover to every x €S there
exists an a € A with a =x. In Theorem 2 of [4] a sequence (a.).-: of elements of A
is given converging to a given element O € A, where a,Z0 (n=1,2,...) and
J(0O)=0. The theorem states that J(a,)— 0.

We show that the mentioned theorem is a corollary of Theorem 2. Put H=S,

X=A, Y=A"={x€eS; b €A, b./x} and u(x)=1ir2.f(b,,) for xeY=
=XvY. If a,—-0, a,=0, then \7a,~\0(n—>00), hence by Theorem 2

u (Vai)\o. Further O=J(a,) = p(a.)=u (S/a,-),'and therefore J(a,)—0.

(Here the first possibility in (vi) was satisfied, because O € A.)
6. Another consequence of Theorem 2 in [4] is the following theorem
(Theorem 4): Let A, J satisfy the assumptions given in 5. Let A*={x€S;

3b,€A, b,—>x}, ]"‘(x)=lir'rm1= J(b,), xe A*. Then a,\\O, a, e A* (n=1, 2, ...)

implies J*(a,)\0.

To prove the statement put X=A"={x€eS; 3b, €A, b.,\x}, Y=A* u=J*
(of course, X< Y). Lemma 5 in [4] gives (iv), Lemma 6 gives (iii), (ii) is easy to
prove. Hence Theorem 2 implies Sabo’s theorem 4.

7. Similar considerations have been used by E. Futas in [1]. He also starts with
a sublattice A of a lattice H and J: A — R satisfying the same assumptions as we -
have mentioned in 5. Only Futd$’s construction is different. He puts A, = {x;
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3b, €A, b,/ x},J,: A,—>R, J,(x) = lim J(b,). A very important Lemma 2.2.18

in [1] states that x, € A,, x € A, x,\\x implies lim J,(x,) = J;(x).

This lemma follows from Theorem 2. It sufficestoput X=A, Y=A,,u=J,.
8. Since Futa§’s lemma 2.2.19 is dual to the result mentioned above, it follows
immediately from our Theorem 1.

REFERENCES

[1] FUTAS, E.: Extension of continuous functionals. Mat. Cas., 21, 1971, 191—198.

[2) CHOQUET, G.: Theory of capacities. Ann., Inst. Fourier, 5, 1953—54, 131—295.

[3] RIECAN, B.: On the Carathéodory method of the extension of measures and integrals. Math. slov.,
27, 1977, 365—374.

[4] SABO, M.: On an extension of finite functional by the transfinite induction. Math. slov., 26, 1976,
193—200.

Received June 29, 1978
Katedra tedrie pravdepodobnosti
a matematickej Statistiky PFUK
Mlynsk4 dolina
816 31 Bratislava
OB OJJHOH JIEMME T. IIOKE
BenocnaB Pueyan

Pe3ome

CraTbs NOCBsilieHa aGCTPAKTHO! MONCTAHOBKE TOrO (haKTa, YTO BHELIHSA MEPAa MHAYLMPOBAHHAs
Mepo# ABNSETCS HENpEPLIBHOH CHHU3Y.

212



		webmaster@dml.cz
	2012-07-31T22:38:17+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




