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TOPOLOGY ON REGULATORS OF LATTICE
ORDERED GROUPS
I. TOPOLOGY INDUCED BY AN I-GROUP

FRANTISEK SIK

Let an [-group G be a subdirect product of linearly ordered groups {G:: x eR}.
Then G is a set of functions f: R — | J{G:: x eR}. Jakubik [8] defined a topology
on the set R in such a manner that, on this more general level, he simulated the

“definition of the weak topology well known from the theory of real valued
functions. We shall recall it briefly. Every set of real valued functions C on a given
set X defines a topology on X such that every f € C is a continuous function on the
topological space X endowed with this topology. Among these topologies there
exists the smallest one, the so-called weak topology induced by the set Con X. If X
is a topological space and C the set of all continuous real valued functions on X,
then the weak topology induced by C on X has, as a base for closed sets, the system
{Z(f): fe C}, where Z(f) = {xeX: f(x)=0} is the zero set of f [7] 3.5.

In [8] it is shown that the system { Z(f): f € G}, where analogously to the above
definition Z(f) = {xeNR: f(x)=0}, is a base for closed sets of a topology on
(topology induced by the [-group G on R). If we define a mapping | : x e R— Ux
by the rule Ux = {f e G: f(x) =0}, then the pair (R, |)) is the so-called realizer of
G (which means that | Jx is a prime ideal of G for every x e R and [ {{Ux: x e R}
= {0}). In the new notation we have Z(f) = {xeR: feUx}. This topology is
used in [12] and [13] and in certain equivalent form also in [5]. We shall show that
the main results concerning this topology remain preserved when we omit the
requirement of normality for the elements of the set {|_x: x eR} in the notion of
the realizer, in other words, when |_J is a mapping of R into the set ?(G) of all
prime subgroups of the [-group G with the property [ {{Ux: x eR} = {0}. The
pair (R, ) shall be called a regulator of the l-group G (cf. sec. 1). We shall
investigate the topology on R defined as before giving the base for closed sets
{Z(f): fe G}, where Z(f) = {xeR: feUx}. Thus the domain of applicability of
the induced topology will be extended from the class of representable I-groups to
the class of all [-groups.

If R, UJ) is a regulator of G and | is one-to-one then we may identify the set R
with the set {{Jx: xeR}, which is a set of prime subgroups of G. Then the
topology induced by G on this regulator R is the topology inherited on 3 by the
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hull-kernell topology of the space (G) of all prime subgroups of G (see, €.g., [1]
and [9)]) and R is a dense set of the topological space ?(G). This represents
another approach to the problem, which will be examined in another paper.

Raising the generalized theory we proceed roughly as in [13]. It will be shown
that the generalized theorems often differ from the special ones unessentially. But
it is desirable to summarize these generalized results; moreover, a number of
present results has no pendant in [13].

A short review of results. Let G and i be nonempty sets and | J: R—exp G a
mapping. The mappings ¥ and Z defined by

YA)=N{Ux:xeA} (AcR) and Z(P)={xeR: Ux2P)} (P<G)

are dually isotone mappings between the sets expR and exp G ordered by
inclusion. In particular if G is an [/-group and (_J a mapping of R into ?(G) the set
of all prime subgroups of G, then the pair (R, |J) is called a regulator of G if
MN(Ux: xeR) = {0}. If the regulator (R, |J) is standard (i.e. if | Jx # G for every
x €R), we can define a topology on R the so-called topology induced by G on R.
A basis of closed sets for this topology is § = {Z(f): fe G}. The corresponding
topological space is denoted by (R, G). Moreover, there are defined topologies on
the system of all ultraantifilters 1I(Z) of the lattice =, where £ means I'(G) the
lattice of all polars of G or I'T'(G) the lattice of all dual principal polars of G. One
establishes relationship between these topologies and the topologies induced on R
by different regulators (R, J) of G. In section 2 it is proved that the mapping ¥
maps dually isomorphically the lattice (R, G) of all regular closed sets of the
space (R, G) onto the lattice of polars I'(G) of G, and the lattice N(R, G) of
closed sets of (R, G) onto Q(R, G) the lattice of all R-subgroups, LR, G)
= {W(A): AcR}. The restriction of Z onto the corresponding sets is the inverse
mapping of ¥. The extremal disconnectedness of the space (R, G) is necessary and
sufficient for the lattice (N, G) to be a sublattice of the lattice N(R, G) (2.23).
Not every topological space can be represented as (R, G) for a suitable [-group G,
e.g. any T;-space which is not T>-space (1.3). In contrast to this every Hausdorff
completely regular space has such a representation (G is the lattice of all
continuous real valued functions on the given space).

1. Relations between topologies induced by an I-group

1.1 Definition. Let G be an [-group, ## @ and J: x—| Jx a mapping of R
into the set ?(G) of all prime subgroups of the I-group G. The pair (R, G) is
called a regulator of the [-group G if [ [{Ux: x eR} = {0}. A regulator is said to
be standard if | Jx# G for every xe®R [13] II, 3. The mapping |J defines
a decomposition on R, R, and a one-to-one mapping ) of R onto {|Jx: x eR}.
Evidently, the pair (R, ) is a regulator of G. It is called a simplification of
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(R, ). If we denote by & the projection of R onto R, then the mapping ) is
defined by the rule [ J% = Jx, where x R and x is an arbitrary element of 7' (x).
A regulator (R, ) for which x ||y holds whenever x, y e R, x# y is said to be
reduced. A reduced regulator is evidently standard. A regulator (R, |)) is called
completely regular if there holds: x eR, fe G, fe|Jx = there exists g € G with
fdg and g € |_x (where f8g denotes |f|A|g| =0). A completely regular regulator is
standard, too. A regulator (R, ) is called Hausdorff if for every x, y e, x#y,
there exist elements f, g e G such that f8g and feJx, g € UJy. The last two
concepts are due to P. Ribenboim [10] and were introduced for the concept of
a realization as defined below (see 1.8). A regulator (R, ) is called a realizer if
Ux(x eR) is a prime ideal of G. In every I-group # {0} there exists a (reduced
completely regular) regulator while the existence of a realizer characterizes
representable [-groups.

Instead of (R, |J) we often write R only supposing tacitly that the mapping | is
-fixed. In [13] the symbol x( € R) is identified with the associated subgroup | Jx and
by a regulator we understand there an indexed system of prime subgroups of G
whose intersection is {0}.

Given fe G we define

Z(f)={xeR: feUx)}.

1.2 Theorem. Let (R, | J) be a standard regulator of an l-group G(# {0}).
Then the set

8={Z(f):feG}

is a basis of closed sets for a topology on the set R.

Proof. ([13]1 1.5) By a topology we mean a topology in the sense of Bourbaki.
It suffices to prove (1) ReF; (2) AuBefF for every A,BeF; (3)
({Z(f): fe G} =0. There holds (1) Z(0)=R; 2) Z(/)uZ(g) = Z(|f|A|g|) for
everyf,ge G ([13]1116.3); B) xe[ W Z(f): fe G} = feUx forevery fe G >
G =Jx, a contradiction.

This topology is called a topology induced by the I-group G on the set R. The
corresponding topological space is denoted by (R, G). If we take a regulator for
a topological space, its topology will always be the induced one.

1.3 Definition. Let G be an [-group and I'(G) the Boolean algebra of all polars
of G. By the symbol K’ we mean the complement of K € I'(G) in I'(G). There
holds K' = {ge G: fég for every fe K}, where fég denotes |f|A|g|=0. By the
symbol [T'(G) or [1(G) we mean the set {f’: f € G} of all dual principal polars f’ of
G or the set {f": f € G} of all principal polars f” of G, respectively. Here f' = {f}’
= {geG:fdg}, f'=(f')'. Thus K’ = ({f': fe K}. We call the polars K and K’
complementary (in I'(G)).
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1.4 Theorem. Let (R, J) be a standard regulator of an l-group G. The
following conditions are equivalent.

1. (R, G) is a Ti-space (i.e. singletons are closed sets). :

2. (R, G) is a T>-space (i.e. distinct points are separated ; a Hausdorff space).

3. The regulator (R, |)) is reduced.

4. The regulator (R, J) is Hausdorff.

(Cf. [13] IV 8.1)

Proof. 1 = 3. Given x, yeR, x+y, there exist by supposition f, g € G with
xeN\Z() n Z(@g), yeZ({f) n (M\Z(g)). It follows that felJy\Ux,
g € Ux\Uy, thus Jx and |Jy are incomparable sets, whence 3.

3> 4. For x, yeR, x#y there exist f, g€ G such that fel Jy\Ux and
g € Ux\UJy. One can suppose f=0, g=0. For the elements p=f — (fAg),q=¢g
— (fag) there holds xeZ(p), yeZ(q), because xeZ(p) = peUx =
f—((nrg)eUx =felUx + (fAg) = Ux, a contradiction. Similarly for y.
Finally Z(p)uZ(q)=R. Infact,xe Z(pAq) = pAq e Ux =p e UxorgeUx
= x € Z(p)UZ(q)- Then Z(p) U Z(q) = Z(pAq) = Z(0) =R.

4 > 2 > 1 is evident.

1.5 Definitions and known results. An antifilter on a v -semilattice = is a subset
0+ x c £ with the following properties : 1. x does not contain the greatest element
of E (provided it exists); 2. Kex,Le E,K=L >Lex;3.K,Lex=>KvLex.
A maximal (with respect to the inclusion) antifilter is called an ultraantifilter. The
set of all ultraantifilters on Z is denoted by 11(E).

Let E=TI(G) or = IT1'(G) or = T1(G), respectively, and x € I(E). Then by | x
we define | J{K: Kex}. If | Jx+ G, we speak of a standard ultraantifilter on Z,
[13] 11 4.10. The set of all standard ultraantifilters on I'(G) will be denoted by
U,(I). Every x e U(IT") is standard (provided G# {0}), [13] 11 4.11; x e U(T) is
standard iff xnI1’'#@, [13] II 4.12. Thus non-standard ultraantifilters on I'(G)
(G#{0}) exist only in [-groups without any weak unit and these are exactly the
ultraantifilters on I'(G) which contain I1(G) (since an ultraantifilter on a Boolean
algebra E contains either an element a € = or its complement a’, for every a € £).
If G has a weak unit, then every ultraantifilter x € 1(IT) is standard, if not (and
G# {0}), then x = I1(G) is a unique ultraantifilter on I(G) and | Jx = G (for given
xell(IT) and ae G then aeUx = a"cUx = a"ex, [13] 114.7).

If E=T or =I1'" or =TI, respectively, and x e lI(Z), then | Jx is a prime
subgroup of G. If G+ {0}, (U,(I'), Y) and U(T"), ) — briefly written R and
MR, respectively — are standard regulators of G, the latter is reduced and
completely regular, [13] I1 4.15 and 4.16. R or Rn- is called the I'-regulator or the
[T’ -regulator, respectively.

The pair (11(1T), L)) is not generally any regulator, because ({Ux: x e U(IT)}
= {0} does not hold in general ; the equality holds iff the following condition (a) is
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fulfilled (A(G) denotes the set of all elements of the I-group G which are not weak
units of G, i.e. aeA(G) < a"+G):

(a) 0#aeA*(G) > there exists b € A*(G) such that avb € A(G). The condi-
tion (a) can be reformulated as follows:

(b) 0# a e G > there exists b e G with {0} #b'ca”.

[12] Lemma 3, [13] I1 4.10.

If (a) is fulfilled, we can speak of the IM-regulator (11(IT), ) (briefly denoted by
Rn).

Put U=1U(E), where E is a v-semilattice or I = W.(I'(G)) (G#{0} an
l-group). We define

Y={UK:KeZE} or 2'={Uf": fe G}, respectively,
where IK = {xell: Kex}.

Then X or X' is a basis of closed sets for a topology on the set 1(Z) or U, (I),
respectively, [5] 1.9, 1.10; [6] 1.5; [12] sec. IV. The corresponding topological
space is denoted by (1(&), X) or (II,(I'), X'), respectively.

1.6 Lemma. Put U=1U(T) or = U(IT'), respectively, and pick x el and f e G.

Then i
flfex=feUx.
[12] Lemma 1; [13] II 4.6.

1.7 Theorem. Let G# {0} be an l-group. Then

1. The topological spaces (1,(I'), ') and (Rr, G) are homeomorphic.
2. The topological spaces (I(IT'), X) and (Rn, G) are homeomorphic.
3. The topological space (I(I'), X) is Hausdorff and compact.

Proof. (Cf.[5]2.1;[13] I14.18) Put U=1U,(I") or = U(IT’), respectively. The
assertions 1 and 2 follow from the fact that, according to Lemma 1.6, the bases of
closed sets for the compared topological spaces are identical. Indeed, U\Uf’
= {xell: f'ex} = {xell: feUx} = Z(f). The assertion 3 is Teorema 3 [12].

1.8 Let G be a representable [-group and (R, | J) a standard realizer of G. Then
G/Ux=G: (xeNR) is a linearly ordered group. Let ¢ be the corresponding
representation of G and G = G = (G;: x eR) the canonical realization of G,
which means that the @-image of an element fe G, ¢f = fe G = (G.: xeR) is
a function R— |J{G.: x e R} defined by the formula f(x) = f + Uxe G/Ux
(= G:) for every x eR.

The topology induced by the realization G =(G.: x e R) on R is the topology, of
which the basis for closed sets is the system {Z(f):fe G}, where Z(f)
= {xeR: f(x)=0)}.

(c) The topology induced by the I-group G on R is thus identical with the
topology induced by its realization G = (G:: xeR) on R, since f(x) = 0 = f €
Ux holds.
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By the I1’-realization of a representable /-group G# {0} we mean the canonical
realization corresponding to the IT'-regulator .. This is a realizer, and is called
the I1’-realizer. :

1.9 Theorem. Let G# {0} be an I-group. The following are equivalent.

1. The topological space (1I(IT'), X) is compact.

2. The topological space (II(IT), X) is compact and G fulfils the condition
1. 5(a).

3. The lattice T1'(G) is Boolean.

4. The lattice TI(G) is Boolean.

5. I'(G)=T11(G).

6. The topological space (Rn:, G) is compact.

If the l-group G is representable, then the following condition 7 is also
equivalent to the preceding ones. '

7. The topological space induced by the T1'-realization (G:: x eRn') on R is
compact.

Proof. Theorem 6 [12] states that condition 1 together with the claim
{0} eIT'(G) and conditions 2 to 5 are equivalent. Conditions 1 and 6 are
equivalent by 1.7, conditions 6 and 7 by 1.8(c). Thus there remains to verify that
from the compactness of the space (LI(IT"), X), there follows {0} € IT'(G). A proof
is given in Satz C [14], p. 108. For the sake of completeness we give a slightly
modified proof. Since | J{Uf': fe G} = N(IT"), the set {1If': fe G} is an open
covering of the space U(IT'). Thus there exist fi, ..., fa€ G such that U(IT")

= Ulfi:i=1, 2, ..., n}. It follows that U(IT') = CJ{xell: fiex}. Since x is
i=1
a prime antifilter, /..\ fiex = fiex for some i holds, and so U(IT)
i=1

= [xell: ;\féex}. Putf=\n/|f1|. Then U(IT') = {xel: f'ex}, whence f'=0,
i=1 i=1
i.e. {0} elT'(G).

2. The mappings Z and ¥.

2.1 Definition. Let G and R be non-empty sets and | J: it — exp G a mapping.
We define a binary relation (a polarity) 0 =G XN as follows: fox=fe|Jx.
For Ac®R and Pc G we define

Y(A)={feG: fox foreveryxe A},
Z(P)={xeR: fox for every f € P}.

If it is necessary to express the dependence of ¥ and Z on R (with a fixed G),
we write Wy and Zy, respectively. If A ={x} or P = {f} is a singleton, we use the

422



notation ¥(x) or Z(f) instead of ¥W({x}) or Z({f}), respectively. ¥ and Z are
evidently dually isotone mappings between the sets exp i and exp G.

The following lemmas 2.2—2.4 may be easily verified (see [3] IV §5).

2.2 Lemma. Y(A) = ({{Ux:xeA} = {feG: Z(f)o A} forevery Ac ®, in
particular, ¥(x)=Jx for every x eR.

Z(P) = Z({): feP} = {xeR: Ux 2P} for every P =G, in particular Z(f)
= {xeR: feUx} for every feG.

23 Lemma. AcBcR > ¥Y(A) o ¥B); YA = G = Ac
(xeR: Ux=G}, Y@A) = ({{Ux: xeR)

PcQcG > Z(P)2Z(Q); Z(G) = {xeR: Ux=G}; Z(P) = R =
Pc{Ux: xeR). .

2.4 Lemma. ZW(A)2 A, WZW(A)=Y(A) for every AcR;

YZ(P)o P, ZWZ(P)= Z(P) for every PcG.

2.5 Lemma. For PcG and A cR there holds

Pc¥(A)=AcZ(P);
in particular for fe G and x e R we have

feUx=xeZ(f).

Proof. PcW(A) = Pc{feG: Z(f)oA} = Z(f)2 A for every feP
Ac(NZ(f):feP} = AcZ(P).

From 2.3 and 2.4 there follows

2.6 Lemma. The mapping ZW: exp R — exp R is a closure operation in R.
The mapping WZ: exp G — exp G is a closure operation in G.

We call the ZW-images of sets of R closed under the relation o, the ¥Z-images
of scts of G closed under the relation g.

Let G# {0} be an I-group, (R, |J) a standard regulator of G, Z and ¥ the
mappings corresponding to the polarity o = G X R, where the mapping |_J from the
definition 2.1 is realized by the mapping [ J, the second member of the symbol
(R, U). By 2.5 it is clear that the definition 1.1 and 2.1 of Z(f) coincide. These
assumptions hold for the remainder of section 2.

2.7 Lemma. W(A) is a solid subgroup of G for every A cR.

It follows directly from 2.2.

We shall consider connections between the closure operation A - Z¥W(A) in R
(see 2.6) and the closure operation A — A in the topological space (R, G).

2.8 Lemma. A = ZW¥(A) for every A cR.

Proof. By2.2wehave A = ({Z(f): fe G, Z(f)2 A} = ({Z(f): fe P(A)}
= ZY(A).

Let N(R, G) (briefly Nx or N) be the system of all closed sets of the topological
space (R, G).
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29 Lemma. (M, G) = {(Z(P):PcG} = {ZP(A):AcR) =
= {NZ(f): PcG} = (AcR: ZW(A)=A}.

Proof. From 2.2, 2.8 and 1.2 it follows that (R, G) = (A: AcR} =
= {Z¥(A): Ac®R} c {Z(P): PcG} = {QZ(f):PgG} c NWA, G).

2.10 Definition. We denote by Q(R, G) (briefly Qu or Q) the system of all
subsets of G closed under g, i.e. such sets PG which fulfil P = WZ(P).

The elements of the set Q(R, G) are called R-subgroups of G. The R-sub-
groups are solid subgroups of G as it follows from the following lemma.

2.11 Lemma. QR, G) = (¥YZ(P):PcG} = {(¥Y(A):AcR} =
= {(NUx: Ac®)}.

xeA
Proof. Evidently {WZ(P): PcG)2 Q. The converse inclusion follows from
YZ(P) = WZWZ(P) (see2.4). Thus QR, G) = {¥YZ(P):PcG} >
(WZW(A): AcR) = (W(A): AcR)} (by2.4).
The last set is on the one hand 2Q(R, G) and on the other hand
= {ﬂ Ux: Agm} by 2.2.

x€eA

Let the restriction of ¥ on Nw be denoted by ¥ again. Similarly for Z on Q.

2.12 Theorem. The mappings ¥ and Z are (mutually inverse) dual isomorph-
isms between the sets Q(R, G) and N(R, G), ordered by inclusion.

Proof. By 2.9 and 2.11, ¥|» is a mapping onto Q and with respect to 2.4 and
2.9, Z|q is a mapping onto N. By 2.4,2.9and 2.11, Z|e ¥|n=idn, ¥|» Z|a =ida.
The dual isotony of the mappings ¥ and Z follows from 2.3.

2.13 Corollary. Q(R, G) (ordered by inclusion) is a complete distributive
lattice ; there holds

/\ P.=(") P. for an arbitrary family {P.}c Q(R, G).
Proof. The first assertion follows from 2.12. The second assertion:

1. By2.2, Z(OPQ)) =ﬂ{Z(f): fe f:IPa} 2 O (WZ(f): feP.) = OZ(P.,), )
by 2.4, NPa € qu(r]ﬂ,) c lv[ru]zm,)].
2. fe[:]P., implies Z(f) 2 [;]Z(Pa), thus by 2.4, lP[(DZ(P.“)] =) OP.,.

It follows that [P« = lP{ﬂZ(P.,)] €eQM,G) and so [P« = AP. in

QR, G). i
2.14 Lemma. W(A)=¥(A) for every A cR.
Proof. By 2.8 A=ZW(A) and thus by 2.4 W(A) = WZ¥(A) = Y(A).
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Consider P, Q = G. Recall that P6Q means fég for every f € P and every g € Q.
2.15 Lemma. For every P, Q< G, P#¥0+ Q there holds

P6Q=Z(P)uZ(Q)=1.

Proof. There holds Z(f)uZ(g) = Z(If|A|gl) (for evidently Z(|f|Alg|) 2
Z(fNDVZ(lgl) = Z(f)uZ(g) and conversely by [13] III 6.3 or [4] 1.7, there holds
that x € Z(|f|A|g|) implies x € Z(f)UZ(g), thus by 2.3, fog = Z(f)uZ(g)=%R.
Now, by definition of P6Q there holds

P6Q=fbg(feP,ge Q)=Z(f)uZ(g)=R(feP,ge Q)=
=(UZ(): feP}u{Z(9): e Q}=R=Z(P)uZ(Q)=R.

2.16 Lemma. [P(A)]' = $YH\A) = WR\A) for every A cR.

Proof. W(MA) o [W(A)]' because goW(A) > R = Z(g)uZ¥W(A)
= Z(g)UA (2.15 and 2.8) > Z(g) 2 R\A > g € YR\A) (2.3 and 2.4).
Conversely, for g€ W(R\A) and fe W(A) there holds

Z(@)UZ(f)o ZP\A)UZW(A)=RAUA =R,

which means that g&f (2.15). Hence [W(A)]' 2 W (R\A).

2.17 Definition. Denote by (R, G) (briefly Mx or IM) the system of all
regular closed sets of the topological space (R, G). Similarly as before we write Z
and ¥ instead of Z|r and ¥|x, respectively.

2.18 Theorem. Z and W are (mutually inverse) dual isomorphisms between the
sets I'(G) and M(R, G), ordered by inclusion.

Proof. We shall prove ¥(I%) c I': A e = [P(A)] = PR\A) (2.16) >

(WA = [FPENA)] = PRMA) = W(A) > W(A)eTl. Next we show
I'c Q. For K eT there holds [WZ(K)]' 2K’, because g e K' = Z(g) 2 R\Z(K)
(2.15) > ge WZ(g) c YAR\Z(K)) (2.3 and 2.4). The last member is equal to
[WZ(K)]' (2.16 and 2.9). The converse inclusion [WZ(K)]'c K’ follows from
¥YZ(K)= K (2.4) and from the fact that the miapping A —» A’ (A eexp G) is dually
isotone. Therefore K' = [WZ(K)]' = PR\Z(K))e 2 (2.11). Thus I'c Q.
Furthermore, from K'=WY@\Z(K)) it follows that YZ(K) = K = K"

= [YER\Z(K))] = PAR\R\Z(K)) (2.16 and 2.9). Since ¥|x is one-to-one

(2.12), we have Z(K) = R\RM\Z(K), i.e. Z(K)eIR. Finally Z(I')c IN.

Now, as Z¥ is the identity mapping on N (2.12) and M <= N, summarizing the
above results we obtain M= ZP (M) c Z(I') < M, thus Z(I')=IM. Since ¥Z is
the identity on Q and I'c Q, W(MN) = WZ(I')=T, completing the proof.

2.19 Corollary. (Cf. [2]) The set M(R, G) ordered by inclusion is a complete
Boolean algebra. For {A.} = MR, G) we have

425



1. AmAc=Int()As VrA.=JInt Ac = JAq;
2. A, Al, AzEEUe(ER, G) > AivnA:=A1UA;

the Boolean complement of A is A'=R\A.

Proof. Since I' is a complete Boolean algebra, so is It (2.18).

1. Meet: a) Ax = Int A. 2 Int [ AseI (ael);
Bel

b) AuoAeMforallael = Int[)As 2 Int A=A. Join: a) A. < U Int Ag

Bel Be

c UA,;(aeI) b) Auc A eMforallael = (JAs < A =A. Complement: By

Bel
2.16 there holds [W(A)]' = W(ER\A) for every A e, hence by 2.18 A’
= ZW(R\A) = R\A. The remainder of 2 follows evidently from 1.
2.20 Lemma. \/»A. = VnAq, N\nAc 2 NAnA({Ac}cIN).

The first assertion follows from 2.19, the second is evident.
2.21 Lemma. If Aisanopenset, A, BeIX, then AAnB = AAxB(=AnNB).
Proof. All the following equalities except the third are evident.

AAaB=AnB=AnInt B=AnInt B=
=Int AnInt B=Int (AnB)=A AxB.

Proof of the third equality AnInt B = AnlInt B. If xeR is contained in the

left-hand side, an arbitrary neighbourhood U of x meets AnlInt B, say in an
element y. There exists a neighbourhood V of y contained in AnU. The set V

meets Int B, hence U meets AnInt B, i.e. x € AnInt B.

2.22 Theorem. The following conditions are equivalent.

1. AeMR, G) > AnA'=0 (A’ means the Boolean complement of A in EIR)

2. The space (R, G) is extremally disconnected (i.e. the closures of open sets
are open).

3. The lattice M(NR, G) is-a sublattice of the lattice N(R, G).

4. For every x € R the set | x contains at most one (and thus exactly one) from
every pair of complementary polars (in I'(G)).

Proof. 1 => 2. Every A eI is an open set of the space (R, G), because
ANA'=0 by condition 1 and AUA’'=R by 2.19. Hence 2.

2 = 3. The implication follows immediately from 2.20 (for joins) and 2.21 (for
meets).

3 > 4. Suppose | Jx =W¥(x)o KUK’ for an element x e} and a polar KeT.
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Then .

xeZ¥(x)c Z(KuK')=Z(K)nZ(K")= Z(K)Ax[ Z(K)]' =
=Z(K)As{ Z(K)]' =9,

a contradiction.

4 = 1. Suppose AnA'# for an element A € IR. There exists K € I' such that
A=Z(K) and thus A' = [Z(K)] = Z(K'). For every xe AnA'
= Z(K)nZ(K') there holds

Y(x)2 Y (Z(K)NZ(K') 2 PZ(K)uPZ(K')= KUK’
and W(x) does not fulfil condition 4.

2.23 Definition. A solid subgroup P of an [-group G is said to be a z-subgroup
is fe P implies f"<P ([2] 3.3.8).

A regulator formed by z-subgroups is called a z-regulator. The set of all minimal
prime subgroups of G is a z-regulator (| being the identical mapping), [2] 3.4 ; see
also [13] I12.3, III 7.6.

2.24 Note. If (R, 1Y) is a standard z-regulator fulfilling the conditions of
Theorem 2.22, then | Jx is a minimal prime subgroup of G for every x e .

Indeed, if f € Ux, then f” = | Jx and by 2.22 we have f’ & Jx. Then the assertion
follows from [13] III 7.6 (see also [2] 3.4.13).
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TOMNOJIOTMN HA PEIYJIATOPAX
CTPYKTYPHO YNIOPSJOYEHHBIX I'PYIIN
1. TOIMMOJIOIuda, UHOIYLUHPOBAHHASA [-TPYIIIIOU

®panrmuek Unk

PesoMme

Tycts G u R — Henyctrie MHOXecTBa M | J: R —exp G oTobGpaxenue. OtobGpaxenns ¥ u Z,
onpepenennbie popMynoin W(A) = [ \(Ux: xe Ay pma AcRuZ(P) = {xeR: UxoP}ns Pc G,
ABJIAIOTCH AYAIBHO W30TOHHBIMM OTOOpaxxeHnsMi MHOXecTBa exp R M exp G, ynopsOYeHHbIX MO
TEOPETHKO-MHOXECTBEHHOMY BKJIIOYEHMIO. CrieiaibHO, eciti G — [-rpyma # | — oto6paxenue R B
mHoxecTBO P(G) Bcex mpocThix noarpym B G, To napa (R, | J) Haseiaetcs peryastopoM B G, Koraa
(MUx: xeR} = {0}. Ecau perynsrop (R, ) asnsiercss crangapTHbIM (€TO 3HaYmT, yto | x# G ans
Bcex x € R), MbI onpeenMM TonoIOrHIO Ha i, Ha3pIBaeMyO TONONOrUENR, HHAYLUNPOBAHHOM [ -rpynmioi
G Ha R. Ba3oit 3aMKHYTbIX MHOXECTB [JI1 3TOW TOMOJIOTUH siBlisieTcss MHOXeCTBO § = {Z(f): fe G};
COOTBETCTBYIOLIEE NMPOCTPAHCTBO oGo3HavaeTcs (R, G). [lanee onpefeneHbl TOMONOrMH HA CHCTEME
pcex yabrpaanTHduisTpoB U(E) cTpykTypsl E, xae E =I(G) (crpykTypa Beex monsp B G) uau
= IV'(G) (cTpyKTypa Bcex RyalbHbIX [MaBHbIX 1oasp B G) unu = [1(G) (CTpyKTypa Bcex IIABHBIX
nonsp B G). YCTaHOBNEHb! OTHOWIEHHS MEXIY 3TUMH TONOJNOTHSAMM M TOMOJIOTUSMH, HHAYLIMPOBaH-
HpiMH Ha R, npu paznmuuHbIX perynsTopax AaHHOM [-rpymmbl. IToKa3aHO, YTO TOMOJOTHYECKOE
npoctpadcTBo U(IM’) kOMNakTHO TOrma W TONLKO TOrAa, korma I'(G) — Bynmesa anre6pa a 3to
3KBHBIEHTHO ToMy, yTO IT'(G) = TI(G) (1.9).

B a63. 2 noxaseiBaeTci, 4yTo OTOGpaxeHHe W oTOOpaxaeT AyalbHO H30MOPGHO CTPYKTYPY
IM(R, G) Bcex perynsipHbIX 3aMKHYTbIX MHOXecTB npocTpaHcTsa (R, G) Ha ctpykTypy nonsp I'(G) B
G u ctpykTypy (R, G) Bcex 3aMKHYTbIX MHOXecTB nipoctpaHcTea (R, G) Ha Q(R, G) — cTpyKTYpY
tak HasbiBaembix R-moparpym, QR, G) = (W(A): AcR}. Cyxenne Z Ha COOTBETCTBYIOLME
MHOXECTBA MNPEACTaBiIsgeT OGpaTHOe OTOGpaXeHHWe K CykeHuio Y. DKcTpeMasbHash HECBA3HOCTb
npoctpaHcTsa (R, G) npencrasnser HeoGXOXMMOE M JOCTATOYHOE YCIIOBHE AJIS TOTO, YTOGbI CTPYKTYpa
MR, G) crana noacTpykTypoit crpykTypsl N(R, G) (2.22). He Kaxpa0e TONoN0rndeckoe npocTpaH-
CTBO MOXHO npeactasuTh Kak (R, G) nnas noaxopswes [-rpymsl G ¥ MORXOAALLIETO PEryisTOpa
M, U) B G. K npocTpaHCTBaM, HEMPEACTaBIsSeMbIM TakuM 00pa3oM, oTHocsATcs T,-npocTpaHCTea,
KoTopble He sBasores T2-mpocTpadcTBaMu (1.3). C apyro# CTOPOHBI, KaXA0e BIOJNHE PETYIAPHOE
npocTpaHcTBo Xaycnopda obnagaeT TakuM npepcraBieHneM (G — CTPYKTypa BCEX BELIECTBEHHBIX
HenpepbiBHbIX hyHKumit Ha fanHoM npoctpaHcTee R u |UJx = {fe G: f(x)=0} mna Bcex x eR).
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