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DECOMPOSITION OF COMPLETE GRAPHS
INTO FACTORS OF DIAMETER TWO

STEFAN ZNAM

We say that the system Fi, ..., F,, of factors of a graph G presents an edge
decomposition of G if every edge of G belongs to exactly one of the factors F;. Let
f(k) be the smallest such natural that the complete graph K, of f(k) vertices can
be decomposed into k factors of diameter two. The problem of consideration of the
number f(k) has been introduced in [4], where also f(2)=35, f(3)=12 or 13 are
proved. In [3] it is shown that f(k) is finite for any k=2 and that f(k)=4k—1
holds for k =3. N. Sauer showed in [5] that f(k)=7k for k=2. In [2] J. Bosdk
showed that for every k=2 we have

6k —52=f(k)=6k.
Finally B. Bollobads in [1] proved that for k=6 we have
f(k)=6k—-9.

In our article we prove that for k =664 the inequality f(k) =6k —7 holds. It is
very probable that using very similar methods as here (however considering more
precisely) the inequality f(k) =6k — 6 can be proved.

By the neighbourhood of a set S of vertices in a graph we mean the set of all
vertices not belonging to S but adjacent to some vertices of S in this graph.

Now suppose that for a k =664 the complete graph Ke«-s is decomposed into k
factors of diameter two. Then there exists at least one factor F containing at most

(6k —8)(6k—9)]_ _
[——————2 : =18k — 51
edges. We shall state some properties of the factor F.

Lemma 1. The neighbourhood of any two vertices x, y in F is of cardinality at
most Sk —8.

Proof. Suppose, the cardinality of the neighbourhood of two vertices x, y in F
is at least Sk —7. Then in the remaining k — 1 factors there exist at most

(6k—10)— (Sk—T)=k —3
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paths of the length 2 between x and y. This is a contradiction with the fact that all
factors are of diameter two.
Corollary F does not contain any vertex of degree <3.

Lemma 2. The maximal degree of vertex in F is at most 3k — 6.
Proof. A vertex v is of degree at least 3 in all the remaining k — 1 factors, hence
we have

3(k—=1)+deg- v=6k -9
and our assertion follows.

Lemma 3. Let v be a vertex of degree 3 in F and let it be adjacent to vertices
x,y, z. Suppose

degr x =degr y =degr 2.

Then:
a) x is of degree at least 2k —3;

b) y is of degree at least % (3k=3);
c) all three are of degree at least k —2.

Proof. F is of diameter two, hence every vertex of F belongs to the neighbour-
hood of {x, y, z} ; therefore it has to contain v and 6k — 12 other vertices and so x

must be of degree at least % (6k —12)+ 1 and the assertion a) follows. Owing to

Lemma 2 the vertex x is of degree at most 3k — 6, therefore the neighbourhood of
the set {z, y} in F contains v and at least (6k —12) — (3k —7) = 3k — 5 vertices.
Both y and z are adjacent to v, hence the sum of degrees of y and z is at least
3k — 3 and the assertion b) follows.

The neighbourhood of the set {x, y} is (according to Lemma 1) of cardinality at
most 5k —8 and v belongs to this neighbourhood. Hence there exist at least
(6k—12) — (5k—9) = k—3 vertices connected with v by a path of length
2 containing z. Therefore z is of degree at least k —2. The proof is complete.

Lemma 4. Let v be a vertex of degree 4 in F adjacent to the vertices x,y, Z

and t. Suppose
deg x =deg y =deg z =deg ¢.

Then:
a) degy=k—1;

b) deg z é% (k—4).
Proof. Owing to Lemma 2 there exist at least (6k —13) — (3k —7) = 3k =6
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vertices connected with v by a path of length 2 containing one of the vertices y,
z, t. Hence the sum of degrees of these three vertices is at least 3k —5 and a)
follows.

Owing to Lemma 1 there exist at least (6k —13) — (5k—9) = k —4 vertices
connected with v by a path of the length 2 containing z or ¢ and b) follows.

Lemma 5. Let v be a vertex of degree 5 in F. Then v is adjacent to a vertex of
degree at least k —2 and to three vertices of degree at least % (k—4).
The proof is very similar to that of Lemma 4.

Theorem. f(k)=6k —7 for k Z664.

Proof. We shall show that Ks-s cannot be decomposed into k factors of
diameter 2. Namely we prove the impossibility of the existence of a factor F having
the properties stated in Lemmas 1—5 with at most 18k —51 edges.

Suppose F is such a factor of K« -s. Denote by A the set of all vertices of degree

34o0r5inF,|A|=a; by B the set of all vertices of degree 6, 7, ..., [% (k—S)],

|B|=b: by C the set of all vertices of degree at least %(k—4), |C|=c.

If ¢ =55, then the sum of degrees in F is at least

55 109 787
3(6k —8)+? (k— 13)—T k -3
which is a contradiction with the fact that the number of edges is at most 18k — 51.
Hence we have ¢ =54.

Now there exist at least 3a edges between the sets A and C (see Lemmas 3—25).
To every vertex of A choose three edges starting from it to the set C and denote
this set of edges by U. Every vertex from B contributes to the sum s of all degrees
in F by at least 6 (hence the set B by at least 6b), the contribution of edges of U is
6a and further we have some other edges incident with the vertices of degree 4 or
5 but not considered above.

First suppose there exist at least 325 vertices of degree 4 or 5 in F. Then we have

sZ6a+6b+325>6(a+b +c)=6(6k —8)=36k —48.

However, this is a contradiction, because the factor F has at most 18k — 51 edges.
Now we shall consider the more complicated case if in F there exist less than 325
vertices of degree 4 or 5. Denote by D the set of vertices of degree 6,7, ..., k—3in
F, |D|=d and by E the set of vertices of degree at least k —2, |E|=e.
Obviously e =c =54. Suppose e Z19. Then the sum of degrees in F is at least
e(k—2) + 3(6k—8-54) = (18k+ek) — 2e — 186, which is for k=664 a
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contradiction considering the fact that F contains at most 18k —51 edges. Hence
e=18.

Howevcer, we shall show that e =12.

We shall distinguish two cases, again.

If d =2k, then the sum of degrees in A and D is at least 3(6k —26) + 3d =
24k —78. Therefore the sum of degrees in E is al most (36k —102) — (24k —78)
= 12k —24. Hence e =12.

If d =2k. then we prove first e =14. In this case the number ¢ of vertices of
degree 3 in F is at least

6k —8—d—18-324=6k —d —350.
The sum of degrees in E is at most 36k — 102 — 3(6k —26) — 3d = 18k — 3d
— 24 = w, hence there exist at most 11 vertices of degree at least % (Bk—=3)=m

inF.

On the other hand, according to Lemma 3 at least 2t edges from vertices of
degrce 3 go into vertices of degree at least m. Hence the sum of degrees of vertices
of E having degree smaller than m is at most '

w—2t=(18k —3d —24) —2(6k —d —350)=6k —d — 676.

Hence there exist in E at most 5 vertices of this kind.

Now if the number of vertices of degree at least m in E is =8, we get e =14.
However, if the number of vertices of degree at least m is n =9, 10, 11, then the
sum of degrees of vertices with smaller degree in E is at most

w—nm=(18k—3d—24)—g(3k—3) - (18—%n>k—3d—24+%n;

. 3 . s
hence there exist at most 18 -3 n vertices of this kind. Therefore, the number of

vertices in E is at most 18—%, which is less than 14.

Hence, in all cases we have e =14. Further we can consider starting from this
new information and show that e =12.
Because e =14, the sum of degrees in E is at most

36k —102—-3(6k—8—-14)—3d=18k—36—-3d.
Under these conditions there exist at least 6k—8—-324—-2k—-14 = 3k -5

vertices of degree 3 in F, thus due to Lemmas 2 and 3 in E at least two vertices of
degree at least 2k —3 =r exist. We shall deal with two cases.
1. Suppose there exist exactly two vertices of degree at least r. Any vertex of

degree 3 is connected with at least one of them. There exist at least 5 vertices of

376



degree smaller than r but not smaller than m in E. Choose 5 vertices of this kind.
Thus the sum of degrees of remaining vertices of E (without those two vertices and
the chosen 5 vertices) is at most

18k —3d —36—t—5m=
15 15
§18k—3d—36—(6k—d—350)—7k—3-=
=4,5k —2d —321,5.

Hence, according to the condition k =664 we get that E contains at most 4 further
vertices and in this case we have e =11.

2. If E contains at least 3 vertices of degree at least r and at least 4 further
vertices of degree at least m, then the sum of degrees of 7 vertices with the greatest
degree in F is at least 3r +4m =12k — 15, hence the sum of the degrees of the
remaining vertices in E is at most 18k — 3d — 36 — 12k + 15 = 6k — 21 — 3d
< 6(k —2). Therefore, there exist at most 5 further vertices in E. Hence in all
cases we have e =12.

All the vertices of dégree 3 are connected with 3 vertices of E, all the vertices of
degree 4 with at least 2 vertices of E and every vertex of degree 5 is adjacent to
some vertex in E. If we denote F, the factor of F which arises deleting the edges
connecting two vertices of E from F, then the sum of degrees of vertices in F, is at
least :

(6k —8—e)6=36k —48 —6e.

For e = 8 this gives a contradiction, because for such an e we have 36k — 48 — 6e >
36k —102.

Suppose € =9. Let v, be a vertex of degree 3 in F. Then every vertex of E not
adjacent to v, is adjacent to at least one vertex of the neighbourhood of v,. Hence
there exist at least e — 3 edges with both endopoints in E and the sum of degrees in
F is at least

(36k — 48 — 6¢) + 2(e — 3) =36k —de — 54

which is for e =9, 10, 11 more than 36k —102.

Suppose e = 12. If there exist at least 10 edges with both endpoints in E, then we
get a contradiction again. Suppose, there exist exactly 9 such edges. Denote by H
the factor of F induced by the set E. Let V = {v,, v,, v;} be the neighbourhood of
Vo in F and let

_ degy v, =degy v, =degy vs. @
Then we have the only possibility:
degy v, +degy v, +degy v;=9 (I1)
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and all the vertices not belonging to V are of degree one in H. We supposed
d =2k, hence t >3k — 6. Thus due to Lemma 2 there exists a vertex v, of degree
3 in F not adjacent to v,. Let {vs, Us, U7} be the neighbourhood of v, in F. Then due
to (I) and (II) the sum of degrees of vertices vs, vs and v, is at most 7 in H, which is
a contradiction, because then the diameter of F would be greater than 2. Thus,
according to Theorem 1 of [4], the proof of out theorem is complete.
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PA3JIOXEHHE ITOJTHOI'O T’PA®A HA ®AKTOPbI TUAMETPA [IBA
[Tecpan 3Ham

Pe3ome

JToka3biBaeTcsi, YTO HONMHBIA rpad ¢ 6k —8 BeplIMHAMU HEBO3MOXHO Pa3/oXHTb Ha k ¢akTopbl
auMaMeTpa 2, ecinu k = 664.

IMonb3ysick TeMu Ke METONAMHM, HO PAacCyXMasi TOYHEE, BEPOSITHO BO3MOXHO MOKA3aTh: MONHbIA
rpad ¢ 6k —7 BeplIMHAMK TOXKe HEBO3MOXHO Pa3lioXuTh Ha k ¢akTopbl KHameTpa 2.
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