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SOME BASIC NOTIONS OF MATHEMATICAL
ANALYSIS IN ORIENTED METRIC SPACES

SLAVKA BODJANOVA

Our purpose is to develop some basic notions of mathematical analysis in
oriented metric spaces (denoted by OMS). We obtain the notion of OMS from the
usual metric space if we do not assume the distance function to be symmetric (that
means, the distance from 2 point x to a point y may be different from the distance
from the point y to the point x). These oriented distances can be useful in practical
applications. For instance, in a hilly country, it makes a difference whether an
automobile climbs from a locality A to a locality B or goes down from B to A,
considering the cost of transport.

We give a survey of some concepts and results from the theory of oriented metric
spaces which are analogous to the concepts and results from the usual metric spaces
theory and some new results. Analogous results are stated without proofs which
can be found in the standard monographs, e. g. Kolmogorov—Fomin [1].

1. Oriented metric spaces

~ Definition 1.1. Let M be a nonempty set. A nonnegative function @ defined on
the Cartesian produck M X M is called an oriented metric if it satisfies the following
axioms :

1. for each x, ye M o(x, y)=0 if and only if x=y
2. for each x, y, ze M o(x, y)<o(x, z) +0(z, y).

The pair (M, ) is called an oriented metric space (OMS in abbrevation).
Example 1.2. We obtain an oriented metric o on the set of all real numbers R,
€. g. in this manner:

0:RXR—->R

o(x, y)=|y|=|x| for |y|>|x|
o(x,y)=0for x=y

o(x, y)=|x| for |x|>|y| and y#x.
In general o(x, y)# o(y, x)
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Example 1.3. Let E, F, G be pairwisc disjoint sets which can be indexed by

one-onc mapping as follows:
E{c.;ae(0,1)},

Define a nonncgative function g: M X M— R as follows:

o(e., e)=o(f, f)=0(4, 9.)=0
forae(0, 1) andforce(1,2).

F={f.;ae(0,1)}, G={g.;ae(l1,2)}.

o(ea, f)=0(fu, e)=0(ew o) = 0(fur &)= 0(euw g) =
=0(for g)=0(eus &) =0(fur i) =u
fora, be(0, 1) and a# b andfor ce(1,2), 0(g., ¢.)=0(ye, f.)=c —a,
force(1,2) ae(0, 1).

09, gi)=c—difc>d, o(yg., ga)=cifc<d.d e(1, 2).
This function satisfies the axioms from Definition 1.1.
Example 1.4. Let M be the half-open interval (0, 2). It is casy to show that
a function p: M X M — R defined by o(x, y)=0for x=y, o(x,y) = vy —y+ | for
I <y<x+1<2, o(x, y)=x in the other cascs, is an oriented metric on (0, 2) and
therefore (M, o) is an OMS.
2. Topologies induced by an oriented metric

Definition 2.1. Let (M, @) be an oriented metric space, x e M, £ >0. The sct
L(v) = {yeM; o(y, x)<¢} will be called an I-neighbourhood of x. The set
R (v) = {yeM: o(x, y)<e} will be called an r-neighbourhood of x.

We shall first describc some examples of /-(r-)neighbourhoods which will be

helpful in the sequel.
Example 2.2. Let us consider the OMS from Example 1.2. Let ¢, —a € M and

0<e<a. Then
L(a)=(—a, —a+¢e)u(a—¢, a),
L(—a)=(—a,—a+¢e)u(a—¢,a)
R.(¢)=(—a—¢, —a)u{a, a+¢),
R.(—a)=(—a—¢,—a)u(a, a+¢).
Example 2.3. Let us consider the OMS from Example 1.3. Let 0<e<a,
where a€(0, 1) and ce(1, 2). Then
L(e)={e.:xe(0,e))u{fc;xe(0, €)}u{g.;xe(l,a+e)}u
uie}, Ro(e) = {e.}
L(f)={e; x€(0, &)} u{f.; xe(0, &)} u{g.; xe(l,a+¢€)}u
v {f} Re(f)={f}



L(g.)={e.:xe(0, &)} u{fe; xe(0, &)} u{g:s xe(c, c+e)n(1,2)}
R(g)={g.: xe(c—¢,c)n(1,2)}.

Example 2.4. Consider the OMS from Example 1.4. Let « e M and ¢ <a. If
0<a<l1, then L(a) = (0,e)u{a} and R.(a) = (max{a+1-¢ 1},
a+Du{a}. Il 1<a=<2,then L.(a) = (0, &) U (¢—1, min {1, a~1+¢}) U {a}
and R, (a)={a}.

Theorem 2.5. The collection L(x)={L.(x); e R, £>0} is a neighbourhood
system of x.

Proof: Itiseasy to show that the collection L(x) has the following properties:

1. UeL(x) > xeU
2. UeL(x)AVeL(x) > 3WelL(x): W UNnV
3. UeL(x)AzeU > 3Vel(z): Ve U

Quite analogously the collection R(x) = {R.(x); €€ R, £ >0} is a neichbourhood
system of x.

Remark 2.6. In general, the collection U(x)= L(x)uU R(x) is not a neighbour-
hood system of x. To show this, consider Example 2.2. Assume that U(v)=
L(x)u R(x) is a neighbourhood system of x. This assumption implies that for each
U,, U,e U(x) there exists a set U;e U(x) such that Us < U,n U,. We have
L(x)e U(x), R(x)e U(x) and L(x)nR(x)={x}. Since all the sets in U(x) are
infinite, there is no set Use U(x) such that Use U(x), which contradicts our
assumption.

Theorem 2.7. Let (M, ¢) be an OMS. The collection B.={L.(x); xeM,
€>0} is a base of the topology T, = {VU; UeB.}u{#)} on M. Similarly the
collection Bz ={R.(x); xe M, €¢>0} is a base of the topology Tz = {uU,
UeBr}w{l} on M.

" Remark 2.8. In general, an OMS (M, p) with the topology T, (or Tx) is not
a Hausdorff topological space. We can show this fact using Example 2.2.

Consider a, —a e M, a# 0. Obviously a# —a. We have L, (a) N L,(—a) = (—ua,
min {—a+¢,, —a+¢,}) U (max {a—&, a—¢€}, a)#W for each &, £>0.

Remark 2.9. The following example shows that the topologies T, and Tz may
be incommensurable. Define an oriented metric o: M X M— R, where M = (0, =),
as follows:

For a, beM a<b we put o(a, b)=b—a
for a, be M a>b we put o(a, b)=»b.

Obviously we have: if e<a: L.(a) = (a—¢, a), Ri(a) = (0, &) U (a, a+¢). If
e>a: L.(a) = (0, »), R.(a) = (0, a+¢€). We claim that T, & Tk. It is sufficient to
show that no r-neighbourhood R.(a) can be written as a union of /-neighbour-
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hoods of points of M. Suppose that R.(a)=|J Ls(x), € <a. Then we can find an
xeM

& >0
[-neighbourhood Ls(b) such that a € Ls(b). Since Ls(b) is the neighbourhood
system of b, there exists L:(a) = (a—&, a) such that L¢(a) < Ls(b). But Lg(a)
= (a—E§, a) £ R.(a) = (0, ¢) U (a, a+¢€), which is a contradiction. The proof
that Te & Ty is very similar to the above one.

3. Convergence

Definition 3.1. Let (M, o) be an oriented metric space and {x,},-, a sequence
in M. We say that x, [-converges to x e M in M (and write x, — x) if limo(x,, x)=

0, i. e. if for every € >0 there exists an nye N such that o(x., x)<¢ holds for all
n>ng.
We say that x, r-converges to x e M (and write x «x,) if lim o(x. x,)=0.

We have shown that, in general, an OMS with the topology T, (or Tk) is not
a Hausdorff topological space (see Remark 2.8) and therefore the /-convergence
(or r-convergence) in OMS is not unique.

Example 3.2. Let (M, p) be an OMS from Example 1.3. The sequence
{g1+1}7-1 [-converges to e,e M and at the same time to f,e M, because

lim o(g.), €1) = lim o(gi+s, f1) = lim (1 +%—1> = lim %z(). The sequence

- . . .1
{e:}7-1 l-converges to every point of M, because lim g(e:, x) = lim =0 for

every x e M.
It will be useful to introduce the following sets:

[ ]JL={xeM; x,—x} and L[x.|]={xeM;x<x,}.

Then the results of Example 3.2 can be written as follows:

[.‘h +’11]L ={ey, fi}, [e:]L=M.

Remark 3.3. Let {x.}.-: be a sequence in an oriented metric space (M, o) and
{xn } -1 a subsequence of it. Obviously [x.]L < [x.,]L. But the converse inclusion,
i. €. [x,]L = [x.]L is not true in general. For instance, consider the OMS from

Example 1.3. Let {x,}-; be defined by:

X. = ¢i+} for n even
x,=e: for n odd.
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Obviously [x.]L ={ey, fi}. If x., =x, for n odd, then [x,,]L =M, hence [x,,]L =
[x.]L is not true.

In the OMS, analogously to the usual metric spaces, the following notions can be
introduced:

- (r-) closure of a subset A of M (denoted by A(L), A(R))
[- (r-) closed set A in M (if A=A(L), resp. A=A(R))

[-(r-)openset Ain M (if M—A=M-A(L), M—A=M- A(R))

[- (r-) dense set A in M (if A(L)=M, resp. A(R)=M)

[- (r-) point of accumulation of a subset A of M and the set of all [- (r-) points
of accumulation of A (denoted by A%(L), resp. A%(R))

[- (r-) boundary point of A and [- (r-) boundary of a subset A of M

[- (r-) interior point of A.

M

S e

Remark 3.4. To those in the usual metric spaces in the OMS analogous
theorems are true for the /-notions and for the r-notions. Some differences arise if
we consider an /-notion and r-notion at the same case. This fact is illustrated by the
following example.

Example 3.5. Take the oriented metric o from Example 1.2 and consider an
OMS (M, g.), where M= (0, ) and 0= 9|0, »)

Let 0<a<b<o. We can say:

an interval {a, b) is r-open and r-closed but neither [-open nor [-closed; (a, b) is
[-open and [-closed but neither r-open nor r-closed; (a, b) is I- (r-) closed but
not [- (r-) open; (a, b) is [- (r-) open set but not [- (r-) closed; (0, b) is [- (r-)
closed, [-open but not r-open; (a, ©) is [- (r-) open, [-closed but not r-closed.

Using these results we give:

(1, 3)is r-open, (2, 4) is [-open but the union (1, 3)U (2, 4) = (1, 4) is neither [-
nor r-open.

(1, 3) is r-closed, (2, 4) is [-closed but the intersection (1,3) N (2,4) = (2,3)is
neither r- nor [-closed.

Theorem 3.6. A subset A « M is I-dense in M if and only if for every ¢ >0 and
for every ye M L.(y) n A+, i. e., there exists a point x € A such that x € L.(y),
i.e. o(x, y)<e. An analogous proposition holds true for an r-dense set in M.

Example 3.7. a) Let us consider the OMS from Example 1.2. The set of all
rational numbers is [-(r-) dense in R. We omit the simple proof.

b) Consider the OMS frcm Example 1.3. Put E'={e1; n=1, 2, ...}. Obviously
E’(L)=M and therefore E’ is [-dense in M. We shall show that in this OMS the
following proposition holds: if a subset A « M is r-dense in M=E u Fu G, then
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EuFc A. Assume that A is r-dense in M and EuF& A. This assumption
implies that there exists a point e, (or f,) such that ¢, € E U F and at the same time
c. € A. We can tind a number ¢ >0 (any ¢ <« will do) and a point ve M(y =e¢,)
such that cach point x € A satisfies the'inequality o(v, x)=¢ (because o(e,, x)
= u=¢). Then, in view of Theorem 3.6, the sct A is not r-dense in M, which is
a contradiction proving the inclusion EUF < A.

4. Separable and complete spaces

Definition 4.1. An oriented metric space (M, ) is said to be [-(r-)separable if
there eaists a countable set A < M which is [-(r-)dense in M.

Exampie 4.2. a) The OMS from Example 1.2. is an /-(r-} separable space,
because the countable set of all rational numbers is [-(r-) dense in R.

b) Consider the OMS from Example 1.3. In Examplc 3.7b) we have shown that
the countable set E'={ey;n=1,2,...} € M is [-dense 1n M, hence this OMS is
/-separable. But this OMS is not r-separable, because as Example 3.7b) shows,
every r-dense subset of M is uncoutable.

Theorem 4.3. Any oriented metric space (M, o) with the topology T, (or Tr) is
a first-countable topological space.

Proof: For cach « e M we can take locB, = {L:(a):n=1.2,...} (or locB,
= {Ri(a); n=1,2,...}) where locB, denotes a local base of topology Ty (or Tk)
at a.

Theorem 4.4. Let (M, ¢o) be an OMS such that the topology T. (or Tg) is
second-countable. Then (M, o) is an I-separable (or r-separable) space.

Remark 4.5. In the usual theory of metric spaces the converse implication
hoids. In the theory of OMS, in general, it does not. For example, consider the
OMS from Example 1.2. This OMS is [-(r-)separable, but the base of the topelogy
Tr must contain all the intervals of the form («, b) for « € R and obviously it will
be uncountable. Analogously the base of the topology T, must contain all the
intervals of the form (b, a), a € R and therefore it cannot be countable. Hence the
topology T, (or Tk) is not second-countable.

Definition 4.6. A sequence {x.};-1 in M is said to be [-fundamental if
lim ¢ (X, Xx) =0, i. e. if for every £ >0 there exists an n, such that o(x,. x,.)<e
whenever m>n>n,. A sequence {x,}:-, in M is said to be r-fundamental if

lim (X, x.)=0.

Example 4.7. Consider the OMS from Example 1.3. The sequence {e:};-, is
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[-(r-)fundamental, because li)m Q)(e;,e-;-_) = lxml—O and hmo(e‘ e!)

= limiz().

m— < F}

The scquence {gi.i}»-1 is [-fundamental but not r-fundamental, because
lim o(gi+2 gied) = lim (l—-l>=0 and lim o(gi+k gi+l)

m>p—sx m>n—x \ H m m>n—sx
. 1

= lim {l+—)=1.

m>n—x m

In the usual metric spaces every convergent sequence is fundamental. As the
next example shows, in the OMS there are some sequences which are [-(r-)-
convergent but not [-(r-)fundamental.

Example 4.8. Consider the OMS from Example 1.3. Define the sequence

{x,)n 1 in M in this manner:
X, = ¢+ for n odd
x, = e, for n even.

Evidently [x,]L = {ei, fi}.This sequence is not [-fundamental because there is an

£>0 (e. g. €< 1) such that for every n, there is a number n >n(,(n > 1y, 1 0odd) and
1

a number m=n+1such that o(x,, x.) = 0(gr+) €27) = 1+ plilieare e

However, this sequence has an [-fundamental subsequence (containing only even

members of {x,}7-1).

>1=¢.

Definition 4.9. An oriented metric space (M, ) is called an F, — (F,-) space if
every I-(r-) convergent sequence in M contains an I-(r-) fundamental subse-
quence.

Example 4.10. a) The OMS from Example 1.2. and from Example 1.3 are
F;- (F,-) spaces.

b) The OMS from Example 1.4 is neither an F;-space nor an F,-space (e. g. the

sequence {%-'-E} — 1+% but does not contain any [-fundamental subse-
n=1 <~ .

£

quence). Analogously the r-convergent sequence {1 +%—l} does not contain

n=1
any r-fundamental subsequence.
¢) Obviously the usual metric space is an F-(F,-)space.

Definition 4.11. An oriented metric space (M, ) is said to be [-(r-) complete if
every I-(r-) fundamental sequence in M is |-(r-) convergent, i. e. it has an [-(r-)
limit in M.

Example 4.12. a) The OMS from Example 1.2. is [-(r-)complete.

b) The OMS from Example 1.3 is /-complete but not r-complete (the sequence
{e:}>-1 is r-fundamental but not r-convergent in M).
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c¢) The OMS from Example 1.4 is neither !/-complete nor r-complete (the
1
sequence {n}
in M).

o

is [-(r-) fundamental but it has neither an [-limit nor an r-limit
1

n=

Theorem 4.13. Let {x.}.-, be an [-(r-) fundamental sequence in M and let
{x., }i=1 be a subsequence of {x.}7-: if X,,—x (x «x,,) in M, then ¢, —> x (x «x,)
in M.

Theorem 4.14. An OMS (M, g) is r- (1-) separable if and only if for every e >0
there exists a countable subset A, « Msuchthat M < | L.(x) (M c U Rp(x))
x €A,

xeA,

Proof:

1. If (M, o) is r-separable then M contains an r-dense countable subset B < M.
Let £>0 be fixed. R.(x) " B#0 for every x e M, because B is r-dense in M. A
family A, = |J (R.(x)n B) is obviously countable (B is countable) and we shall

reM

prove that M < ] L.(y). If x,e M, then there exists a point y,€ A, such that

y€Ae

yo€ R.(x0) N B, i.e. o(xo, yo) <€ hence xo€ L.(yo) = |J L(y).
yeA,
2 If for every £>0 there exists a countable subset A.cM such that M c

J L.(x), it 1s possible to construct a family A. A= 0 A... where g, =%. The
n=1

x €A

family obtained is obviously countable and we shall prove that it is also r-dense

in M. Let £€>0, vo,e M. Choose 8,1=,1—l such that ¢, <¢. M c U L . (y), hence

y € Aen

there exists a point y,e A, = A such that v,€ L., (yo), i.e. 0(xc, yo)<€&,<e and
yo € Re(x0). We have shown that for every R.(x) € M: R.(x)n A+, hence A is
r-dense in M.

Remark 4.15. a) If for every £ >0 there exists a countable subset A. = M such
that M < | J R.(x), then (M, g) is not an r-separable OMS in general.

x € Ae

b) If (M, o) is r-separable, then for every £ >0 there does not exist in general

a countable set A, = M such that M < [ R.(x).

X €A

Example 4.16. Put M=(0, 1) u((1, 2)n Q). Define o: M X M—R as fol-
lows: )
o(x,y)=x—y+1 if 0<|x—y|<1
o(x, Y )=x-y+2 if |x—y|=1

o(x.y)=0ifand onlyif x=y.
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(M, o) is obviously OMS. Let e<1:

ifx<1: R(x)={x}u((x+1-¢,1+x)u(x+2—¢,2))nQ
ifx>1: R(x)={x}u(x+1—¢,2)nQ if x—1<e¢
R.(x)={x} if x—1=¢

(0, 2) n Qs a countable, r-dense subset of M, hence (M, @) is r-separable. But for
€ <1 there does not exist a countable subset A, = M such that M = |J R.(x) (A.
must contain all points x € (0, 1)). o

Let e<x:

if x<1<x+e:L(x)=(0, e+x—1)u{x}

if x<1 and at the same time x+&<1: L.(x)={x)

if x>1 and at the same time e<x—1:

L(x)=(x—1, etx—1)u{x} if e<2—x

L(x)=(0, x+e-2)u(x—1,1)u((1, x+e—1)nQ)u{x} if e>2—x.

We have shown that (M, o) is r-separable, hence there exists for every ¢>0 a

countable subset A, = M such that M = |J L.(x). But (M, g) is not [-separable

x €A,
because every [-dense set in M must contain all points x € (0, 1) and therefore it is
uncountable.

5. Compactness

Convention: Throughout this paragraph we shall consider only OMS with the
topology T, but analogous statements can be established also for the OMS with
the topology Tk.

If (M, @) is a usual metric space, then the following assertions are equivalent:

1. Every sequence in M contains a convergent subsequence
2. (M, p) is a compact space

3. Every infinite subset A = M has a point of accumulation
4. (M, g) is complete and totally bounded.

Let us discuss these assertions in the theory of OMS,

Definition 5.0. An oriented metric space (M, o) is said to be [-(r-)compact if
from every [-(r-)open covering of M it is possible to choose a finite I-(r-)open
covering of M.

Theorem 5.1. Every sequence in M contains an [-convergent subsequence if and
only if every infinite subset A — M has an l-point of accumulation.
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Theorem 5.2. If (M, p) is an [-compact space, then every sequence in
M contains an l-convergent subsequence.

Problem: Is the converse of Theorem 5.2. true in general? We can easily
prove only a weaker assertion:

Theorem 5.3. If (M, p) is a second-countable space and if every sequence in
M contains an l-convergent subsequence, then (M, @) is an [-compact spacc.

Definition 5.4. A set M is said to be [-totally bounded if for each ¢ >() there
exists a finite set A, = M such that M = |J L.(y).

yeA,

Theorem S.5. If (M. o) is an [-compact space, then it is also an [-complete and
[-totally bounded space.

Proof: Since the OMS is [-compact, by Theorems 5.2. and 4.13. it is also
[-complete. Now we prove that M is an [-totally bounded set. Let ¢>0 and
M < | L.(y). The family {L.(y)},cnm is obviously an [-open covering of M and

yeM
therefore it is possible to choose from {L.(y)},m a finite [-open covering, i. e.

there is a finite subset A, = M such that M = | L.(y). This proves the theorem.
yEA,

Remark 5.6. The converse is not true in general. For example, let M be an
interval (2, 3) and 0, =0(2, 3), where g is the oriented metric from Example 1.2.
Obviously (M, g,) is an [-complete space. Now we shall prove that M is an [-totally
bounded set.

If e=1, L.(3)2(2,3)
if 0<e<1, there exists the smallest kK € N such that
I—kes2+e<3—(k-1)e.

Choose: xo=2+c¢, then L.(x,)=(2,2+¢)
xi=3-¢, then L,(x,)=(3-2¢,3—¢)

x,=3-2¢, then L,(x,)=(3—3¢,3-2¢)

Xe-1=3—(k—=1)¢, then L,(xio)=(3—ke,3—(k—1)¢)
X =3, then L.(3)=(3-¢,3).

Evidently the set A, = {xo, X1, ..., x¢} isfiniteand |J L.(x)> M,i=0, 1, ..., k.

X, € Ag

To show that (M, g,) is not [-compact take
L= {(2 +%, 3>; n=1,2, } for an [-oven covering of M. Therefore (M, 0.) is

not [-compact, because evidently no finite subfamily of L covers M.
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Theorem 5.7. Let (M, o) be an F;-space and let every sequence in M contain an
[-convergent subsequence. Then M is an r-totally bounded set

Proof.

Suppose that M is not r-totally bounded. Hence there is a number &,>0 such

that there does not exist a finite set A,,c Msuchthat M = |J R.(v).Lety,e M.

YEA,

Then there is a point y, € M such that o(y,, y2) = €, (in the other case A,, = {y\}).

Similarly there is a point y; € M such that o(y;, ys) =€, j =1, 2 (in the other case
A, = {vi.v:)).Inthis manner we can construct a sequence yi, ya, ..., Yu. ... (1)in M
such that for each m, ne N, m>n, 9(ya, Ym)= €0, i. €. no subsequence of (1) is
[-fundimental. By assumption the sequence (1) contains an [-convergent subse-
quence. But the [-convergent subsequence from (1) does not contain any [--
fundamental subsequence, which contradicts the assumption that (M, p) is an
Fi-space.

Definition 5.8. A set M is called totally bounded if for every € >0 there exists
a finite set A. = M such that

Me U (LO)NR()).

Theorem 5.9. If an OMS is an [-complete and a totally bounded space, then it is
also an l-compact space.

This theorem can be proved analogously to the usual theory of metric spaces.

Remark. 5.10. As the next example shows, the converse is not true in general.

Put M={1 in=1,2, } A nonnegative function o: M X M— R is defined as

n

follows:
11 1 1 11 1
o) =0 e[ 1) =7 for n>1,0(5, ) =1+
forn, m>1 and m#n,g(l,%)=l for n>1.
Evidently

!’__.

—

S |-

S ——
Il

(] for n>1, L()={1ine(3, )]

n

R,(l) = {l} for e<1.

n n

This oriented metric space is [-compact and [-complete (the proof is trivial). For all
yeML(y)nR.(y) = {y}. Therefore there exists no finite set A. = M such that

U L.(y)nR.(y) o M (M is infinite), hence the OMS is not totally bounded.
YAl
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Remark 5.11. If an [-compact oriented metric space (M, o) satisfies the
following condition: for each y € M and each £ >0 the intersection L.(y) "R (y) is
an [-open set, then (M, ) is a totally bounded space. The proof is evident.

Theorem 5.12. Every [-compact space is r-separable.
Proot: from Theorems 4.14, 5.5.

Theorem 5.13. Every [-compact Frspace is [-separable.
Proof: from Theorems 4.14, 5.7.

6. Mappings

Definition 6.1. Let (X, 0:) and (Y, 0.) be oriented metric spaces and let f be
a mapping from X into Y. Let a be an l-point of accumulation of X. A pointbeY
will be calied an Ir-limit of f at the point a if for every r-neighbourhood R.(b) there

is an l-neighbourhood Ls(a) such that if x € Ls(a), then f(x) € R.(b). Analogously
we define rl-(ll- rr-) limits of f.

Similarly as in the usual metric spaces, we can introduce continuous mappings
and contractive mappings in the theory of OMS.

Theorem 6.2. Let (M, o) be a nonempty I-complete oriented metric space and
let f: M— M be a contractive mapping, let the topology T, on M satisfy the
Hausdorff condition. Then there exists exactly one point x, € M such that x, = f(x).
This point will be called an [-fixed point of f.

Remark 6.3. The preceding theorem is not true if the topology T. is not
assumed to be Hausdorff. To show this, consider the OMS from Example 1.3.

Put M, =E and 0,=p|E.(M, @) is an [-complete OMS and the topology T is
not Hausdorff. Define a contractive mapping

@2 (My, 01) —> (M;, 01) by: g(e) =ea2.
The mapping ¢ has no [-fixed point.
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HEKOTOPBIE IMOHATUA MATEMATUYECKOI'O AHAJIU3A
B OPUEHTHUPOBAHHBIX METPUYECKHUX IMPOCTPAHCTBAX

Cnaeka boja#anosa

Pesoma

B pa60're PacCMATPUBAIOTCA HEKOTOPBHIC OCHOBHLIC MOHATUA MaTEMATHYCCKOTO aHAJIN3a B OPUCH-
TUPOBAHHBLIX METPHUUECKHUX [IPOCTPAHCTBAX. [MonsTue OPUEHTHPOBAHHOIO METPUUECKOTO MPOCTPAH-
CTBA MOXHO MOJYUHTb U3 NMOHATUSA 0ObIKHOBCHHOTO METPUYECKOTrO MPOCTPAHCTBA, €CAU TONYCTHM
npeanoCLUTIKY CUMMETPUYHOCTH METPHKH.
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