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Math. Slovaca 32,1982, No 1,63—73 

ON MULTILATTICES 
WITH ISOMORPHIC GRAPHS 

MARIA TOMKOVA 

The aim of this paper is to obtain a generalization of a result of M. Kolibiar [2] 
concerning meet semilattices of locally finite length for the case of lower directed 
partially ordered sets of locally finite length. 

A meet semilattice 5 ^ = ( S ; A ) of a locally finite length is said to be 
a B-semilattice if it fulfils the following condition: 

(1) If a, b, ce S, a± b and if c covers both a, b, then both a, b cover a/\b. 
The following theorems (Kx), (K2) were proved in paper [2]. 
(Ki) Let sd, if, if' be semilattices of a locally finite length, 93 a lattice of locally 

finite length and let f: £f-+ sdxSft, g: &' -+sdx $ be subdirect representations of 
semilattices such that Im/ = Img. Then #"Vim go/ is an isomorphism of the 
graphs G(<f), W ) -

(K2) Let if, ST be B-semilattices and let h: G(if)-*G(if') be an isomorphism 
of graphs. Then there exist a semilattice sd and a lattice Sft and subdirect 
representations of semilattices f: if-ts&xffi, g: if' —>sdxg$ such that Im / = Im g 
and h = g'1/lm gQf. 

Let us recall some basic concepts and properties. 
A partially ordered setSP = (P; ^ ) is said to be of a locally finite length if each 

bounded chain in $Pis finite, For the elements a,b ePwe write a <b (a is covered 
by b) if a <b and there does not exist any element ceP such that a <c <b. In this 
case we say that [a, b] is a prime interval. We denote by # the partially ordered set 
dual to <3>. 

A multilattice [1] is a poset M = (M; ^ ) in which the condition (i) and its dual 
(ii) are satisfied: (i) If a, b, heM, a^h, b^h, then there exists v eM such that 
(a) v^h, v^a, v^b and (b) zeM, z^a, z^b, z^v implies z = v. 

The symbol (avb)h designates the set of all elements v eM satisfying (i); the 
symbol (ar\b)d has a dual meaning. 

We denote avb = \f (avb)h at\b = \J (a/\b)d. 
a^h d*Sa 
b*£:h dub 

Recall that the sets avb, aAb may be empty. It is evident that each partially 
ordered set of locally finite length is a multilattice. 
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A lower directed multilattice M of a locally finite length is said to be lower 
semimodular if it fulfiìs the following covering condition: 

(o) Let a, b, u, heM, a<h, b<h, aФb, ueaлb. Then u<a, u<b. 
A multilattice Mof a locally finite length is modular [1] if the condition (o) and 

its dual (o') are satisfied in M. 
By a graph G(?P) is meant an unoriented graph (without multiple edges and 

loops) whose vertices are elements of P; two vertices a, b are joined by the edge 
(a, b) iff either a<b or b<a. 

The set ïŕ={a, b, u, f } c z ^ is said to be elementary sąuare if a,b are 
uncomparable elements and a<v, b<v, u<a, u<b. 

Let SPÍ9 SP2 be partially ordered sets of a locally finite lengtL and let (p be aп 
isomorphism of the graph G(SPX) onto the graph G(ÇP2). We say that the 
elementary square íľ = {a, b, u, v} cz ÇPX is broken by the isomorphism ą> ifeither 
(p(u)<(p(a), (p(u)<(p(b), (p(v)<(p(a), (p(v)<(p(b) or (p(a)<(p(u), ę(a)< 
(p(v), ф ( Ь ) < ф ( м ) , ę(b)<(p(v). 

Let M be a multilattice, xu yu x2, y2 e M. We say that an interval [yu xi] is direct 
transposed [1] with anjnterval [y2, x2] iff XiЄx2vyu y 2 є x 2 л y i . 

We say that an interval [yu дci] is transposed with an interval [x2, y2] (xuyu x2, 
y2 є M) iff there are intervals [b,, a,] b,, a, є M, i = 0, 1,..., r, such that the mtervaì 
[b,, a,] is direct transposed with the interval [bi+l, ai+1] for i = 0, 1, ..., r - ì and 
[b0, a0] = [yu дci], [b г , ar] = [y2, x2]. 

Intervals [yi, xi], [y2, x2] are said to be lower T-transposed if there is an interval 
[t, s] such that the intervals [yu дci], [y2, дc2] are transposed with the interval [t, s]. 

The following theorem was proved in [1, 4.7]. 
(B) Let M be a multilattice of locally finite length fulfilling the covering 

condition (o). Let Cu C2 be maximal chains between a, b є M. Then Cu C2 are of 
the same length and there exists a one-to-one mapping of the set of aìì prime 
intervals of the chain G onto the set of all prime intervals of the chain B, such that 
the coпesponding prime intervals are lower T-transposed. 

Multilattices Mu M2 are said to be isomorphic (denotedMX~Â{2) if there exists 
a Ыjectюn f of Mi onto M2 satisfying: 

y iff f(x)^f(y) (x,yєM0. 

LetM.,sd,5ft be multilattices and let f be an isomorphism of M to the multilattice 
sdxZft. We shall say that f is a subdirect representation of the multilattice M if the 
projection of the Im / into A, B, resp., is the whole set A, B, resp. 

In the first part of this paper we shall prove the following assertion. 

Theorem 1. Let si, 2fc, M, M' be lower directed multilattices of a locally finite 
length and let f: M->s£x£fc, g: M'-*sdx9ft be subdirect representations of At, 
M' such that Im / = Im g. Then the mapping (p = g "Vim g of is an isomorphism of 
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the graph G(M) onto the graph G(M'),such that no elementary square Sf czM, 
£f' czM', resp., is broken by the isomorphism qp, qp-1, respectively. 

Proof. Let ST=(T, ^ ) , T= ( T ; cz) be images of the multilattices M,M' 
under the isomorphisms / , g. We shall denote by u , n the operations in the 
multilattice ST'. It is evident that ST, ST' are lower directed multilattices. We shall 
show that the graphs G(ST), G(T) coincide. Let (a„ a2), (bu b2)eT such that 
(bu b2) < (au a2)in:X. T h e n b i ^ a ! , b2^a2. Since aiAbi = { b j , a 2 v b 2 = {a2}, we 
have (au a2) n (bu b2) = {ax/\bu a2vb2} = {(bu a2)} e T because the multilat­
tice M' is lower directed. Therefore (bi, b2) ^ (bu a2) ^ (au a2) hence either 
bi = ai or a2 = b2. Then in ST' we have (ax, a2) = (bu a2) cz (bu b2) in the first case 
and (bi, b2) cz (au b2) = (au a2) in the second case. Let us suppose that there 
exists an element (xu x2) e .sdx$ such that either (bu a2) cz (xu x2) cz (bu b2) or 
(bi, b2) cz (jc„ jc2) cz (au b2). Then we have bi = jCi, b2^x2^ a2 in the first case and 
jc2 = b2, b i ^ j c i ^ a ! in the second case. Hence in the multilattice .six Sfc we have 
(bi, b2) ^ (bi, JC2) ^ (b„ a2) = (au a2) in the first case and (bu a2) ^ (JC„ b2) ^ 
(au b2) = (au b2) in the second case. From the assumption it follows that in the 
first case we have either jc2 = b2 or jc2 = a2, in the second case either JCi = bi or 
jc! = ai. We get that either (xu x2) = (bu b2) or (JCI, JC2) = (au a2). Thus either 
(au a2) < (bu b2) or (bu b2) < (au a2) in d x 2ft. Analogously we can prove that if 
(yi> y2) < (JCI, JC2) in the multilattice .si x ^ , then in the multilattice .5$ x 39 either 
(yu yi) < (xu x2) or (JCI, JC2) < (yi, y2) holds. From this it follows that the graphs 
G(2T), G(T) are the same and the mapping (p = fl"VIm gof is an isomorphism of 
the graph G(M) onto the graph G(M'). 

Next we shall show that no elementary square of the multilattice M is broken by 
the isomorphism qp. 

Let {a, b, u, v} czM be an elementary square such that either 
(i) (p(u)<(p(a), (p(u)<(p(b), (p(v)<(p(a), (p(v)<(p(b) 

or 

ii) cp(a)<(p(u), qp(b)<qp(u), (p(a)<(p(v), (p(b)<(p(v). 

Let us consider the case (i) and let f(v) = (vu v2), f(a) = (au a2), f(b) = (bu b2). 
Then a^vu b i^Ui . From (p(v)<(p(a), (p(v)<(p(b) it follows that g(cp(a)) cz 
g((p(v)), g((p(b)) cz g((p(v)). Hence Vi^au Vi^bu This implies ai = bi = i;i. 
Analogously we get that u2 = a2 = b2. Thus f(a) = f(b) contradicting f(a) + f(b). In 
the case (ii) we get the same conclusion. The assertion that no elementary square of 
the multilattice M' is broken by the isomorphism q?"1 can be proved analogously. 

The aim of the next part of this paper is to prove that for lower semimodular 
multilattices M, M' of a locally finite length also the converse assertion holds. 

Now we shall suppose that M, M' are lower semimodular multilattices of 
a locally finite length and that qp is an isomorphism of the graph G(M) onto the 

65 



graph G(AV) such that no elementary square of M, M\ resp., is broken by ip, tD \ 
respectively. We shall denote x' = cp(x) for xeM. 

Let P, = {(a,b)eMxM: either a<b and a'<b\ or b<a and b'<a'}, 
P0={(a,b) e M x M: either a < b and b'<a\ or b<a and a'<6'}. 
P! = { ( f l ' , f c ' ) : ( f l , i ) e P i } , i e { 0 , l } . 

We shall say that a prime interval [x, y], x, yeM is preserved (reversed) if 
(x, y) e P, ((*, y) e P0). An interval [u, v], u, v e M is preserved (reversed) if each 
prime interval of this interval is preserved (reversed); the interval (u, u) is 
simultaneously preserved and reversed. 

Since the relation between the multilattices M and M' is symmetric, we may 
exchange the roles of these multilattices in each of the following lemmas. (E g , 
Lemma 1' denotes the assertion that we obtain from Lemma 1 by exchanging M 
and M'.) 

Lemma 1. Let {a, b, c, d] czM be an elementary square. Then (a, d)e Px iff 
(c,b)ePt,ie{0,l). 

Proof. If a'<d' and b'<d' (d'<a\ d'<b'), then from the assumption that 
no elementary square of At is broken by the isomorphism (p it follows that c <b' 
(b'<c'). 

It can be easily shown that if a' <d' < b', then a' <c' <b' and if d' ^ a \ b' <d\ 
then b' <t> <a'. 

Lemma 2. Let a, b, c, d, u, v eM such that a<b, v ebAC, ueaAv. Then 
either u = v or u<v. 

Proof. If v = b or v ^ a, the assertion is obvious. Let a, v be incomparable and 
let b = b0>bi>...>bn = v be a maximal chain from v to b. If we assume that 
n = 1, then the assertion is valid by the condition (a). Let us suppose that the 
assertion is valid when the length of a minimal chain from v to b is n -1. Let 
ule(a/\bn-l)u, Ui<bn~u According to the condition (a) for each element 
u2euiAv we have u2<v. Since uevAuu we get u<v. 

Lemma 3. Let a, b, c, ueM such that a<b, c<b, ueaAc, cia/\c. Then 
[u, c] is a prime interval and it is preserved (reversed) iff the prime interval [a, b] 
is preserved (reversed). 

Proof. According to Lemma 2 [u, c] is a prime interval. Let b = b0>b1> ...^ 
bn = c be a maximal chain from b to c. The proof is based on induction on n and 
Lemma 1. 

Corollary 1. Let prime intervals [u, x], [y, v] be lower T-transposed. Then the 
prime interval [y, v] is preserved (reversed) iff the interval [u, x] is preserved 
(reversed). 

Lemma 4. Let a, b, u, v eM such that a<b, v<b, uea/\v, v&aAv. If the 
interval [u, a] is preserved (reversed), then the interval [v, b] is preserved 
(reversed) as well. 
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Proof. Let a = a0>ai >. . . >an = u be a maximal chain from u to a. If n = 1, we 
shall show that [v, b] is a prime interval. Let vx e M such that v < vx < b and let 
Ui e (vx Afl)H. Then either Ui = a or ux = u. Since [a, b] is a prime interval we obtain 
ux£a. According to Lemma 2[u,v],[u,vx]are prime intervals and hence vx-v. 
From Lemma 1 it follows that if the interval [u, a] is preserved (reversed), then the 
prime interval [v, b] is preserved (reversed) as well. It suffices to apply induction 
on n to finish the proof. 

Lemma 5. Let JC, yeM, x<y and let jc = a 0 <ai< . . .<a„ = y be a maximal 
chain such that a\-x<a\ (a\<a\-x)(i = l, ..., n). If jc^a < b ^ y , then the interval 
[a, b] is preserved (reversed). 

Proof. Let [a, b] be a prime interval, a, be [JC, y]. There exists a maximal chain 
R from JC to y such that a,beR. According to Theorem (B) the prime interval 
[a, b] is lower T-transposed with some prime interval [ai-u a*]. From Corollary 1 
and the assumption of the theorem it follows that the interval [a, b] is preserved 
(reversed). 

Lemma 6. Let a, b, u, veM, v^a, v^b, ueaAb. If the interval [a, v] is 
preserved (reversed), then the interval [u,b] is preserved (reversed). 

Proof. Let v = v0>vx>...>vn = a be a maximal chain from a to v. If n = l, 
then the assertion follows from Lemma 3. Let us suppose that the assertion is valid 
for n - 1 . Let uxe(vn-XAb)u. Then the interval [it-., b] is preserved (reversed). 
Since uea/\b, we have ueaAux and according to Lemma 2 either Ui = u or 
u<ux. If u<ux , then the interval [u, ux] is preserved (reversed) according to 
Lemma 3. Thus the interval [u, b] is preserved (reversed). 

Lemma7. Let x, y, u, veM such that uexAy, vexvy and let [u, JC] be 
a prime interval. Then [y, v] is a prime interval. 

Proof. Suppose that u e JC Ay, v e JC vy and [u, JC] is a prime interval. If v = JC, 
then u-y and the assertion is obvious. Let jc = jc0<jci<...<jc„ = t ;bea maximal 
chain from jc tov . We proceed by induction on n. If n = 1, then it follows from 
Theorem (B) that all maximal chains from JC to v are of the same length 2. Hence 
[y, v] is a prime interval. Let the assertion hold if the maximal chain between the 
corresponding elements is of the length m ^ n - 1 . Choose yie(jcn-iAy)M. Then 
yi < y by Lemma 2. It is obvious that u e x A yx. Let xe(xvyi)*.,.,. By the induction ' 
assumption [yi, JC] is a prime interval. Since yie iAy, vexvy and since the 
lengths of all maximal chains from JC to v are less or equal to n - 1, we infer that 
[y, v] is a prime interval. 

Let i e {0,1}. Let us denote by 0, (0\) the least equivalence relation on M (M') 
such that PiCi0i (P\czG\). 

Lemma 8. Let a, beMsuch that (a,b)e 0X ((a, b)e 0O). Then there exists an 
elementu eM such thatue a Ab and the intervals [u, b] are preserved (reversed). 
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Proof. Let (a,b)eQx. Then there is a sequence (po)a = Co, c?, ..., c°n=b 
(n^l) such that (ck, ck+x)ePx for each ke {0, ... n — 1}. 

Let 0 < i <n . We shall say that an element c? has a property (p) if the elements 
c?-i, c?+i are covered by c?. Let us replace in the sequence (p0) all elements c° with 
the property (p) by the elements c) e c?_iAc?+i. We denote by c\ those elements c°k 

which have not the property (p). Then (cl, c{+x)ePx, fc = 0, 1, ..., n-\. After 
a finite number of analogous steps we get the sequence 

(pm) a = c0
1, cT, ..., cm = b (n^l) such that (c£, cT+i)ePx for each k = 0, ..., 

n — 1 and in the sequence (pm) there does not exist any element with the property 
(p). It means that there exists an element c7 such that a = c£ > ... ^ c™ ^ ... ^ 
cr

n
l = b ( n ^ l ) . If we choose ue(ar\b)c?», then the intervals [u, a], [u,b] are 

preserved by Lemma 5. 
The proof for @0 is analogous. 

Corollary 2. Leta^b (a, be M). Then (a,b)e 0X ((a, b) e 0O) iff the interval 
[a, b] is preserved (reversed). 

Lemma 9. Let a, b, ceM, (a, b)e0t, ie{0,1}. Then there are elements u, 
veM such that uea/\c, v eb/\c, (u,v)e&i. 

Proof. Let (a, b)e 0X. According to Lemma 8 there exists an element xeM 
such that xeaAb and the intervals [JC, a], [x, b] are preserved. Let us choose 
dexAc, ue(aAc)d, ve(bAc)d. We shall show that deuAx. Let dxe(uAx)d. 
Since dx^d, dx^x, dx^u, dx^c and dexAc, we have d = dx. According to 
Lemma 6 the interval [d, u] is preserved. By a similar argument, the interval [u, v] 
is preserved as well. Thus (u, v)e©x. For (a, b)e©0 the proof if analogous. 

Let the relation ^ be defined on the set M/0t (M'l&\), i e {0,1} as follows: 
[a]0i ^ [b]0i iff there exist aie[a]0i, bxe[b]0t such that a ^ b i ([a']©; ^ 
[b']©; iff there exist a'xe[a']0\, b'xe[b']0fi such that a'^b'). 

Lemma 10. Let ie{0,1}. ThenMI0i = (M/0i9 ^) (M'I0\ = (M'I0\, ^ ) ) 
are partially ordered sets. 

Proof. The reflexivity of the relation ^ on the set MI0x is clear. We shall show 
that the relation ^ is anti-symmetric on the set MI0x. Let a^b, ^ c (a, b, c, 
deM), (a,c)e0x, (b,d)e0x. According to Lemma 8 there exist zeaAc, 
tebAd such that the intervals [z, a], [z, c], [t, b], [t, d] are preserved. Choose 
yezAt. Then by Lemma 6 the interval [y, z] is preserved because b ^ z, b ̂  t. By 
the same argument the interval [y, t] is preserved and consequently the intervals 
[y» fl]> [y> b] are preserved. Thus (a, b) e 0X. 

Now we shall show that the relation ^ is transitive on the set M/0*. Let a^b, 
d^c (a,b, c, deM), (b, d) e 0X. From Lemma 8 it follows that there exists an 
element zebAd such that the intervals [z,b], [z,d] are preserved. Since 
bAa = {a}, there exists an element tezAa such that (t, a)e0x by Lemma 9. 
According to Lemma 6 the interval [t, a] is preserved. From Corollary 2 it follows 
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that (t, a)e@x. Since (t, a) e 0U t^a, we get [a]0x = [f]0,^[c]0i. Thus the 
relation ^ is transitive. 

The assertion for 0O (©'<) can be proved analogously. 

Lemma 11. 0 O A 0 I = CD (the identity). 
Proof. Let (JC, y)e 0O, (JC, y)e 0 i (JC, yeM). From Lemma 8 it follows that 

there exists an element uxGJCAy such that the intervals [uu y], [uu x] are 
preserved. From the same lemma it follows that there exists u2 e x A y such that the 
intervals [u2, JC], [U2, y] are reversed. Now we shall show that u[ex' Ay'. Choose 
u3e(x' Ay')u[. By Lemma 5' the intervals [u[, u'3], [u3, JC'], [U3, yf] are preserved 
and this yields u3 e (JC Ay)M1. Consequently u3 = Ui and u3 = u[. Since u'2>x',u'2>y' 
according to Lemma 6' we infer that the intervals [u[, JC'], [U[, y'] are simultane­
ously preserved and reversed. Hence JC' = u' = y \ This implies x = y. 

Lemma 12. Let i e {0, 1} and let [a]0„ [b]0ieM/0i such that [a]0t < [b]0t 

inMI&i. Then there exist elements a2e[a]0t, b2e[b]&isuch thata2<b2inM. 
Proof. Let [a]0t < [b]0f for some i e {0,1}. According to the definition of the 

relation ^ on M/0, there exist elements aie[a]0 f , bxe[b]0i such that a!<bi. 
Let ai = c0 < Ci < ... < cn = bx ( n ^ 1) be a maximal chain from ax to bx. Let 
/ = min {k:cke[b]0i}. Then a2 = ci-u b2-q are the desired elements. 

Lemma 13. Let ie{0,1) and [aj]0,eM/0, (j = l,2,3) such that [aJQ < 
[a3]0i, [a2]0i < [a3]0, in M/0t. Then there exist elements a e [ax]0i, b e [a2]0,, 
c 6[a3]0i such that a<c, b<c in the multilattice M. 

Proof. Let [ai]0* < [a3]0t, [a2]0t < [a3]0t for some ie{0,1}. Then by 
Lemma 12 there exist elements Ci6[ai]0i, c26[a2]0i5 c3, c4e[a3]0, such that 
Ci < c3, c2 < c4 in ^ . According to Lemma 8 there exists an element c e c3 A C4 such 
that (c, a3)e0i. Choose aeciAC, 5GC 2AC. From Lemma 2 and Lemma6 it 
follows that a, b, c have the required property. 

Lemma 14. Letc,deM,d<c and for i e {0,1}, [c]0t ± [d]0>. Then [d]0t < 
[c]0, in M/0t. 

Proof. Let [c]0o=£ [d]0o. Suppose there is an element e e M such that [d]0o < 
[e]0o < [c]0o. Then there are elements eu e2 e [e]0o such that et ^ c, d^ e2. Since 
(c, d)^0o, we have (c, d)e0u According to Lemma 8 there is an element 
ueelAe2 such that the intervals [u, ex], [u, e2] are reversed. Let zeuAd. From 
Lemma 2 it follows that [z, u] is a prime interval which is preserved by Lemma 3. 
According to Lemma 6 the interval [z, d] is reversed and if we choose t e (eiAd)z, 
then the interval [t, d] is reversed as well. From Lemma 4 it follows that the 
interval [euc] is reversed. Hence [eu c]e©0. This implies [c]0o = [c]0o con­
tradicting [e]0o<[c]0o . The assertion for 0 ! can be proved in the same way. 

Lemma 15. Let ie{0, 1}, [a]0i9 [b]0t, [c]0i9 [d]0 f€M/0, and let [b]0t < 
[c]0t,[a]0t < [ c ] 0 i , [ a ] 0 ^ [ b ] 0 , , [ d ] 0 I < [a ]0 i , [d ]0 i < [b]0iinM/0t. Then 
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there exists [u]0ieM/0i such that [u]0< < [a]&u [u]Qi < [b]Gk and [d]0t ^ 
[u]Ou 

Proof. Let the assumptions of the lemma be fulfilled for 0O. Then there exist 
b2 e [b]0o, a2 e [a]0o, di e [d]0o, d2 e [d]0o such that d2< a2, di < b2. According to 
Lemma 13 there exist Cie[c]0o, a,e[a]0o, bi6[b]0o such that bi<Ci, ai<Ci. 
From Lemma 8 it follows that there exist a3eaiAa2, b3eb\Ab2, d3ed\/\d2 such 
that the intervals [d3, dx], [d3, d2], [b3, b2], [a3, a2] are reversed. Choose Z\ e d3Ab3, 
z2ea3Ad3. Then the intervals [zu d3], [z2, d3] are reversed by Lemma 6. If 
d4 _ z2 A Zi, then the intervals [d4, z2], [d4, Zi] are reversed as well. From this we get 
(d3, d4)e0o . Moreover d4<au d4<bu Choose ue(aiAbi)d4. According to the 
condition (a'), u<ai , u<bi . Since (cu bx)e0u (ci, a i )e0i , we infer that 
(u, aO e 0 i , (u, bO e 0\ by Lemma 3. From Lemma 11 it follows that (u, a-) _ 0O, 
(u, bi) _ 0O and therefore [u]0o < [a]0o, [u]0o < [b]0o according to Lemma 14. 
Then [u]0 o^[d]0 o because u^d4. 

Lemma 16. Let i e {0,1}, [a]0u [b]0, e M/0i, [a]0{ < [b]0t in ^ / 0 i . If there 
exist two finite maximal chains in MI0t from [a]0, to [b]0{, then they are of the 
same length. 

Proof. Let Ru R2 be two maximal chains from [a]0o to [b]0o and let Ri be of 
the length n^l. We produced by induction on n. If n = 1, then R{ = R2. Suppose 
that [bn_i]0oGR1, [bn_i]0o < [b]0o. According to the induction assumption, all 
finite maximal chains from [a]0o to [bn-i]0o have the same lengths n - 1 . If 
[bn_i]0oGR2, then card R, = card R2. Let [bn_i]0o_R2. Then there exists 
[c]0oeR2 such that [c]0o<[b]0o and [b]0o, [bn_i]0o are incomparable. By 
Lemma 15 there exists [u]0o such that [u]0o<[c]0o, [u]0o<[bn_i]0o and 
moreover [a]0o ^ [u]0o. Let R3 be a maximal finite chain from [a]0o to [u]0o. 
As the chain R3 is of the length n - 2, the chain R3u{[c]0o} is of the length n - 1. 
Since by the induction assumption all finite maximal chains from [a]0o to [c]0o are 
of the same length n - 1, the chain R2 is of the length n because [c]0o< [b]0o. 

Lemma 17. Let i e {0,1}. The partially ordered set M/0X = (M/0t, ^ ) is of 
locally finite length. 

Proof. Let [a]0,<[b]0i. We may suppose that a<b. There exists a maximal 
chain a = c0 < C\ < ... < cm = b, m i_ 1 in the multilattice M. From Lemma 14 it 
follows that in M/0t either [cj©, = [c^i]©, or [q]0i < [c,+i]0i (O^ j^m) . 
Hence there exists a finite maximal chain R from [a]0t to [b]0t. If R is of the 
length m = l, then all maximal chains from [a]0, to [b]0t are of the length 1. 
Suppose that if there is a maximal chain of the length m - 1 between two elements 
in M/0i, then all maximal chains between the same elements are finite. Let R' be 
a maximal chain from [a]0t to [b]0i9 R' £ R. If all elements of the chain R' are 
comparable with the element [cm_i]0i, then card R = card R \ Suppose that there 
exists [c]0teR' such that [c]0,, [cm_i]0i are incomparable. According to Lem-
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ma 15 there exists [u]©i eM/0* such that [u]0* < [c]0,, [u]0t < [cm_i]©i. From 
the induction assumption and Lemma 16 it follows that all maximal chains from 
[a]&i to [u]©i are finite and they are of the length m - 2 at most. This yields that 
all chains from [a]0t to [c]0t are finite and they are of the length m - 1 at most. 
Now we show that the maximal chains from [c]0t to [b]0, are finite. Let [cm_i]0i 
= [eo]®« > [c\]0i > ... > [en]0i = [u]0i be a maximal chain of the length n. 
First we show that if n = 1, then [c]0{ < [b]0t. Let [JC]0, eM/0 , be such that 
[c]0i < [x]0i < [b]0t. According to Lemma 15 there exists [ui]0i 6 M/0, such 
that [iij©, ^ [u]0i and [ui]0< < [JC]0*. Then [ujft = [u]0t. This yields [u]0, 
< [JC]0, contradicting [u]0t < [c]0t. Let n>\ and [y]0{ e M/0, be such that 
[c]0, < [y]0i < [b]0i. Assume that the assertion is valid if some chain between 
[Cn-i]©* and [u]0i is of the lenth p ^ / i - 1 . Since [u]0t < [y]0., according to 
Lemma 15 there exists [u2]0. e M/0, such that [u2]0t > [u]0{ and [u2]0. < 
[y]0i. All maximal chains between [u2]0t, [cm_i]0i or [w]0,, [u2]0i9 respectively, 
are of the length n - 1 at most, hence all maximal chains between [y]0«, [b]0t or 
[c]0i, [y]0t, respectively, are finite. 

From Lemmas 15,17 and from the definition of the relation ^ on the set M/0t, 
ie{0,1} it follows that the partially ordered set M/0t (M'/0\) is a lower 
semimodular multilattice. 

The following Lemmas 18,19,20 can be proved in the same way as the Lemmas 
3.6.7, 3.6.8, 3.6.9 in [2]. 

Lemma 18.a)[y]0o<[jc]0o in^/0oiff[y /]0o< [x']0'o in M'/0'o. b) [y]0i < 
[JC]0I in MI0x iff [x']0\ < [y']0\ in M'/0\. 

Lemma 19. M'/0'o~M/0o, M'/0\~M~/01. 

Lemma 20. The multilattice MI0X is directed and modular. 
LetfbeamappingM^>M/0oxM/0u g'beamappingM'-*M'/0'o x M'/0\ 

such that f(x) = ([x]0o, [x]0J for each xeM and g'(x') = ([x']0'o, [x']0\) for 
each x' eM'. 

Lemma 21. Let x,yeM. Iff(x)<f(y) in the multilattice M/0oxM/0l, then 
x <y in the multilattice M. 

Proof. From the assumption of the assertion it follows that either 

(1) [*]0o<[y]0o and [x]©^^]©, 
or 

(2) [*]0i<[y]0i and [x]0o = [y]0o. 

Let the case (1) be valid. Then (x, y) e 0 i , (x, y) £ 0O. According to Lemma 12 
there exist JCI6[JC]0O, yi6[y]0o such that Xi<y! and (.Xi,yi)_0o. This implies 
(JCI, y i )e0i . By Lemma 8 there exists ZieyAyx such that the intervals [zi, yi], 
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[zi, y] are reversed. Choose Z2GJC, AZ,. From Lemma 3 it follows that [z2, Zi] is 
a prime interval which is preserved and by Lemma 6 the interval [z2, Zi] is reversed 
Then z2<z\ and y '^z ' i in Mf. Choose u'ez2Ay'. According to Lemma 3 the 
interval [u', y'] is preserved and by Lemma 6 it is reversed. Since the interval 
[JC!,Z2] is reversed, we get ( u \ j c ! ) e 0 o , (u',y')e0\. This implies (u,X\)e0Q, 
(u, y)e&\. We have (y, jc)e 0 , , hence (u, x)e Q\. From the transitivity of 0O we 
obtain (u,x)eQ0, because (jCi,jc)e0o. According to Lemma 11, u = x. Thus 
JC < y . 

In the case (2) there exist elements y ie [y ]0 i , xiG[x]0i such that xi<yi 
according to Lemma 12. Since (JC,, yx) I 0X, we have (xu yx) e 0 O and y [ <x[ in M . 
From Lemma 8' it follows that there exists z[exrAx[ such that the intervals 
[z[, x[], [z!, x'] are preserved. Choose z2ey!AzI. Then [z2, z!] is a prime interval 
which is reversed by Lemma 3' and the interval [z2, y'l is preserved according to 
Lemma 6'. From Lemma 8' it follows that there exists f !ey 'Az 2 such that the 
intervals [t[, z'2], [t[, y'] are reversed because (z2, y')e&[. Choose u' e(x' Ay')h. 
By Lemma 5' the interval [u', y'] is preserved. From (x, y ) e O 0 it follows that 
there exists vex Ay such that the intervals [v,x], [v,y] are reversed. Hence 
v'^x', v'^y and the intervals [ j t \ t / ] , [y \ v'] are reversed. The intervals 
[w',y']„ [ n ' ,x ' ] are reversed by Lemma 6'. This yields u' = y' and the interval 
[y ' ,x ' ] is reversed. Hence x<y. Now we show that FezlAy'. Choose 
f2e(z'iAy'),.'. The interval [fi, t'2] is preserved by Lemma 5' because the interval 
[t[, y'] is preserved. Since the interval [z2, z!] is reversed, the interval [t[, t'2] is 
reversed by Lemma 6'. Hence t2 = t[ and t[ e z! Ay'. Using Lemma 6' we get that 
the interval [t[, z'2] is reversed. This yields t[ = z2. We have that JC' e z! v y ' (in fact, 
if r' e (z!vy')X ', then the interval [ r \ JC'] is simultaneously preserved and reversed, 
hence r' = x'). From this we obtain that [y', x'] is a prime interval by Lemma 7. 

Lemma 22. Let ST=(T,^), 3~' = (T, cz) be the images of the multilattices 
M, At' under the mappings f, g'. Then f, g' are isomorphisms of the multilattices 
M,M' onto the multilattices ST, ST'. 

Proof. According to Lemma 17 the multilattice M/0oxM/0\ is of locally 
finite length. Hence the multilattice 3~ is of locally finite length. Let JC, y e M such 
that JC <y. From Lemma 11 it follows that either (JC, y) I 0O, or (x, y)£&\. Let 
(JC, y )^ 0O. Then [ jc]0o<[y]0o in ^ / 0 O by Lemma 14, Since jc<y and (JC, y)£ 0O 

we have ( j c ,y )e0 i . Hence f(x) = ([x]0o, [x]0\) < / (y) = ([y]0o , [y]0O in 
MIQ0 x M/&\. If we assume (JC, y ) ^ @u we arrive at the same conclusion. 

Let us assume that f(x)<f(y) inM/G0 x MI0x. From Lemma 21 it follows that 
x <y in M. Since the ordering relations on ST and M are uniquely determined by 
the corresponding covering relations, we have M ~ ST. Analogously we can prove 

Let fco:[jc']0o>->[jc]0o, fcr.[jc']0!»->[jc]0i be the isomorphisms from Lem­
ma 19. Denote M/0o = sl, MI0x = <%, Al'/0'o = .sd', At'l0\ = 9h'. Then fc0xfcj is 
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an isomorphism of si' x 2/i' onto si x 9&. If we denote g = (kQxki)og', then the 
mapping g is an isomorphism from M' to si x 26 and Im / = Im g. 

From the definition of the mappings /, g it follows that the projection of Im / 
(Im g) to the set A(B) is the whole set A(B). 

By summarizing, we obtain the following theorem: 

Theorem 2. Let M, M' be lower semimodular multilattices of a locally finite 
length and let cp be an isomorphism of the graph G(M) onto the graph G(M') such 
that no elementary square of the multilattice M,M' respectively is broken by <p, 
qp-1 respectively. Then there exist a lower semimodular multilattice si, a modular 
multilattice 2R (si,2R of a locally finite length) and subdirect representations 
f:M-*.six2ft, g:M'-+.six® such that Im/ = lm0. 
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МУЛЬТИСТРУКТУРЫ С ИЗОМОРФНЫМИ ГРАФАМИ 

Мария Томкова 

Резюме 

В этой статье обобщены две теоремы М. Колибиара, кассающиеся пар полуструктур. Если М, 
М', А, В снизу направленные мультиструктуры локально конечной длины и /: М—>АхВ, 
д:М'-*АхВ являются полупрямыми представлениями такими, что 1т / = 1т д, то графы 
О(М), О(М') изоморфны. Найдено условие, при котором справедливо обратное утверждение 
в случае снизу модулярныцх мультиструктур М,М''. 
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