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HYPERINVARIANT SUBSPACE LATTICE OF SOME
Co-CONTRACTIONS

MICHAL ZAJAC

1. Introduction

Let  be a separable Hilbert space. Denote by () the set of all subspaces of
(As usual, a subspace means a closed linear manifold). If t,, M, are from L(H),
then by M v, we mean the smallest subspace of § containing M, and M,.
I, NI denote their intersection. Together with these operations ¥(9) forms
a complete lattice. Let T be a bounded linear operator on §. We denote by
hyperlat (T) the lattice of all M e L(9) that are invariant under each operator that -
commutes with T. In [5] it was proved:

Theorem 1.1. For a linear transformation T on a finite-dimensional complex
vector space V hyperlat (T) is the smallest sublattice of (V) which contains all
subspaces that are either the kernel or the range of a polynomial in T.

The purpose of the presented paper is to show some generalizations of this result
for some contractions on the separable Hilbert space. '

We shall use the functional calculus for Hilbert space contractions developed by
Foias and Sz.-Nagy [6, chap. IIL.]. H® and H? will denote the corresponding
Hardy classes. A contraction T on 9 is of class C, if there exists a function m e H”
such that m(T)=0. By mr we denote the minimal function of T, mr is always an
inner function and it can be factored into a Blaschke product and a singular
function (For details see [6, chap. IIL].

In what follows the range of an operator T will be denoted by rng T, the closure

of tng T by @ T and the kernel of T by ker T. The basic lattice-theoretic
terminology and results may be found in [4].

Definition 1.2, Let T be a completely non-unitary contraction. We say that
T has the property (L) if and only if hyperlat (T) is the smallest complete sublattice

of $(9) which contains all subspaces that are of the form ker u(T) or rng v(T) for
u and v from H”.

Pei Yuan Wu [10] has proved that every operator T € Co and of finite defect
indices has the property (L). In section II we shall use methods similar to the

397



method of [5] to prove that some contractions of class C, with not necessarily finite

defect indices have the property (L) too.

In section III we shall prove that the property (P) introduced by Hari
Bercovici [2] implies (L). Consequently every weak contraction of class Co has

the property (L).

I

In this section we assume that T € Co and that mr is a Blaschke product.

1. For every complex number a: 0<|a|<1

set
_da-z
b(2)= 0 T=%
and
bo(z)=z2
Let

mr= H :((3
i=1

(la(i)I<1, Zn@) (1-|a(i)|)<®), [6, (1I1.1.12)].

The natural number n(i) is the multiplicity of a(i) as a zero of mr.
Setting for every natural nimber i '

i =ker bi(T)
we have [6, propositions 111.7.1, I11.7.2]
D= @i‘i' \Z@;
j#i

(+ denotes the direct, non-necessarily orthogonal, sum.).

(2.1)

2.2)

(2.3)

Theorem 2.1. Let T be a contraction of class Co, let mr satisfy (2.1) and

T.=T|9: (i=1, 2, ...). Then
(i) For every Me hyperlat (T) there holds

MNH: ehyperlat (T}) (i=1,2,..)
and

M= \:/livzn@i),

(ii) each . is the range of @:(T) where i is a suitable function from H”.
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Proof. Let maw=mr/bi(}). According to [6, sec. II1.7.1] there exist u;, 1, from

H” such that

b:((:;ui +mapvi=1

and it follows that if P, is the projection onto §; along \/ 9: and if m.;v; = g, then
. i#j

P;=q,(T), thus (ii) is proved.

Let M e hyperlat (T) and let S: be a bounded linear operator on : commuting
with T:. Clearly the operator S=S.Pi commutes with T. IRN9: € hyperlat (T)
implies

S;(ﬁfénsbi) = S(iIRnS'Q.) CEIR(\@-‘ ’

thus M. € hyperlat (T:).

T|IM is a Co-contraction whose minimal function is a Blaschke product.
According to [6, proposition II1.7.2] 2 is generated by characteristic vectors of T
that belong to M. On the other hand the characteristic vectors of T associated with

the characteristic value a(i) belong to 9, thus M < \/ (MN9;). The other inclusion
. i=1

is obvious, and so (i) is proved.
Theorem 2.2. Let T be a Cs-contraction with finite defect indices and let

mr=b2 (la|<1). (2:4)

Then T has the property (L).
Proof: T is quasisimilar [3] to an operator

S=S(b))®...®S(br),

where n=i1=Zi=...Zi.>1.

For any inner function m $(m) denotes the orthogonal complement in the
Hardy space H” of the subspace mH” and S(m) is the projection of the unilateral
shift onto ©(m) (see [6, p. 369]). Here and in the rest of this paper @ denotes the
orthogonal sum.

For all k S(b%) is k-dimensional [6, p. 369 and proposition III. 7.3]. Hence both
S and T are finitedimensional and according to theorem 1.1 they have the property
L)

Theorem 2.3. Let T be a contraction of class Co and let mr be a Blaschke
product (2.1). Let T; (see theorem 2.1) have finite defect indices. Then T has the
property (L). ’

Proof: From theorems 2.1 and 2.2 it follows that hyperlat (T) is the smallest
complete sublattice of () which contains all subspaces that are of the form
ker u(T:) or rng u(T:) for some u from H” and T; = T |rng :(T), where @ is an
H” function. We have for every ue H” and i=1, 2, 3, ...
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ker u(T:)=ker u(T)nrng ¢:(T)
and
mg u(T)) = u(T)@(T) = u(T)@(T)D = mg (ug) (T).
This concludes the proof of our theorem.
Example 2.4. Letm= f[l b.. be a Blaschke product (each zero of multiplicity

one). Denote by $(i) the orthogonal sum of i copies of H(b..) and by S(i) the
orthogonal sum of i copies of S(baw).

Set

$=@9@) and T=§§lS(i).

i=1

It is obvious that mr =m. We use [7, theorem 1] to find the Jordan model of T.
Using the same notation as in [7] we have
@ =diag (ba); baey, ba); bacsy, basy, b -..)
Q =diag (Bl; Bz, Bz; B;, B3, Ba; )

where Bi=m/ba.w - Y =m.

Then it is easy to compute that
E,(Q) = ba(l)ba(z) ba(r—l))

and the Jordan model of T is

@S([Tba0),
and so T has not finite defect indices. On the other hand T obviously satisfies the
assumptions of theorem 2.3.

III.

We shall consider bounded operator-valued analytic functions as matrices over
H~ of the type n X n (1=n=»). Let {m:}i-: be a (finite or infinite) sequence of
inner functions such that m.., divides m; for all i: 1=i<n. Then the matrix
diag (mi, m., ...) is called normal. An operator is called a Jordan operator if it is of
the form $(M) with a normal matrix M (see [7], [8]). Ha= H*(E.) will denote the
Hardy—Hilbert space of E.-vector valued analytic functions in the unit disc, E.
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means the n-dimensional Euclidean space. The following theorem was proved in
the case n <o in [10], the same proof will do for n =,

Theorem 3.1. Every Jordan operator has the property (L).

Proof: We assume n=oo. Let M=diag (m, m., ...) be a normal matrix.

A subspace £ of HOMH.: = (;:;) H?*@mH? is hyperinvariant for S = S(M) if and
only if there exist normal matr'i_cles '

© =diag (%, 32, ...) and & =diag (@1, @2, ...)
such that M= ©¢ and

2= O(H2OPH2) = @ S(H2 O @H?).

This was proved in [9, theorem 3] for n <, but the same proof works for n = o,
We claim that

8

2= \/ker ¢:(S)nrng 3:(S)

Denote S;=S(m:); then S =éS.<
i=1

L= 0(H'Q@H?) =ker ¢i(S:)) =rng §:(S:).
Setting ;= {0} for i#j and Lu =%

and
M= DL,
we have
M = ker qi(S)nrng 3:(S)»
hence

Lc \ ker ¢i(S)nrng 3:(S)-
i=1 .

To prove the other inclusion fix j and let x= é)xa be in ker @;(S) N rng %(S).

i=1

Let {y. = éy.-,.‘}:-l be a sequence of vectors (in H-OMHz) such that

i=1

lim 3;(S)y.=x

n—o®
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(in norm topology). Then for all i
’1‘1_1;11 0,(5.) Yin =X (31)

x e ker @i(S) ismplies x; eker @;(S;), and so
lim (p,'(su')ﬂ;(s:)ﬁn =0.

If i<j, then ¢, divides @3; and so
lim @i(S:)3i(Si)yn =0;

then (3.1) implies

@i(S)x: =0.
If iZj, m;= @ divides @:;. For all n

mMi(S:)Yin =0
and so

@i(S:)3(S)yn =0,

hence (3.1) implies

@i(S)x;=0. .

We have x; e ker ¢:(S;)=2% for all i. This finishes the proof of our theorem.

Bercovici [2] has studied the operators T of class Co having the following
property:

(P) Any injection X commuting with T is a quasi-affinity. He proved [2,
proposition 4.8] that if T has the property (P) and S is its Jordan model, then
hyperlat (T) and hyperlat (S) are isomorphic; namely he proved the following:

Theorem 3.2. Let T and T' be two quasisimilar operators of class Co acting on
9, ©', respectively, and having the property (P). Let us define

E: hyperlat (T) —hyperlat (T')
n: hyperlat (T’) — hyperlat (T)

by
E(EIR)=XEM” SX; (3.2)
n®=_V YR (3.3)

“(I(T'" T) means the set of all operators H— ' satisfying T'X = XT).
402



Then
(i) For any quasiaffinities
AeclT',T), Bel(T,T)
E(M)=(AM)” - B'M, M ehyperlat (T)
(ii) & is bijective and n=E"".

Now we use this theorem to prove:

Theorem 3.3. Every operator T having the property (P) has the property (L).

Proof: Let S be the Jordan model of T. According to [2, corollary 4.3] S has
the property (P) and from theorem 3.2 there exist quasi-affinities A € I(T, S),
B eI(S, T) such that for every & € hyperlat (S)

E@)=(A%) =B"'(®)

and the mapping & is a bijective lattice isomorphism from hyperlat (S) onto
hyperlat (T). Now for every o e H” TA = AS implies p(T)A = Ag(S),

this implies
E(ker @(S))=(A ker ¢(S))” cker (T)

and

& (g ¢(S)) = (A(@(S)D) )" =(Ap(S)D) = (9(T)AD) cng ¢(T).
Similarly ¢(S)B =Bg(T), and so
ker (T)c B~ ker @(S) =& (ker ¢(S))

and

g ¢(T)=B™" mg ¢(S)=E (g ¢(5)).
We claim that
€ (ker @(S)) =ker @(T)
and
£ (mg @(S)) = mg ¢(T)

and this together with theorem 3.1 gives that T has the property (L).
Corollary 3.4. Every weak contraction of class C, has the property (L).
Proof: Every weak contraction of class Co has the property (P) (see [1,

corollary 2.8]).

The converse of theorem 3.3 is not true because every Jordan operator has the
property (L) but need not have the property (P). It suffices to take the orthogonal
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sum of infinitely many copies of S(m) with an arbitrary nonconstant inner function
m. This follows easily from theorem 4.1 of [2].
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PEIIETKA IOAIIPOCTPAHCTB, FPIiIEPPIHBAPPIAHTHbIX JJIs1 HEKOTOPBIX
CXATUH KIIACCA G,

Muxan 3asn

PE3IOME

B craTbe M3y4aloTCs yCNOBMA, NpU KOTOPbIX cxaTtue T Knacca Co UMeEET cliefyiolee CBOMCTBO @

(L) Pewerka mOANpOCTPAHCTB, TMNEPUBApHAHTHLIX M T — MOpOXAEHa MOXMPOCTPAaHCTBAMH,
SIBJISIIOLMMUCS HYJIb-TIPOCTPAHCTBOM WM 3aMbIKaHMeM oOnactu 3HauyeHus onepatopa u(T), rae u
— mobas pyukuma uz H”,

IToka3sbiBacTcs, uro cBodcTBO (L) MMeer MecTo, ecnM MuHUMalbHas (yHKuMs omepatopa T
sBnsieTcss mpoussefeHneM Brnsumike (2.1) u y omepatopoB Ti=T|9: (cMotpu (2.2)) KOHeuHble
nedexTHbIe MHAEKCH. [ToKa3bIBaeTCs TOXE, YTO NI0GOH onepaTtop XKopaaHa o6nanaet cBoiicTBoM (L) 1
4yT0 cBOHCTBO (P) (Ecim X — komMyTupyrouuii ¢ T IuHEHHbIA onepa'rop u ker X =0, To ker X*=0)
BBeficHHoe BepkoBuueM, Biever 3a coboit (L).
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