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Math. Slovaca 31,1981, No. 4, 417-428 

TOPOLOGY ON REGULATORS OF LATTICE 
ORDERED GROUPS 

I. TOPOLOGY INDUCED BY AN NGROUP 

FRANTlSEK SIK 

Let an /-group G be a subdirect product of linearly ordered groups {Gx: x e9t}. 
Then G is a set of functions /: 9t -» U {G*: JC e 9t}. J a k u b i k [8] defined a topology 
on the set 9t in such a manner that, on this more general level, he simulated the 
definition of the weak topology well known from the theory of real valued 
functions. We shall recall it briefly. Every set of real valued functions C on a given 
set X defines a topology on X such that every / e C is a continuous function on the 
topological space X endowed with this topology. Among these topologies there 
exists the smallest one, the so-called weak topology induced by the set C on X. If X 
is a topological space and C the set of all continuous real valued functions on X, 
then the weak topology induced by C on X has, as a base for closed sets, the system 
{Z( / ) : / eC} , where Z(f) = {JC€X: /(JC) = 0 } is the zero set of / [7] 3.5. 

In [8] it is shown that the system {Z(f): feG}, where analogously to the above 
definition Z(f) = {JC e9t: /(JC) = 0 } , is a base for closed sets of a topology on 9t 
(topology induced by the /-group G on 9t). If we define a mapping U • * e9t-> U* 
by the rule U* = {/e G: /(JC) = 0}, then the pair (9t, U) is the so-called realizer of 
G (which means that U* is a prime ideal of G for every xedi and PUL)*' xeSft} 
= {0}). In the new notation we have Z(f) = {jce9t: /eU*}« This topology is 
used in [12] and [13] and in certain equivalent form also in [5]. We shall show that 
the main results concerning this topology remain preserved when we omit the 
requirement of normality for the elements of the set {U* : xedi} in the notion of 
the realizer, in other words, when U is a mapping of 9t into the set 8P(G) of all 
prime subgroups of the /-group G with the property H{U* : xe?H} = {0}. The 
pair (9t, U) shall be called a regulator of the /-group G (cf. sec. 1). We shall 
investigate the topology on 9t defined as before giving the base for closed sets 
{Z(f) : / e G}, where Z(f) = {x e 9t: / e \Jx}. Thus the domain of applicability of 
the induced topology will be extended from the class of representable /-groups to 
the class of all /-groups. 

If (9t, U) is a regulator of G and U is one-to-one then we may identify the set 9t 
with the set (U*- Jce9t}, which is a set of prime subgroups of G. Then the 
topology induced by G on this regulator 9t is the topology inherited on 9t by the 
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hull-kernell topology of the space SP(G) of all prime subgroups of G (see, e.g., [1] 
and [9]) and 9t is a dense set of the topological space 3(G). This represents 
another approach to the problem, which will be examined in another paper. 

Raising the generalized theory we proceed roughly as in [13]. It will be shown 
that the generalized theorems often differ from the special ones unessentially. But 
it is desirable to summarize these generalized results; moreover, a number of 
present results has no pendant in [13]. 

A short review of results. Let G and 9t be nonempty sets and U : 9t-» exp G a 
mapping. The mappings W and Z defined by 

W(A) = r\{Jx:xeA} (Acz9t) and Z(P) = {x e9t: Jx^P} (PczG) 

are dually isotone mappings between the sets exp 9t and exp G ordered by 
inclusion. In particular if G is an /-group and U a mapping of 9t into 3(G) the set 
of all prime subgroups of G, then the pair (9t, U) is called a regulator of G if 
PI (Jx : x e 9t} = {0}. If the regulator (9t, U) is standard (i.e. if U* * G for every 
x e9t), we can define a topology on 9t the so-called topology induced by G on 9t. 
A basis of closed sets for this topology is g = {Z(f): feG}. The corresponding 
topological space is denoted by (9t, G). Moreover, there are defined topologies on 
the system of all ultraantifilters U(E) of the lattice S, where E means F(G) the 
lattice of all polars of G or IT(G) the lattice of all dual principal polars of G. One 
establishes relationship between these topologies and the topologies induced on 9t 
by different regulators (9t, U) of G. In section 2 it is proved that the mapping W 
maps dually isomorphically the lattice 3K(9t, G) of all regular closed sets of the 
space (9t, G) onto the lattice of polars T(G) of G, and the lattice 5R(9t, G) of 
closed sets of (9t, G) onto fl(9t, G) the lattice of all 9t-subgroups, fl(9t, G) 
= {^(A): A cz 9t}. The restriction of Z onto the corresponding sets is the inverse 
mapping of W. The extremal disconnectedness of the space (9t, G) is necessary and 
sufficient for the lattice 2)x(9t, G) to be a sublattice of the lattice 9?(9t, G) (2.23). 
Not every topological space can be represented as (9t, G) for a suitable /-group G, 
e.g. any Ti-space which is not T2-space (1.3). In contrast to this every Hausdorff 
completely regular space has such a representation (G is the lattice of all 
continuous real valued functions on the given space). 

1. Relations between topologies induced by an (-group 

1.1 Definition. Let G be an /-group, 9 t^0 and U : x-+\Jx a mapping of 9t 
into the set 3(G) of all prime subgroups of the /-group G. The pair (9t, G) is 
called a regulator of the /-group G if fl{U* : * e ^ } = {0}- A regulator is said to 
be standard if U * ^ G for every xe9t [13] 11,3. The mapping \J defines 
a decomposition on 9t, 9t, and a one-to-one mapping U Ql ^ o n t o (U* : * e9t}. 
Evidently, the pair (5K, U) is a regulator of G. It is called a simplification of 
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Oft, U)- K w e denote by n the projection of 31 onto Jft, then the mapping Q -S 
defined by the rule U* = U*> where x e?ft and x is an arbitrary element of n~\x). 
A regulator (?ft, U) for which U* llUy holds whenever x, y e?ft, x± y is said to be 
reduced. A reduced regulator is evidently standard. A regulator (5R, U) is called 
completely regular if there holds: JC e?ft, fe G, fe[Jx => there exists g e G with 
fdg and 0 e U* (where fdg denotes |/| A | g \ = 0). A completely regular regulator is 
standard, too. A regulator (St, U) is called Hausdorff if for every x, y e-31, x£ y, 
there exist elements /, geG such that fdg and /eU*> 0eUy- The last two 
concepts are due to P. Ribenboim [10] and were introduced for the concept of 
a realization as defined below (see 1.8). A regulator (?ft, U) is called a realizer if 
U*(xe?ft) is a prime ideal of G. In every /-group4= {0} there exists a (reduced 
completely regular) regulator while the existence of a realizer characterizes 
representable /-groups. 

Instead of (?ft, U) w e often write 9t only supposing tacitly that the mapping U is 
fixed. In [13] the symbol x(e?ft) is identified with the associated subgroup U* anc-
by a regulator we understand there an indexed system of prime subgroups of G 
whose intersection is {0}. 

Given / e G we define 

Z(f)={xem:feU*)-

1.2 Theorem. Let (% U) be a standard regulator of an l-group G(£ {0}). 
Then the set 

^ = { Z ( / ) : / E G } 

is a basis of closed sets for a topology on the set ?ft. 
Proof. ([13] I 1.5) By a topology we mean a topology in the sense of Bourbaki. 

It suffices to prove (1) 9 t e ^ ; (2) A u B e f t for every A,Be~s; (3) 
n { Z ( / ) : / e G } = 0. There holds ( l )Z(0) = 9l; (2) Z(f)uZ(g) = Z( | / | A\Q\) for 
every /, g e G ([13] III 6.3); (3) x e f |{Z(/) : f' G) --> fe U* for every fe G --> 
G = U*> a contradiction. 

This topology is called a topology induced by the /-group G on the set St. The 
corresponding topological space is denoted by (Sft, G). If we take a regulator for 
a topological space, its topology will always be the induced one. 

1.3 Definition. Let G be an /-group and T(G) the Boolean algebra of all polars 
of G. By the symbol K' we mean the complement of KeT(G) in T(G). There 
holds K' = {geG: fdg for every feK), where fdg denotes |/| A\g\ = 0. By the 
symbol W(G) or n(G) we mean the set {/': / e G) of all dual principal polars / ' of 
G or the set {/": / e G} of all principal polars /" of G, respectively. Here / ' = {/}' 
= {geG: fdg}, f = (/')'. Thus K' = f l l f : / e K } . We call the polars K and K' 
complementary (in T(G)). 
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1.4 Theorem. Let (9t, U) be a standard regulator of an l-group G. The 
following conditions are equivalent. 

1. (91, G) is a Ti-space (i.e. singletons are closed sets). 
2. (5R, G) is a T2-space (i.e. distinct points are separated; a Hausdorff space). 
3. The regulator (91, U) IS reduced. 
4. The regulator (91, U) is Hausdorff. 
(Cf. [13] IV 8.1) 

Proof. 1 => 3. Given x, y e9t, x=/= y, there exist by supposition f, g eG with 
xe(9t\Z(/)) n Z(g), yeZ(f) n (9t\Z(<j)). It follows that / e l J y \ U * , 
g e\Jx\\Jy, thus (Jx and |Jy are incomparable sets, whence 3. 

3 => 4. For x, ye91, x=£y there exist f,geG such that / eUyMJx and 
g e U*MJy • One can suppose f^ 0, g ̂  0. For the elements p=f - (/A g), q = g 
~ (f^Q) there holds xeZ(p), yeZ(q), because xeZ(p) = p e U * — 
/ " (/Afl) 6 U* — / e U* + ( /A&) = U*> a contradiction. Similarly for y. 
Finally Z(p)uZ(q) = 91. In fact, xeZ(p Aq) = pAq e U* = p e U* or q e U * 
= x G Z(p)uZ(q). Then Z(p) u Z(<?) = Z(pAq) = Z(0) =3t. 

4 --> 2 -=> 1 is evident. 

1.5 Definitions and known results. An antifilter on a v-semilattice E is a subset 
0 =£ x cz E with the following properties :1.x does not contain the greatest element 
of E (provided it exists); 2. K e x, L e E, K^L =-> L e x ; 3. K, Lex^KvLex. 
A maximal (with respect to the inclusion) antifilter is called an ultraantifilter. The 
set of all ultraantifilters on E is denoted by 11(E). 

Let E = r(G) or = IT(G) or = n(G), respectively, and x e U(E). Then by | J* 
we define [J{K: Kex}. If U*^= G, we speak of a standard ultraantifilter on E, 
[13] 114.10. The set of all standard ultraantifilters on T(G) will be denoted by 
Us(r). Every x elt(J7') is standard (provided G+ {0}), [13] II 4.11; xeU(r) is 
standard iff x n n ' ^ 0 , [13] 114.12. Thus non-standard ultraantifilters on T(G) 
(G=£ {0}) exist only in /-groups without any weak unit and these are exactly the 
ultraantifilters on T(G) which contain U(G) (since an ultraantifilter on a Boolean 
algebra E contains either an element a e S o r its complement a', for every a e E). 
If G has a weak unit, then every ultraantifilter x e U(U) is standard, if not (and 
G+ {0}), then x = U(G) is a unique ultraantifilter on U(G) and |Jx = G (for given 
xe l t (n) and aeG then ae\Jx = a"<=U* = a"ex, [13] II 4.7). 

If S = T or = IT or = IT, respectively, and xeVL(E), then (J* is a prime 
subgroup of G. If Gt {0}, (Us(r), (J) and QI(IT), U) — briefly written 9tr and 
9trr, respectively — are standard regulators of G, the latter is reduced and 
completely regular, [13] II 4.15 and 4.16.9lr or 9trv is called the T-regulator or the 
IT -regulator, respectively. 

The pair (U(n), (J) is not generally any regulator, because PHU*- xeU(IT)} 
= {0} does not hold in general; the equality holds iff the following condition (a) is 
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fulfilled (21(G) denotes the set of all elements of the /-group G which are not weak 
units of G, i.e. a e2l(G)<->a"=£G): 

(a) 0^-ae?l+(G) --> there exists b e2T(G) such that avbe21(G). The condi­
tion (a) can be reformulated as follows: 

(b) 0^aeG-^> there exists b e G with {0} * b' c a". 
[12] Lemma 3, [13] 114.10. 
If (a) is fulfilled, we can speak of the n-regulator (U(n), U) (briefly denoted by 

9tn). 
Put U = U(S), where S is a v-semilattice or U = VLS(T(G)) (G^{0} an 

/-group). We define 
I = {UK: KeS} or S' = {VLf;/<= G}, respectively, 

where UK = {xeVL:Kex}. 
Then .T or X' is a basis of closed sets for a topology on the set VL(E) or U,(r), 

respectively, [5] 1.9, 1.10; [6] 1.5; [12] sec. IV. The corresponding topological 
space is denoted by (U(H), E) or (U-(JT), E'), respectively. 

1.6 Lemma. Put VL = VL(r) or = U(n'), respectively, and pick xeVL and / e G. 
Then 

/ ' e j t E E / i U x . 

[12] Lemma 1; [13] II 4.6. 

1.7 Theorem. Let G£ {0} be an l-group. Then 
1. The topological spaces (U-(r), .£') and (Sir, G) are homeomorphic. 
2. The topological spaces (U(n'), .T) and (9trr, G) are homeomorphic. 
3. The topological space (U(F), .£) is Hausdorff and compact. 

Proof. (Cf. [5] 2.1; [13] II 4.18) Put U = U-(r) or = U(n'), respectively. The 
assertions 1 and 2 follow from the fact that, according to Lemma 1.6, the bases of 
closed sets for the compared topological spaces are identical. Indeed, U\U/' 
= {JCGU:/'GJC} = { jceU:/eU*} = Z(/). The assertion 3 is Teorema 3 [12]. 

1.8 Let G be a representable /-group and (St1, U) a standard realizer of G. Then 
G/U* = Gx (jce9t) is a linearly ordered group. Let cp be the corresponding 
representation of G and cpG = G = (Gx: xedi) the canonical realization of G, 
which means that the qp-image of an element feG,cpf = feG = (Gx: xedl) is 
a function 9t->U{G,: xe9t} defined by the formula f(x) = / + \JxeGI\Jx 
(= Gx) for every JC e9t. 

The topology induced by the realization G = (G*: JC e 9t) on 9t is the topology, of 
which the basis for closed sets is the system { Z ( / ) : / e G } , where Z(f) 
= {jce9t:/(jc) = 0}. 

(c) The topology induced by the /-group G on 9t is thus identical with the 
topology induced by its realization G = (Gx: x e9t) on 9t, since /(JC) = 0 = / e 
U* holds. 
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By the W-realization of a representable /-group G^ (0} we mean the canonical 
realization corresponding to the IT-regulator %r. This is a realizer, and is called 
the W-realizer. 

1.9 Theorem. Let G=r= {0} be an l-group. The following are equivalent. 
1. The topological space (U(IT), E) is compact. 
2. The topological space (U(n), S) is compact and G fulfils the condition 

1.5(a). 
3. The lattice IT(G) is Boolean. 
4. The lattice U(G) is Boolean. 
5. n'(G) = n(G). 
6. The topological space (Strr, G) is compact. 
If the l-group G is representable, then the following condition 7 is also 

equivalent to the preceding ones. 
7. The topological space induced by the W-realization (Gx: xe9tn) on 9trr is 

compact. 
Proof. Theorem 6 [12] states that condition 1 together with the claim 

{0}eW(G) and conditions 2 to 5 are equivalent. Conditions 1 and 6 are 
equivalent by 1.7, conditions 6 and 7 by 1.8(c). Thus there remains to verify that 
from the compactness of the space (ll(IT), 2), there follows {0} e IT(G). A proof 
is given in Satz C [14], p. 108. For the sake of completeness we give a slightly 
modified proof. Since U W : / e G } = U(n'), the set {U/ ' r /eG} is an open 
covering of the space ll(n') . Thus there exist /i, ...,/„ eG such that 1I(IT) 

= U W ' : i = l, 2, ..., n}. It follows that U(IT) = \J{xeVL: f\ex}. Since x is 
n 

a prime antifilter, /\f\ex = f\ex for some i holds, and so U(n') 

= {xett: A/5ex} .Put /=V| / i | .ThenU(W ) = {xeU: / ' e x } , whence / ' = 0, 
i = 1 i = 1 

i.e. (0}en'(G). 

2. The mappings Z and V. 

2.1 Definition. Let G and 9t be non-empty sets and (J : St —> exp G a mapping. 
We define a binary relation (a polarity) g c G x9t as follows: fgx=fe[Jx. 

For A c3t and P c G w e define 

W(A) = {/eG: fgx for every xeA}, 
Z(P)={jce9t:/0Jtforevery/eP}. 

If it is necessary to express the dependence of W and Z on 9t (with a fixed G), 
we write Wm and Zm, respectively. If A = {JC} or P = {/} is a singleton, we use the 
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notation W(x) or Z(f) instead of W({x}) or Z({/}), respectively. W and Z are 
evidently dually isotone mappings between the sets exp 91 and exp G. 

The following lemmas 2.2—2.4 may be easily verified (see [3] IV §5). 
2.2 Lemma. W(A) = n { U * : * e A } = {feG: Z(f)^A} for every A c9t, in 

particular, W(x) = \Jx for every x e9t. 
Z(P) = C\{Z(f):feP} = {xedi: \Jx=>P} for every P = G, in particular Z(f) 

= {xedi: fe\Jx} for every feG. 
2.3 Lemma. A c B c 9 t 4> W(A) r> <P(B); f ( A ) = G = A c 

{xe9t :U* = G}, f ^ ) = C\{\Jx: x e?R} 
PcQczG => Z ( P ) 2 Z ( 0 ) ; Z(G) = {xefR: U* = G}; Z(P) = 91 = 

Pc=n{U*:*e9 t} . 
2.4 Lemma. Z f t ( A ) 2 A , »PZ'P(A)= f ( A ) for every A c9t; 
WZ(P) -> P, Z«PZ(P) = Z(P) for every P = G. 
2.5 Lemma. For PcG and A c 9 1 there ho/ds 

P e f ( A ) s A c Z ( P ) ; 

in particular for feG and xedi we have 

fe\Jx=xeZ(f). 

Proof. PczV(A) = P c { / e G : Z ( / ) 3 A } = Z(f)2A for every feP = 
Aczn{Z(/):/eP} = AcZ(P). 

From 2.3 and 2.4 there follows 
2.6 Lemma. The mapping ZW: exp 9t —> exp 9t is a closure operation in 9t. 

The mapping WZ: exp G —> exp G is a closure operation in G. 
We call the Z^-images of sets of 9t closed under the relation g, the *PZ-images 

of sets of G closed under the relation g. 
Let Ĝ = {0} be an /-group, (St1, (J) a standard regulator of G, Z and V the 

mappings corresponding to the polarity @ c G x 9t, where the mapping (J from the 
definition 2.1 is realized by the mapping [J, the second member of the symbol 
(9t, (J)- By 2.5 it is clear that the definition 1.1 and 2.1 of Z(f) coincide. These 
assumptions hold for the remainder of section 2. 

2.7 Lemma. W(A) is a solid subgroup of G for every A c9t. 
It follows directly from 2.2. 
We shall consider connections between the closure operation A—>ZW(A) in 9t 

(see 2.6) and the closure operation A—>A in the topological space (9t, G). 

2.8 Lemma. A = ZW(A) for every A c St. 
Proof. By2.2wehaveA = C\{Z(f): feG, Z(/)=> A} = H{Z(f): feW(A)} 

= ZW(A). 
Let 9?(9t, G) (briefly $lm or 31) be the system of all closed sets of the topological 

space (9t, G). 
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2.9 Lemma. 3l(% G) = {Z(P): PczG} = {ZW(A): AcJW} = 

= ! D Z ( / ) : P c G } = {A<zzm:ZV(A) = A}. 

Proof. From 2.2, 2.8 and 1.2 it follows that yi(% G) = {A: AcJH} = 

= {ZW(A):A^} s {Z(P):PcG| = {nZ ( f ) :PcG} c 9?(3t, G). 
f eP 

2.10 Definition. We denote by Q(% G) (briefly Qm or fl) the system of all 
subsets of G closed under g, i.e. such sets P^G which fulfil P= *PZ(P). 

The elements of the set £2(31, G) are called Sf{-subgroups of G. The JR-sub-
groups are solid subgroups of G as it follows from the following lemma. 

2.11 Lemma. fltfK, G) = {WZ(P):PczG} = {V(A):Ac9t} = 

= i r iUxrAsJR} . 
x e A 

Proof. Evidently {WZ(P): P C G } D Q . The converse inclusion follows from 
fZ (P) = WZWZ(P) (see 2.4). Thus Q(% G) = {WZ(P):PaLG} => 
{WZW(A): Acffi} = jw/(A):AcJR} (by 2.4). 

The last set is on the one hand 2.Q0R, G) and on the other hand 

= ( n U^Aci f t ) by 2.2. 
UeA J 

Let the restriction of W on 9?.n be denoted by W again. Similarly for Z on Qk. 
2.12 Theorem. The mappings W and Z are (mutually inverse) dual isomorph­

isms between the sets Q(% G) and 9c(ffi, G), ordered by inclusion. 
Proof. By 2.9 and 2.11, W\m is a mapping onto Q and with respect to 2.4 and 

2.9, Z\a is a mapping onto 31. By 2.4, 2.9 and 2.11, Z\a W\*= ids*, W\* Z\a = idQ. 
The dual isotony of the mappings W and Z follows from 2.3. 

2.13 Corollary. Q(?ft, G) (ordered by inclusion) is a complete distributive 
lattice; there holds 

A P« = H p« for a n arbitrary family {P«} c fl(JR, G). 
a a 

Proof. The first assertion follows from 2.12. The second assertion: 

1. By2.2,z(nPa)) = nfz(/):/enP«l 2 nfl{Z(f): /*?»} = nz(Pa),so 
V a / I a J a a 

by 2.4, QPa £ ^(flPa) £ "P[nZ(Pa)]. 

2. /e f lPa implies Z(/) -> n^(Pa), thus by 2.4, «f{nZ(Pa)l 2 nPa-
a a L a -J a 

It follows that nPa = f [ n Z ( P a ) l eQ(m, G) and so f]Pa = AP» in 
a L a J a a 

Q(m, G). 
2.14 Lemma. y (A ) = W(A) for every Ac5R. 
Proof. By 2.8 A=ZW(A) and thus by 2.4 W(A) = WZW(A) = W(A). 
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Consider P,QcG. Recall that P6Q means fdg for every feP and every g e Q. 
2.15 Lemma. For every P, QcG, P±Q±Q there holds 

P6Q = Z(P)uZ(Q) = 9t. 

Proof. There holds Z(/)uZ(ff) = Z(| / |A|g|) (for evidently Z(| / |A|g|) r> 
Z(|/|)uZ(|ff|) = Z(f)uZ(g) and conversely by [13] III 6.3 or [4] 1.7, there holds 
that jceZ(|/ |A|g|) implies xeZ(f)vZ(g), thus by 2.3, fdg = Z(/)uZ(g) = 9t. 
Now, by definition of P6Q there holds 

PoQ =/Sf7(/eP, 9 e Q)=Z( / )uZ(g) = 9t( /eP, 0 e Q) = 
= n { Z ( / ) : / € P } u n { Z ( g ) : g 6 Q } = 9 t = Z(P)uZ(Q) = 9t. 

2.16 Lemma. [W(A)\ = «P(9t\A) = <P(9t\A) for every Ac9t. 
Proof. *P(9t\A) 2 [W(A)\ because gdW(A) => 9t = Z(g)uZW(A) 

= Z(g)uA (2.15 and 2.8) => Z(g) 2 9t\A => g e «P(9t\A) (2.3 and 2.4). 
Conversely, for g e *P(9t\A) and fe W(A) there holds 

Z(0)uZ(/)=Z«P(9t\A)uZ<P(A) = 9t\AuA =9t, 

which means that gdf (2.15). Hence [«P(A)]'-.«P(9t\A). 
2.17 Definition. Denote by W(% G) (briefly Wit* or 2TC) the system of all 

regular closed sets of the topological space (9t, G). Similarly as before we write Z 
and W instead of Z\r and W\m, respectively. 

2.18 Theorem. Z and W are (mutually inverse) dual isomorphisms between the 
sets r(G) and 2R(9t, G), ordered by inclusion. 

Proof. We shall prove W(W) c T: A eM => [W(A)\ = <P(9t\A) (2.16) => 

[W(A)\ = [W(di\A)\ = «P(9t\9t\A) = W(A) => W(A)eT. Next we show 
T c Q. For K e T there holds [WZ(K)\ z> K', because g 6 K' => Z(g) => 9t\Z(K) 
(2.15) => g e WZ(g) c «P(9t\Z(K)) (2.3 and 2.4). The last member is equal to 
[WZ(K)\ (2.16 and 2.9). The converse inclusion [WZ(K)\cK' follows from 
WZ(K) 2 K (2.4) and from the fact that the mapping A —* A' (A e exp G) is dually 
isotone. Therefore K' = [WZ(K)\ = W(m\Z(K))eQ (2.11). Thus T c f i . 
Furthermore, from K' = «P(9t\Z(K)) it follows that WZ(K) = K = K" 

= [W(m\Z(K))\ = «P(9t\9t\Z(K)) (2.16 and 2.9). Since V\n is one-to-one 

(2.12), we have Z(K) = 9t\9t\Z(K), i.e. Z(K)eW. FinaUy Z(r)e2R. 
Now, as ZW is the identity mapping on 91 (2.12) and URcSR, summarizing the 

above results we obtain 9K = ZW(ffl) c Z(T) c m, thus Z(T) = 2TC. Since WZ is 
the identity on Q and T c Q, W(M) = WZ(T) = r , completing the proof. 

2.19 Corollary. (Cf. [2]) The set 2R(9t', G) ordered by inclusion is a complete 
Boolean algebra. For {Aa} s aW(9t', G) we have 
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1. Л-*Аа = 1 т П А „ , V-^A« = U I n t Аа = U A a ; 
а а а а а 

2. А, А ь А2еШ(Ш, G) Ф А,у<иА2 = А,иА ; ; 

the Boolean complement of A is A ' =9t\A. 

Proof. Since F is a complete Boolean algebra, so is 3ft (2.18). 

1. Meet: a) Aа = IntA а ҙ Int Г\AßєШ (аєl); 
fìel 

b) Aa ZD A e 33c for all a e I => Int H Ap 3 Int A = A. Join: a) Aa cz (J Int AP 
ftel ftel 

.= U Aft (a e I); b) Aa cz A e Wl for all a e I => U A, cz A = A. Complement: By 
0 e / / 3e l 

2.16 there holds [V(A)Y = *P(9t\A) for every AeM, hence by 2.18 A' 

= Z*P(9t\A) = 9t\A. The remainder of 2 follows evidently from 1. 

2.20 Lemma. V*Aa = \A*Aa, A*A„ ZD A^A„({Aa}cz3.K). 
a a a a 

The first assertion follows from 2.19, the second is evident. 
2.21 Lemma. IfAisanopenset,A,BeWt,thenA^TiB = AA*B( = AnB). 
Proof. All the following equalities except the third are evident. 

A л * B = A n B = A n I n t B = A n I n t B = 

= Int Anlnt B= Int (AnB) = A A ^ B . 

Proof of the third equality A n l n t B = AnlntB. If xe9t is contained in the 

left-hand side, an arbitrary neighbourhood U of x meets A n l n t B , say in an 
element y. There exists a neighbourhood V of y contained in AnU. The set V 

meets Int B, hence U meets Anlnt B, i.e. x e Anlnt B. 
2.22 Theorem. The following conditions are equivalent. 
1. A e 3W(9t, G) --> An A' = 0 (A' means the Boolean complement of A in 37J). 
2. The space (9t, G) is extremally disconnected (i.e. the closures of open sets 

are open). 
3. The lattice 3K(9t', G) is a sublattice of the lattice $l(d\, G). 
4. For every x e 9t the set [Jx contains at most one (and thus exactly one) from 

every pair of complementary polars (in r(G)). 
Proof. 1 => 2. Every AeWl is an open set of the space (9t, G), because 

AnA' = 0 by condition 1 and A u A ' = 9 t by 2.19. Hence 2. 
2 -=> 3. The implication follows immediately from 2.20 (for joins) and 2.21 (for 

meets). 
3 --> 4. Suppose U * = XP(X)^K\JK' for an element x e9t and a polar KeT. 
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Then . 

x e ZW(x)cz Z(KuK' ) = Z(K)nZ(K') = Z(K) A * [ Z ( K ) ] ' = 
= Z ( K ) A 4 Z ( K ) ] ' = 0 , 

a contradiction. 
4 => 1. Suppose A n A ' =5-= 0 for an element A e9ft. There exists KeT such that 

A = Z(K) and thus A' = [Z(K)\ = Z(K'). For every xeAnA' 
= Z(K)nZ(K') there holds 

W(x)^V(Z(K)nZ(K'))z>VZ(K)uVZ(K') = KvK' 

and ^(JC) does not fulfil condition 4. 

2.23 Definition. A solid subgroup P of an f-group G is said to be a z-subgroup 
is feP implies /"czP ([2] 3.3.8). 

A regulator formed by z-subgroups is called a z-regulator. The set of all minimal 
prime subgroups of G is a z-regulator (U being the identical mapping), [2] 3.4; see 
also [13] 112.3,1117.6. 

2.24 Note. If (% U) is a standard z-regulator fulfilling the conditions of 
Theorem 2.22, then U* is a minimal prime subgroup of G for every x e5t. 

Indeed, if / e U*, then /" c U* and by 2.22 we have / ' <t U*- Th e n the assertion 
follows from [13] HI 7.6 (see also [2] 3.4.13). 
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ТОПОЛОГИИ НА РЕГУЛЯТОРАХ 
СТРУКТУРНО УПОРЯДОЧЕННЫХ ГРУПП 

I. ТОПОЛОГИЯ, ИНДУЦИРОВАННАЯ /-ГРУППОЙ 

Франтишек Шик 

Резюме 

Пусть О и д\ — непустые множества и и^К->ехр С отображение. Отображения У и 2,, 
определенные формулой Ч*(А) = ГНи*• хеА} для А с:5К и 2(Р) = {х еШ: \^хзР} для Р^С, 
являются дуально изотопными отображениями множества ехр Ш и ехр О, упорядоченных по 
теоретико-множественному включению. Специально, если С - /-группа и ̂  — отображение Ш в 
множество ^(О) всех простых подгрупп в С, то пара (% \^)) называется регулятором в С, когда 
П ( и * : хеШ} = {0}. Если регулятор (% \^) является стандартным (ето значит, что \_)хФ С для 
всех хеШ), мы определим топологию на №, называемую топологией, индуцированной /-группой 
О на 91 Базой замкнутых множеств для этой топологии является множество 8 = {-2(Я • / е О}; 
соответствующее пространство обозначается (Ш, С). Далее определены топологии на системе 
всех ультраантифильтров ЩЕ) структуры Е, кде Е = Г(С) (структура всех поляр в С) или 
= П'(С) (структура всех дуальных главных поляр в О) или = П(С) (структура всех главных 
поляр в О). Установлены отношения между этими топологиями и топологиями, индуцирован­
ными на % при различных регуляторах данной /-группы. Показано, что топологическое 
пространство И(П') компактно тогда и только тогда, когда П'(О) — Булева алгебра а это 
эквивалентно тому, что П'(О) = П(С) (1.9). 

В абз. 2 доказывается, что отображение Ч7 отображает дуально изоморфно структуру 
Т1(% О) всех регулярных замкнутых множеств пространства (Ш, О) на структуру поляр Г (О) в 
С и структуру ЩШ, С) всех замкнутых множеств пространства (Ш, О) на С2(д1, С) — структуру 
так называемых Ят-подгрупп, С2(Ж, О) = {^(А): А с5Н}. Сужение X на соответствующие 
множества представляет обратное отображение к сужению Ч*. Экстремальная несвязность 
пространства (Ш, О) представляет необходимое и достаточное условие для того, чтобы структура 
Ш(% О) стала подструктурой структуры Щ% С) (2.22). Не каждое топологическое простран­
ство можно представить как (% О) для подходящей /-группы О и подходящего регулятора 
(% \Л) в О. К пространствам, непредставляемым таким образом, относятся ^-пространства, 
которые не являются Т2-просгранствами (1.3). С другой стороны, каждое вполне регулярное 
пространство Хаусдорфа обладает таким представлением (О — структура всех вещественных 
непрерывных функций на данном пространстве 31 и ^х = {/е С: }(х) = 0} для всех х еШ). 
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