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ON A PROBLEM CONCERNING A FUNCTIONAL 
DIFFERENTIAL EQUATION 

KRISTINA SMITALOVA 

Let Rn be the n-dimensional Euclidean space with the norm | | . Let h be 
a positive number. Denote by <# the Banach space of continuous functions qp: 
[-h, 0]—>/?„ with the max-norm || • || and let %0 be the subspace of those qpe %, for 
which qp(0) = 0. Let T0< Ti S oo be given numbers. Let 55 be the Banach space of 
bounded continuous functions [T0, Ti)—.>Rn with the sup-norm || • ||. Finally, if x is 
a function [T0 — h, T,)—>Rn, let xt, for te[T0, Tx), be the function defined for 
se[-h,0] by xt(s) = x(t-\~s). 

Now consider the functional-differential equation 

x'(t)=f(t,x,) (1) 

where / is a continuous function / : [T0, T,) X <#—»Rn. Assume that 

Jj/(A0)|df = K<co (2) 

and that there is an integrable function |3(t) on I=[T0, T^) such that 

|/frq>)-/fri|0|-§P(Ollq>-iHI (3) 
for every qp, i|> e <£ and / e I, and 

í ß(ґ)dí = X<l . (4) 

If cpe ̂ , let x(t, q>) denote the unique solution of (1) for t el, with qp as the initial 
function (i.e. x(t, qp) = qp(t) for te[T0 — h, T0]). The main aim of this note is to 
prove the following theorem: 

Theorem. Assume that the conditions (2)—(4) are satisfied. Let XxeRn, and 
qpG^0 be given. Then there exists such X0eRn that 

limx(t,q) + X0) = Xl. 

Remark. This theorem improves a result of M. Svec [2], where a similar 
theorem is proved with X< 1/2. However, the constant 1 in (4) is the best possible 
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as shown by the following example: Let n = 1, T0 = 0, Tx = 2, and let f(t, qp) = a(t) 

y(t-l), where a(t)^0 and such that a(t) = 0 for te[0, 1], and f a(t)dt = - l . 
Jo 

Clearly X= 1, but for each solution x we have lim Jt(t) = 0 for t—>2. 
To prove the theorem the following lemmas will be useful: 

Lemma 1. Assume that the conditions (2)—(4) are satisfied. Then for each 
cpe^, x(t,cp)e®. 

Proof. Using (2) and (3) we obtain 

\x(t,<p)\*M+f P(§)||*e|| dl=, 
JT0 

where Af = ||qp|| + K. Let w(t) = max \x(g, qp)|, for | e [T 0 - /z , f]. Then 

u(t)^M+f m)u(^)dl, 
JT0 

and using the Gronwall lemma and (3) we obtain 

w(0^Af-exp [ P(g)d§< const. 
JT0 

Lemma 2. Assume that the conditions (2)—(4) are satisfied. Then for each q>e^ 
there exists l imx(t, cp) when t-+Tx-. 

Proof. For s, te[T0, T,) we have 

\x(s, q>)-x(t, <p)| Si I fm)\\x,\\ dgl + I f I/O;, 0)| d| | . 
\Js \ \Js I 

Since ||x^|| is bounded, the right-hand side of the inequality vanishes when s, 
t-*T,-. 

Lemma 3. Assume that the conditions (2)—(4) are satisfied. Let cpe^o and let 

Zk eRn for k = 1, 2, ... be a sequence with lim \Zk\ = ™. Denote mk = inf 
A c — • o o 

\x(t, cp + Z*)| for te[T0, TJ . The/. limra* = o°. 

R e m a r k . In virtue of Lemma 2 we take clearly 

x(Tu cp + Zk) = lim x(t, ($ + Zk) for t-+Tx. 

Proof . Assume on the contrary that lim mk is not <», Then there is a bounded 
fc — o o 

subsequence of {mk}. We may assume without loss of generality that {mk} is this 
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subsequence. Since each x(t, <p + Zk) for fix k is bounded and continuous in 
[T0, Til, there exist sk, tke[T0,Tx] such that mk = \x(sk, cp + Z fc)| and 
||jt°(r,cp + Z fc)|| = \x(tk,q> + Zk)\^\Zk\. Now using (2), (3) and (4) we obtain 

Mst,q)X_*)-x(fc,q)+_;)|-|J'ß(9lke||dl; 
žl(\x(tk,cp + Zk)\ + \\y\\) + K, 

+ K 

hence 
(\x(sk,ą> + Zk)-x(tk,<p + Zk)\-K)(\x(tk,ą> + Zk)\ + 

+ | | ф | | Г - X < 1 . 

But the left-hand side of the inequality tends to 1 when k—>oo and this is 
a contradiction. 

Now the theorem follows easily from the following general topological principle. 

Proposition. Let & be a continuous mapping from Rn into the Banach space 2fi of 
continuous functions [T0, Ti]->Rn. Denote by &t (X) the value of &(X) eSft at the 
point t _[T0, Ti], Assume that 

v(X) = inf |_*,(X)|->oo (5) 
t 

uniformly for |X |-> oo and that _**<,( X) = XforXeRn. Then for each t e [T0, T-], 

&t(Rn) = Rn. 
Proof. Clearly it suffices to show that for each Xi eRn there is some X0eRn 

such that _FTl (X0) = Xx. For r i_0 denote by S„-i(r) the (n — l)-dimensional sphere 
{XeRn; |X | = r} . By (5) there is some r 0 > | X , | such that X! ^ ^ ( 5 „ _ , ( r 0 ) ) for 
each t e [T0, 1\]. Hence 5„_i(r0) = &To(Sn-i(r0)) separates the points X! and oo of 
the extended space JR* = JR„U{OO}, which is topologically equivalent to the sphere 
S„(l) (i.e. S„_i(r0) separates "the north and the south poles" of the "sphere" R*). 
Now _^r,(-?n-i(ro)) is obtained by a continuous deformation of ^ T o (5 n _i(r 0 )) 
= Sn_i(r0) without passing through oo (since { ^ ( X ) ; t e [T0, T J and Xe S„_i(r0)} 
is compact and hence bounded in Rn) and X-. Consequently 9^Tl(Sn-\(r0)) separates 
the "poles" Xx and oo (see Theorem 2 in [1], p. 350). Now diam ^ T l ( S „ - i ( r o ) ) ^ 0 
whenever r0—>0, hence by the theorem of balayage ([1], Theorem 4 on p. 350) 
there is some r __ 0 such that X, e 3<Tl(Sn-i(r)), and hence there is some X 0 e 5„-i(r) 
with _^Tl(Xo) = X1, q.e.d. 

Proof of t h e t h e o r e m . Fix some cpeC0. Define a mapping _F: Rn-*B in the 
following way. For t<Tx let &t(X) = x(t, <p + X), and let _^Tl(X) = lim _*,(X) for 
t-+Tx. Clearly 2F is continuous (see [2]) and in view of Lemma 3, (5) is satisfied. 
To finish the proof it suffices to apply the proposition. 
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ОБ ОДНОЙ ПРОБЛЕМЕ КАСАЮЩЕЙСЯ ФУНКЦИОНАЛЬНОГО 
ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 

Кристина Смиталова 

Резюме 

В этой статье доказывается следующая теорема: Если функция в уравнении х'(1) = /((,х,) 
удовлетворяет условиям (2), (3), (4), тогда для фиксированых Т0е/?1,(Т1,Х1)€/?П+1 и непрерыв­
ной для (^Т0 начальной функции ф(ф(То) = 0) существует Х0еКп для которого предел 

Hm_ x(t, X0 + ф) = Xг. 
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