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TOLERANCES AND THE CHINESE
REMAINDER THEOREM

IVAN CHAJDA

By a tolerance on an algebra Y(=(A, F) is meant a reflexive and symmetric
binary relation T on A satisfying the Substitution Property with respect to each
feF,ie. (f(a\,...,a.), f(b, ..., b.)) € T for each n-ary f € F provided (a;, b,) € T
for i=1, ..., n. The set LT(?l) of all tolernces on Y[ is an algebraic lattice with
respect to the set inclusion, see [1], [2]. Despite @ € LT () for every congruence ©@
on Y, the congruence lattice is not a sublattice of LT(Y() in a general case, see [1].
However, some congruence properties can be also generalized for tolerances. The
object of this paper is to characterize the solvability of systems of tolerances in the
sense of the Chinese Remainder Theorem [4].

Let Y{=(A, F) be an algebra and @# M c A. Denote by T(M) or ©(M) the
least tolerance or congruence, respectively, on Y[ collapsing all elements of M, i.e.

T(M)=n{TeLT(?); (a,b)eT for each a,beM}, and analogously for
OM). If M={a,, ..., a,}, write briefly T(a,, ..., a,) or O(a,, ..., a,).

By a system of n tolerances over "l is meant

(S) pi(x19---9 xm)'l-:qi.(xla ---axm) forizl, R (8

where p,, g; are either m-ary polynomials over ¥( or elements of A and T, e LT(Y()
foreach i=1, ..., n. A system (S) is solvable (over Y() is there exists a sequence
(ay, ..., an) (@ € A), the so called solution of (S), such that

(pi(ay, ..., an), q:(ay, ..., a.)) e T,

is valid for i=1, ..., n. :
In this terminology, an algebra V(= (A, F) satisfies the Chinese Remainder
Theorem (see [4]) if every system of congruences

a®x fori=1,...,n=3

is solvable for @, 2n{O(a;, a;); j=1, ...,i—1,i+1, .., n}.
This formulation can be generalized also for tolerances.
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Definition. Let n=3 be an integer. An algebra (= (A, F) is said to satisfy the
n-Tolerance Chinese Remainder Theorem if every system of tolerances

aTx fori=1,....n

is solvable for T, o2 n{T(a,, ..., a;_\, Gj+1, ..., 4.); j=1, .., i—1,i+1, ...,n}.

A variety 7" of algebras satisfies the n-Tolerance Chinese Remainder Theorem
if each V(e 7" satisfies the n-Tolerance Chinese Remainder Theorem. We give the
following Mal’cev type characterization of this property.

Theorem. Let n =3 be an integer. For every variety V of algebras the following
conditions are equivalent: .

(1) ¥ satisfies the n-Tolerance Chinese Remainder Theorem

(2) There exists an n-ary polynomial p of V" such that

x=p(x,...x,y)=plx, .., x,y,x)=...=p(y, x, ..., X).
Proof. (1) = (2): Let F,(x, ..., x,) = .= (A, F) be a free algebra of 7" with
free generators x,, ..., x,. Since @, = N{O(xy, ..., X;—1, Xjurs .., Xa)3 J=1, .,

i—1,i+1,..,n) 2 0 {T(x1, .., Xj0, Xjo1r o0 Xn) 3 j=1, .., i—1,i+1,...,n},
the system x;®.x (i=1, ..., n) has by (1) a solution b € A. Since b € F.(x,, ..., X,),
there exists an n-ary polynomial p of ¥ such that b =p(x,, ..., x,). However,

(X, b)YEO. CO(Xy, .., Xjoty Xjs1s oaer Xn),

thus x; =p(xi, ..., X, X, Xi, ..., x;) is true in Y[/ ®, for each j#i. Since V(/ O, is a free
algebra of 7" with two free generators, this identity is true in ¥. Varyingi =1, ..., n
and je{l,...,i—1,i+1, ..., n}, we obtain all the identities of (2).

(2) = (1): Let ¥ satisfy (2) and

aTx fori=1,...,n

be a system of tolerances (T; € LT(Y() for some Y€ ¥ such that T, > n{T(ay, ...,
Aty Ajsrs ..y @n)si=1,..,i—1,i+1,...,n}.Putb=p(a,, ..., a,) for p satisfying
(2). Hence, for i =1 and varying j from 2 to n,

{a\,bY={p(a, as a,, ...,a,), pla, a,, ..., a,)) € T(a,, as, a., ..., a,)
<a1, b> = <P(al, a, as a, ..., a), p(al, a, ..., an)) ET(al, dz, aa, ..., an)
(a, b)={p(a, ..., a1, a,), play, as, ..., a,)) € T(ay, a, ..., a,_,),

i.e. {a,, b) e T,. Analogously it can be proved that {a,, b)eT, fori=1,2,...,n;
thus 7" satisfies the n-Tolerance Chinese Remainder Theorem.

Example. An example of a variety satisfying the n-Tolerance Chinese Re-
mainder Theorem for each n =3 is the variety of all lattices. It suffices to take

DXty oy X)) = (O AX) V(X2 AX) V.. V(X AX) V(X AXY).
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This example is not trivial because there exist tolerances on lattices different from
congruences, see [1].

Corollary. Let V" be a variety of algebras. The following conditions are
equivalent:

(1) V satisfies the 3-Tolerance Chinese Remainder Theorem

(2) ¥ satisfies the Chinese Remainder Theorem

(3) There exists a ternary polynomial p of V" such that
x=p(x,x,y)=p(x,y,x)=p(y, x, x).

Proof. (1) <> (3) by the Theorem, (3) <> (2) by [3] or by Theorem 6.6 in [4].
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TOJIEPAHTHOCTU U KUTAMCKAS TEOPEMA OB OCTATKAX
HMBan Xaipa
Pe3omMme

TonepanTtHocTeii Ha anreGpe Y =(A, F) Ha3bIBaeTcs pepeKCHMBHOE M CUMMETPUYHOE GHHAapHOE
OTHOLIEHHE Ha A YJNOBJIETBOPSIOLIEE CBOMCTBY CyGCTHTYLMH oTHOcuTenbHO F. B paborte 0606-
uraercs Kuraiickas Teopema 06 ocTaTkax MJsi CUCTEM TOJIEPAHTHOCTEH M faeTcs ManbLeBckoe
ycloBHE [JIi MHOrooOpasuii anre6p, yROBJIETBOPSIOLMX 3TOMY CBOWHCTBY.
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