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A NOTE ON TWO COMPARABILITY GRAPHS
C. 5. JOHNSON, Jr.—F. R. McMORRIS

The comparability graph of the partially ordered set (poset) P is the graph whose
vertex set is P and such that xy is an edge if and only if x and y are comparable
elements in the poset P. Wolk [2] called a graph G =(V, E) a D-graph if and only
if for distinct x,, x,, X3, Xx4€ V, X1X2, X2X3, X3x4 € E imply x,xs€ E or x,x,€ E. He
showed that a graph is a D-graph if and only if it is the comparability graph of
a tree poset. Jung [1] generalized this by calling a graph G =(V, E) a D*-graph if
and only if for distinct x,, x,, X3, X4€ V, Xx;X,, X2Xs, X3Xs€ E imply x,x;€ E or
x,x4€ E or x,x, € E. It was shown that a graph is a D*-graph if and only if it is the
comparability graph of a multitree.

In this note we restrict the above definitions as follows (we assume that all graphs
and posets are finite and our graphs have no loops or multiple edges): A graph
G =(V, E) is a strong D-graph (strong D*-graph) if and only if for distinct x,, x,
X3, X4€ V, X1X2, X2X3, X3X4 € E imply x,x5 € E and x,x, € E (imply x,x, € E). Clearly
a strong D-graph is a strong D*-graph. Before proving our characterizations of
these graphs recall that a poset is fan if and only if the is a zero and every non-zero
element is maximal, and a poset P is a complete bipartite poset if and only if there
exist disjoint non-empty subsets X and Y with XuY =P and x<y for all x e X,
y € Y with no comparabilities in X or in Y.

The free sum of the posets P and Q is the set PuQ with x <y in the free sum if
andonlyif x,ye P and x<y in P, or x, y e Q and x <y in Q. That is, the Haase
diagram of the free sum of P and Q is obtained by placing the Hasse diagrams of P
and Q side by side.

Theorem 1. A graph G=(V, E) is a strong D-graph if and only if G is the
comparability graph of a free sum of fans and chains.

Proof. The comparability graph of a fan with n+ 1 elements is K, , which is
a strong D-graph, while the comparability graph of a chain is a complete graph .
which is also a strong D-graph. Hence the comparability graph of a free sum of fans
and chains is a strong D-graph.

Assume G =(V, E) to be a strong D-graph. Since G is a strong D-graph if and
only if every component of G is a strong D-graph, we assume further that G is
connected. It then suffices to show that G is K, , for some n or that G is complete.
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From a lemma of Wolk [2, p. 108] there exists ¢ € V such that vc € E forall ve V,
v#c. If G is not complete, then there exist x, y € V\{c} such that xy ¢ E. Supposc
there is vertex z# ¢ such that zx € E. Then zxcy is a path and the strong D-graph
condition gives xy € E, a contradiction. If there exist vertices z and w distinct from
x, y and c such that zw € E, then the path wzcx gives xz € E and we are back in the
first case. Hence G is K, , for some n.

Theorem 2. A graph G =(V, E) is a strong D*-graph if and only if G is the
comparability graph of a free sum of chains and complete bipartite posets.

Proof. The comparability graph of a chain or a complete bipartite poset is easily
seen to be a strong D*-graph.

As in the proof of Theorem 1, assume G to be connected but not complete. Then
there exist x, ye Vsuchthat xyé E.Let A={zeV:zxeE}and B={we V. wx
¢ E}. A and B are non-empty and we assert that A, B is a bipartition of V. First
let z € A, w € B. Then by connectivity, there is some path from w to x. Taking one
such shortest path and using the strong D* condition, either wz e E or we get
a path wrxz which gives wz € E. In a similar vein one can show that there are no
edges between vertices in A (if z,z,€ E with z,,2z,€ A apply the strong D*
condition to xz,z,y) or between vertices in B (if w,w, € E with w,, w, € B apply the
strong D* condition to w,w,zx for some ze€ A). Thus G is a complete bipartite
graph. One can view G as a poset P by taking z <w forall ze A and w € B. Now G
is the comparability graph of the complete bipartite poset P.
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3AMEUYAHUE O [IBYX T'PA®AX CPABHVMOCTH
II. 1. Horcou—®. P. Mak-Moppuc

Pes3iome

I'pad G =(V, E) nasbiBaetcs crporuM D-rpadom (ctporum D *-rpacdhoM) eciu s BCSIKMX €ro
YETBIPEX DA3NUYHAIX BEPUIHH X;, Xz, X3, X4€ V M3 X,X;, XX, X3xs€ E cnepyer x,x.€ E u x,v€ E
(cnenyer x,x,€ E). [lokassBatorcs clefyionue isa pesynbrata. I'pad ssnsercs crporuv D -rpadom
TOIJa M TOJNBKO TOIJa, KOrAa OH ABJIAETCS rpacoM CPaBHMMOCTH CBOGOIHO# CyMMbI BEEPOB U L(ETICH
I'pad annsercs crporum D *-rpacdoM TOra ¥ TONBKO TOTAA, kOFMA OH ABISAETCS rpad)OM CPaBHUMOCTH
CBOGOIHOM CYMMBI IfeTed U MOJNHBIX ABYAONBHBIX YACTHYHO YNOPSNOYEHHBIX MHOXECTB
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