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ON A PROBLEM CONCERNING A FUNCTIONAL
DIFFERENTIAL EQUATION

KRISTINA SMITALOVA

Let R, be the n-dimensional Euclidean space with the norm |-|. Let & be
a positive number. Denote by € the Banach space of continuous functions ¢:
[—A, 0]— R, with the max-norm |- || and let €, be the subspace of those ¢ € €, for
which @(0)=0. Let To<T; == be given numbers. Let # be the Banach space of
bounded continuous functions [T,, T:)— R, with the sup-norm || - ||. Finally, if x is
a function [To—h, T,)—R,, let x,, for t €[To, T)), be the function defined for
se[—h,0] by x.(s)=x(t+s).

Now consider the functional-differential equation

x'(1)=f(t, x.) (1)

where f is a continuous function f: [T,, T;) X € — R,.. Assume that

[ 1=K < @
I
and that there is an integrable function §(¢) on I =[T,, T,) such that

£z, @)= f(t, I =BO)lo— ]l 3)
for every @, Y€ € and t€l, and

fB(t)dt=)»<1. ' 4)

If pe €6, let x(¢, @) denote the unique solution of (1) for ¢ € I, with ¢ as the initial
function (i.e. x(¢, ¢) = @(t) for t €[To— h, T,]). The main aim of this note is to
prove the following theorem:

Theorem. Assume that the conditions (2)—(4) are satisfied. Let X, € R,, and
@€ €6, be given. Then there exists such X,€ R, that

lim x(¢, o+ Xo) = X,.

t—T;—

Remark. This theorem improves a result of M. Svec [2], where a similar
theorem is proved with A <1/2. However, the constant 1 in (4) is the best possible
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as shown by the following example: Let n =1, T,=0, T, =2, and let f(¢, p) =a(¢)
2

@(t —1), where a(¢)=0 and such that a(¢)=0 for ¢t €[0, 1], and f a(t)yde=-1.
0

Clearly A =1, but for each solution x we have lim x(¢) =0 for t— 2.
To prove the theorem the following lemmas will be useful:

Lemma 1. Assume that the conditions (2)—(4) are satisfied. Then for each
peb, x(t,p)eRB.
Proof. Using (2) and (3) we obtain

(e, @I =M+ [ @Il ae

where M = |||l + K. Let u(t)=max |x(E, ¢)|, for E€[To—h, t]. Then
w=M+ [ pEue d
and using the Gronwall lemma and (3) we obtain
u(t)éM-expr' B(E) dE < const.

Lemma 2. Assume that the conditions (2)—(4) are satisfied. Then for each e €
there exists lim x (¢, @) when t—> T,-.
Proof. For s, te[To, T,) we have

xs. @) =x(c, @)= | [ Bl ag|+ [ [ 1565, 0]

Since ||xe|| is bounded, the right-hand side of the inequality vanishes when s,
t— T,*.

Lemma 3. Assume that the conditions (2)—(4) are satisfied. Let @€ €, and let
Z.€R, for k=1,2,... be a sequence with klim |Z.|=. Denote m, = inf
|x(t, @+ Z.)| for t€[T,, T,]. Then }irg m, = o,

Remark. In virtue of Lemma 2 we take clearly

x(Ty, o+ Z)=limx(t, p+ Z,) for t—T,.

Proof. Assume on the contrary that ‘!im m, is not . Then there is a bounded

subsequence of {m, }. We may assume without loss of generality that {m,} is this
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subsequence. Since each x(z, @+ Z.) for fix k is bounded and continuous in
[T,, T.], there exist S, & €[To. Ti] such that m, = |x(se, @+ Z)| and
lx(, o+ Z)ll = |x(&, ¢+ Z)|=|Z.|. Now using (2), (3) and (4) we obtain

(50, @ X Z) = x (b, 9+ Z)| = f B(®)||xe d§\+K
<M(Jx (e, 9+ 20|+ llol) + K.

hence
(lx (s, @+ Zi) — x (e, (P+Zk)|_K)(|x(tk’ Q+Z)|+
+lgl " Eh<t.

But the left-hand side of the inequality tends to 1 when k— o and this is
a contradiction.

Now the theorem follows easily from the following general topological principle.

Proposition. Let & be a continuous mapping from R, into the Banach space 9 of
continuous functions [To, T1]— R... Denote by %.(X) the value of ¥(X) € B at the
point t €[T,, T:]. Assume that

v(X)=i9f|9’,(X)|—>oo (5)

uniformly for |X|— o and that %r(X)= X for X € R,.. Then for each t € [T,, T],
g;z (Rn) = Rn .

Proof. Clearly it suffices to show that for each X, € R, there is some X,€ R,
such that %, (X,) = X,. For r =0 denote by S, _,(r) the (n — 1)-dimensional sphere
{XeR,; |X|=r}. By (5) there is some ro>|X;| such that X, é¢ % (S.-1(ro)) for
each te{T,, T\]. Hence S,-i(ro) = Fr,(S.-1(ro)) separates the points X; and  of
the extended space R} = R,u{}, which is topologically equivalent to the sphere
S.(1) (i.e. S.—:(ro) separates ““the north and the south poles” of the ”sphere” R%).
Now %r,(S.-:(ry)) is obtained by a continuous deformation of Fr,(S.-:1(r0))
= S,_1(r,) without passing through o (since {% (X); t € [To, T;] and X € S,_,(r)}
is compact and hence bounded in R,) and X,. Consequently %r,(S,-:(r0)) separates
the “poles” X, and = (see Theorem 2 in [1], p. 350). Now diam %r,(S.-:(r0))—0
whenever r,— 0, hence by the theorem of balayage ([1], Theorem 4 on p. 350)
there is some r Z0 such that X; € %r,(S._:(r)), and hence there is some X, € S,,_(r)
with %r,(X,) = X, q.e.d.

Proof of the theorem. Fix some ¢ € C,. Define a mapping ¥: R.— B in the
following way. For t < T, let % (X)=x(t, o+ X), and let Fr,(X)=1lim %, (X) for
t— T,. Clearly % is continuous (see [2]) and in view of Lemma 3, (5) is satisfied.
To finish the proof it suffices to apply the proposition.
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OB OJTHOU IMPOBJIEME KACAIOUEUCS ®YHKIIMOHAJILHOI'O
IUOSEPEHIIMATIBHOI'O YPABHEHHA
Kpuctusa CmMutanoBa
Pe3iome’
B aT0ii craThe fOKa3biBaeTcs caenyomwas teopema: Ecnu ¢yHkums B ypaBHeHHu x'(¢) =f(t, x,)

ynosneTBopseT ycnosuam (2), (3), (4), Torna pas ¢pukcuposanbix To € Ry, (T, X,)eR™*" u HenpepbIs-
Ho#t ans t =T, nauyanbHo# ¢yHkuun @(@(T,) =0) cymectyer Xo€ R" 1as KoToporo npepen

'lig?_ x(t, Xo+ @)= X,.
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