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ON MULTILATTICES
WITH ISOMORPHIC GRAPHS

MARIA TOMKOVA

The aim of this paper is to obtain a generalization of a result of M. Kolibiar [2]
concerning meet semilattices of locally finite length for the case of lower directed
partially ordered sets of locally finite length.

A meet semilattice $=(S; A) of a locally finite length is said to be
a B-semilattice if it fulfils the following condition:

(1) If a, b, ce S, a# b and if ¢ covers both a, b, then both a, b cover anb.

The following theorems (K,), (K;) were proved in paper [2].

(K,) Let oA, &, &' be semilattices of a locally finite length, %3 a lattice of locally
finite length and let f: ¥ — A X B, g: &' — o X B be subdirect representations of
semilattices such that Im f=1Im g. Then g~'/Im gof is an isomorphism of the
graphs G(¥), G(¥').

(K,) Let &, &' be B-semilattices and let h: G(¥)— G(&') be an isomorphism
of graphs. Then there exist a semilattice 4 and a lattice B and subdirect
representations of semilattices f: $— AX B, g: ¥ — A X Bsuch that Im f=Im g
and h=¢g '/Im gof.

Let us recall some basic concepts and properties.

A partially ordered set P = (P ; <) is said to be of a locally finite length if each
bounded chain in ? is finite, For the elements a, b € P we write a <b (a is covered
by b) if a <b and there does not exist any element ¢ € P such that a <c <b. In this
case we say that [a, b] is a prime interval. We denote by & the partially ordered set
dual to 2.

A multilattice [1] is a poset # = (M ; <) in which the condition (i) and its dual
(ii) are satisfied: (i) If a, b, he M, a<<h, b<<h, then there exists v € M such that
(@) v=<h,v=a,v=band (b) zeM, z=a, z=b, z=v implies z=v.

The symbol (av b), designates the set of all elements v € M satisfying (i) ; the
symbol (a Ab), has a dual meaning.

We denote avb=\/(avb), aanb=\/ (aab),.

a<h d=<a
b<h dub

Recall that the sets avb, aAb may be empty. It is evident that each partially
ordered set of locally finite length is a multilattice.
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A lower directed multilattice # of a locally finite length is said to be lower
semimodular if it fulfils the following covering condition:

(o) Leta, b, u, heM, a<h, b<h, a¥b, ueanb. Then u<a, u<b.

A multilattice M of a locally finite length is modular [1] if the condition (o) and
its dual (o') are satisfied in .

By a graph G(%) is meant an unoriented graph (without multiple edges and
loops) whose vertices are elements of P ; two vertices a, b are joined by the edge
(a, b) iff either a<b or b<a.

The set ¥=1{a, b, u, v}<=?P is said to be elementary square if a, b are
uncomparable elements and a <v, b<v, u<a, u<b.

Let ?,, P, be partially ordered sets of a locally finite lengtl, and let ¢ be an
isomorphism of the graph G(%,) onto the graph G(P,). We say that the
elementary square ¥ = {a, b, u, v} < P, is broken by the isomorphism  if either
ew)<og(a), )<@), (v)<e(a), p(v)<@(b) or @a)<e(u), ¢(a)<
o(v), p(b)<@(u), p(b)<e(v).

Let M be a multilattice, x1, y,, X2, Y. € M. We say that an interval [y,, x,] is direct
transposed [1] with an interval [y,, x,] iff x,€ X,V y1, y2€ X2A Y.

We say that an interval [y, x,] is transposed with an interval [x,, y.] (x1,y), X2,
y. € M) iff there are intervals [b,, a;] b,, a,e M, i=0, 1, ..., r, such that the interval
{b,, a] is direct transposed with the interval [b;,,, a;+,] for i=0, 1, ..., r—1 and
[bOa aO] = [)’1, xl]’ [bn arl = [)’2, x2]-

Intervals [y, x1], [y2, x.] are said to be lower T-transposed if there is an interval
[t, s] such that the intervals [y, x,], [y., X.] are transposed with the interval [t, s].

The following theorem was proved in [1, 4.7].

(B) Let M be a multilattice of locally finite length fulfilling the covering
condition (o). Let C,, C, be maximal chains between a, b e M. Then C,, C, are of
the same length and there exists a one-to-one mapping of the set of all prime
intervals of the chain C, onto the set of all prime intervals of the chain B, such that
the corresponding prime intervals are lower T-transposed.

Multilattices M,, M, are said to be isomorphic (denoted M, ~ M) if there exists
a bijection f of M, onto M, satisfying:

xs<y iff f(x)<f(y) (x,yeM,).

Let M, 4, B be multilattices and let f be an isomorphism of M to the multilattice
A X B. We shall say that f is a subdirect representation of the multilattice M if the
projection of the Im f into A, B, resp., is the whole set A, B, resp.

In the first part of this paper we shall prove the following assertion.

Theorem 1. Let A, B, M, M’ be lower directed multilattices of a locally finite
length and let f: M— A X B, g: M' — { X B be subdirect representations of M,
M’ such that Im f=1Im g. Then the mapping ¢ = g~'/Im gof is an isomorphism of
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the graph G(At) onto the graph G(At'),such that no elementary square & < M,
¥ < M', resp., is broken by the isomorphism @, @', respectively.

Proof. Let 7=(T, <), 9'=(T; c) be images of the multilattices ., .4’
under the isomorphisms f, g. We shall denote by U, N the operations in the
multilattice 9. It is evident that I, I’ are lower directed multilattices. We shall
show that the graphs G(J), G(9') coincide. Let (a,, a;), (b, b.)e T such that
(b, by) < (ay, a;) in 7. Then b, <a,, b,<a,. Since a,Ab, = {b(}, a,vb,= {a,}, we
have (a,, a;) N (b, b,) = {aAb,, a;vb,} = {(by, a,)} € T because the multilat-
tice .M’ is lower directed. Therefore (b, b,) < (b1, a;) < (a, @) hence either
b,=a,ora,=b,. Thenin I’ we have (a,, a;) = (b,, a.) = (b,, b,) in the first case
and (b,, b,) < (ai, b,) = (a,, a,) in the second case. Let us suppose that there
exists an element (x,, x;) € ¢ X 9B such that either (b,, a;) < (x1, X2) < (b, by) or
(by, by) < (x4, x2) < (ai, by). Then we have b, = x,, b,<x,<a, in the first case and
x2=b,, b;<x,=<a, in the second case. Hence in the multilattice ¢ X B we have
(by, by) < (by, x2) < (by, az) = (a4, a,) in the first case and (by, a,) < (x4, b,) <
(a,, b,) = (ay, b,) in the second case. From the assumption it follows that in the
first case we have either x,=b, or x,=a,, in the second case either x,=b, or
x,=a,. We get that either (x,, x,) = (b, b2) or (x4, x2) = (ai, a;). Thus either
(a5, a;) < (by, by) or (by, by) < (ay, a,) in ¢ X B. Analogously we can prove that if
(y1, ¥2) < (x1, x,) in the multilattice .« x 9, then in the multilattice ./ x % either
(y1, y2) < (x1, x2) or (x1, x2) < (y1, y2) holds. From this it follows that the graphs
G(9), G(J") are the same and the mapping @ =g ~'/Im gof is an isomorphism of
the graph G(A) onto the graph G(A").

Next we shall show that no elementary square of the multilattice . is broken by
the isomorphism .

Let {a, b, u, v} = be an elementary square such that either

() e(u)<g(a), p(u)<@(b), p(v)<g(a), p(v)<e(d)

or

i) @(a)<e(u), p(b)<@u), p(a)<e(v), P(b)<@(v).

Let us consider the case (i) and let f(v) = (vy, v2), f(a) =(a,, az), f(b)=(b,, b,).
Then a,<v,, by<v,. From ¢(v)<@(a), @(v)<g(b) it follows that g(¢(a)) < -
g(e)), g(@p(b)) = g(e(v)). Hence v,<a., vi<b,. This implies a,=b,=v,.
Analogously we get that u, = a, = b,. Thus f(a) = f(b) contradicting f(a) # f(b). In
the case (ii) we get the same conclusion. The assertion that no elementary square of
the multilattice 4’ is broken by the isomorphism ¢ ' can be proved analogously.

The aim of the next part of this paper is to prove that for lower semimodular
multilattices #(, 4’ of a locally finite length also the converse assertion holds.

Now we shall suppose that ., ' are lower semimodular multilattices of
a locally finite length and that ¢ is an isomorphism of the graph G(.) onto the

65



1

graph G (") such that no elementary square of 4, #M', resp., is broken by ¢, ¢ ',
respectively. We shall denote x' = @(x) for x e M.

Let P,={(u, b)e M XM: either a<b and a'<b’, or b<a and b’'<a'},
Py={(a,b) ¢ M X M: either a<b and b'<a’, or b<a and a’'<b’'}.
Pi={(a’,b'): (a,b) € P}, i€{0, 1}.

We shall say that a prime interval [x, y], x, yeM is preserved (reversed) if
(x, y)e P, ((x, y)e Py). An interval [u, v], u, v € M is preserved (reversed) if each
prime interval of this interval is preserved (reversed); the interval (u, u) 1s
simultancously preserved and reversed.

Since the relation between the multilattices # and (' is symmctric, we may
exchange the rolcs of these multilattices in each of the following lemmas. (E g,
Lemma 1’ denctes the assertion that we obtain from Lemma 1 by exchanging A{
and At'.)

Lemma 1. Let {a, b, ¢, d} =M be an elementary square. Then (a, d) € P, iff
(c,b)eP, ic{0,1}.

Proof. If a’<d’' and b’ <d' (d’'<a’, d'<b"), then from the assumption that
no elementary square of J is broken by the isomorphism ¢ it follows that ¢ <b’
(b'<c").

It can be casily shown thatif a’ <d'<b’,thena’'<c'<b'andifd' ~a’,b’'<d’,
then b' <('<a’'.

Lemma 2. Let a, b, c, d, u, veM such that a<b, vebac, ueanv. Then
either u=v or u<v.

Proof. If v =b or v <a, the assertion is obvious. Let a, v be incomparable and
let b=bo>b,>...>b,=v be a maximal chain from v to b. If we assume that
n =1, then the assertion is valid by the condition (o). Let us suppose that the
assertion is valid when the length of a minimal chain from v to b is n—1. Let
ue(@anb, i), uy<b,... According to the condition (o) for each element
U, € u;Av we have u,<v. Since uevau,, we get u<v.

Lemma 3. Let a, b, ¢, ue M such that a<b, c<b, ueanc, céanc. Then
[u, c] is a prime interval and it is preserved (reversed) iff the prime interval [a, b]
is preserved (reversed).

Proof. According to Lemma 2 [u, c] is a prime interval. Let b=b,>b,> ... ~
b, = ¢ be a maximal chain from b to c¢. The proof is based on induction on n and
Lemma 1.

Corollary 1. Let prime intervals [u, x], [y, v] be lower T-transposed. Then the
prime interval [y, v] is preserved (reversed) iff the interval [u, x] is preserved
(reversed).

Lemmad. Let a, b, u, ve M such that a<b, v<b, ueanv,véanv. If the
interval [u, a] 1s preserved (reversed), then the interval [v, b] is preserved

(reversed) as well.
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Proof. Leta=a,>a;>...>a.=u be amaximal chainfromu toa.If n=1, we
shall show that [v, b] is a prime interval. Let v, € M such that v <v,<b and let
u, € (v,Aa),. Then either u, = a or u, = u. Since [a, b] is a prime interval we obtain
u, # a. According to Lemma 2 [u, v], [u, v,] are prime intervals and hence v, =v.
From Lemma 1 it follows that if the interval [u, a] is preserved (reversed), then the
prime interval [v, b] is preserved (reversed) as well. It suffices to apply induction
on n to finish the proof.

Lemma 5. Let x, yeM, x<y and let x=a,<a,<...<a,=y be a maximal
chain such that a;_,<a} (ai<ai-) (i=1, ..., n). If x<a <b <y, then the interval
[a, b] is preserved (reversed). _

Proof. Let[a, b] be a prime interval, a, b € [x, y]. There exists a maximal chain

'R from x to y such that a, b € R. According to Theorem (B) the prime interval
[a, b] is lower T-transposed with some prime interval [a;_,, a;]. From Corollary 1
and the assumption of the theorem it follows that the interval [a, b] is preserved
(reversed).

Lemma 6. Let a, b, u, veM, v=a, v=b, ueanb. If the interval [a, v] is
preserved (reversed), then the interval [u, b] is preserved (reversed).

Proof. Let v=v,>v,>...>v,=a be a maximal chain from a to v. If n=1,
then the assertion follows from Lemma 3. Let us suppose that the assertion is valid
for n—1. Let u; €(v,-1ab).. Then the interval [u,, b] is preserved (reversed).
Since ueanb, we have ueanu, and according to Lemma 2 either u;,=u or
u<u,. If u<u,, then the interval [u, u,] is preserved (reversed) according to
Lemma 3. Thus the interval [u, b] is preserved (reversed).

Lemma 7. Let x, y, u, veM such that uexay, vexvy and let [u, x] be
a prime interval. Then [y, v] is a prime interval.

Proof. Suppose that uexAy, vexvy and [u, x] is a prime interval. If v=1x,
then u =y and the assertion is obvious. Let x =x,<x;<...<x, =v be a maximal
chain from x to v. We proceed by induction on n. If n =1, then it follows from
Theorem (B) that all maximal chains from x to v are of the same length 2. Hence
[y, v] is a prime interval. Let the assertion hold if the maximal chain between the
corresponding elements is of the length m<n —1. Choose y, € (x.-1Ay).. Then
y, <y by Lemma 2. It is obvious that u e x Ay;. Let x € (x v y,),,_,. By the induction
assumption [y,, X] is a prime interval. Since y,exXAy, vexvy and since the
lengths of all maximal chains from x to v are less or equal to n — 1, we infer that
[y, v] is a prime interval.

Letie {0, 1}. Let us denote by O, (©)) the least equivalence relation on 4 (")
such that P,c @, (P,c ©)).

Lemma 8. Let a, b € M such that (a, b) € @, ((a, b) € ®,). Then there exists an
element u € M such that u € a Ab and the intervals [u, b] are preserved (reversed).
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Proof. Let (a, b)e ©,. Then there is a sequence (po)a=cs, c3, ..., co=b

(n=1) such that (c, cc.1)€ P, for each ke {0, ... n—1}.

Let 0<i<n. We shall say that an element c{ has a property (p) if the elements
ci-1, c}+1 are covered by c{. Let us replace in the sequence (p,) all elements c? with
the property (p) by the elements ¢} € ¢{-; Ac?,,. We denote by ci those elements ¢}
which have not the property (p). Then (ck, Ck+1)€ Py, k=0, 1, ..., n—1. After
a finite number of analogous steps we get the sequence

(pm) a=c3, T, ..., cn=b (n=1) such that (c%, ci:)€ P, for each k=0, ...,
n —1 and in the sequence (p.) there does not exist any element with the property
(p). It means that there exists an element ¢7 suchthata=c§ > ... = ¢7 < ... <
ch=b (n=1). If we choose ue(anb), then the intervals [u, a], [u, b] are
preserved by Lemma S.

The proof for ©, is analogous.

Corollary 2. Leta<b (a, b e M). Then (a, b)e O, ((a, b) € ©,) iff the interval
[a, b] is preserved (reversed).

Lemma9. Let a, b, ceM, (a, b)e ®,, i€ {0, 1}. Then there are elements u,
veM such that ueanc, vebac, (u,v)eB,.

Proof. Let (a, b) e ©,.-According to Lemma 8 there exists an element x e M
such that xeaAb and the intervals [x, a], [x, b] are preserved. Let us choose
dexac, ue(anc)s, ve(bac),. We shall show that deuax. Let d; e (uax),.
Since d,=d, d,<x, di<u, dy<c and dexnac, we have d =d,. According to
Lemma 6 the interval [d, u] is preserved. By a similar argument, the interval [u, v]
is preserved as well. Thus (u, v) € ©,. For (a, b) € ©, the proof if analogous.

Let the relation < be defined on the set M/©, (M'/©}), i€ {0, 1} as follows:
[al®: < [b]6, iff there exist a;,€[al®;, b,e[b]O,; such that a,<b, ([a']1O] <
[b']©] iff there exist aje[a']@), bie[b']@] such that a’<b’). '

Lemma 10. Leti€ {0, 1}. Then #/0; = (M/O,, <) (M'/O; = (M'/ O}, <))
are partially ordered sets.

Proof. The reflexivity of the relation < on the set M/@, is clear. We shall show
that the relation < is anti-symmetric on the set M/@©,. Let a<b, <c (a, b, c,
deM), (a,c)e®,, (b,d)e®,. According to Lemma 8 there exist zeanac,
te b ad such that the intervals [z, al, [z, c], [¢, b], [¢, d] are preserved. Choose
y € zAt. Then by Lemma 6 the interval [y, z] is preserved because b=z, b=t. By
the same argument the interval [y, t] is preserved and consequently the intervals
[y, al, [y, b] are preserved. Thus (a, b) € O,.

Now we shall show that the relation < is transitive on the set M/O,. Let a<b,
d=<c (a, b, c,deM), (b, d) € ©,. From Lemma 8 it follows that there exists an
element zebAad: such that the intervals [z, b], [z, d] are preserved. Since
bAaa=/{a}, there exists an element t € zAa such that (t,a)e ®, by Lemma 9.
.According to Lemma 6 the interval [¢, a] is preserved. From Corollary 2 it follows
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that (¢, a) € @,. Since (t, a) € ©,, t<a, we get [a]®, = [t]O,<[c]O:. Thus the
relation < is transitive.
The assertion for ©, (@) can be proved analogously.

Lemma 11. O,A O, =w (the identity).

Proof. Let (x, y)€ @, (x, y)e O, (x, yeM). From Lemma 8 it follows that
there exists an element u,exAy such that the intervals [uy, y], [ui, x] are
preserved. From the same lemma it follows that there exists u, € x A y such that the
intervals [us, x], [u,, y] are reversed. Now we shall show that uje x’Ay'. Choose
uie (x'Ay')u;. By Lemma 5’ the intervals [uj, us], [us, x'], [us, y'] are preserved
and this yields u; € (x A y).,. Consequently u, = u, and u3 = u;. Since u; >x', u; >y’
according to Lemma 6’ we infer that the intervals [u}, x'], [ui, y'] are simultane-
ously preserved and reversed. Hence x'=u'=y'. This implies x =y.

Lemma 12. Letie {0, 1} and let [a]©,, [b]O, € M/©, such that [a]®; < [b]O,
in M/ ©,. Then there exist elements a, € [a]©,, b, € [b]O, such that a,< b, in M.

Proof. Let [a]®;<[b]O, for some i€ {0, 1}. According to the definition of the
relation < on M/@, there exist elements a,€[a]®,, b, €[b]O, such that a,<b,.
Leta, = ¢y < ¢ < ... < ¢, = b, (n=1) be a maximal chain from a, to b,. Let
j=min {k:c, €[b]©;}. Then a,=c;_,, b.=¢; are the desired elements.

Lemma 13. Let i€ {0, 1) and [4,]©,e M/O, (j=1,2,3) such that [a,]O; <
[a3]©;, [a.]O: < [as]©; in AM/O,. Then there exist elements a € [a,]O,, b €[a,]O,,
¢ €[as]O; such that a<c, b<c in the multilattice M.

Proof. Let [ai]O; < [a;:]O, [4.]O; < [a;]O; for some i€ {0,1}. Then by
Lemma 12 there exist elements c,€[a;]0;, c;€[a.]O,, cs, ci€[as]O; such that
¢, <¢3, ¢;<cqin M. According to Lemma 8 there exists an element ¢ € c;A ¢, such
that (c, a;)€ ©,. Choose aec,;anc, bec;ac. From Lemma 2 and Lemma 6 it
follows that a, b, ¢ have the required property.

Lemma 14. Letc,de M, d<candforie{0, 1}, [c]O; #[d]O.. Then [d]O, <
[c]©, in M/6,.

Proof. Let[c]®,#[d]©®,. Suppose there is an element e € M such that [d]O, <
[e]®, < [c]O,. Then there are elements e, e, € [e]O, such that e, <c, d < e,. Since
(c,d)é O, we have (c,d)e®,. According to Lemma 8 there is an element
u € e, Ae, such that the intervals [u, e}, [u, e,] are reversed. Let ze uad. From
Lemma 2 it follows that [z, u] is a prime interval which is preserved by Lemma 3.
According to Lemma 6 the interval [z, d] is reversed and if we choose ¢ € (e; Ad),,
then the interval [¢, d] is reversed as well. From Lemma 4 it follows that the
interval [es, c] is reversed. Hence [ey, c]€ ©,. This implies [e]@,=[c]O, con-
tradicting [€]®<[c]O,. The assertion for O, can be proved in the same way.

Lemma 15. Let i € {0, 1}, [a]O,, [b]6,, [c]©,, [d]©: € M/, and let [b]O, <
[c]@, [a]©: < [c]O,, [a]O; #[b]O;, [d]6: < [a]©,, [d]®, < [b]6.inM/6,. Then
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there exists [u]©, € #/O; such that [u]®; < [a]O,, [u]O; < [b]O; and [d]O; <
(ul®..

Proof. Let the assumptions of the lemma be fulfilled for ®,. Then there exist
b,e[b]Oy, a.€[a]®,, d,€[d]O,, d,€[d]O, such that d,< a,, d,<b,. According to
Lemma 13 there exist c,€[c]©o, a:€[a]Oy, b,€[b]O, such that b,<c,, a,<c;.
From Lemma 8 it follows that there exist ase a;Aa,, bse b,Ab,, d;€ diAd, such
that the intervals [ds, d,], [ds, d:], [bs, b.], [a,, a.] are reversed. Choose z, € dsAbs,
Z2€a;Ads. Then the intervals [z, ds], [z, ds] are reversed by Lemma 6. If
d, € 2, A 2,, then the intervals [ds, z2), [ds, 2:] are reversed as well. From this we get
(ds, ds) € ©p. Moreover ds<a,, di<b,. Choose u € (a,Ab,),,. According to the
condition (o'), u<a,, u<b,. Since (c,, b,)€O,, (c,, a;)e O, we infer that
(u, a) € ©,, (u, b,) € ©, by Lemma 3. From Lemma 11 it follows that (u, a,) ¢ ©,,
(u, b,) ¢ ©, and therefore [u]©, < [a]O,, [u]O, < [b]O, according to Lemma 14.
Then [u]©,=[d]O, because u=d.,.

Lemma 16. Letie {0, 1},[a]©, [b]6:e M/6,, [a]©, < [b]O, in M/6,. If there
exist two finite maximal chains in /O, from [a]@, to [b]®,, then they are of the
same length.

Proof. Let R,, R, be two maximal chains from [a]©, to [b]©, and let R, be of
the length n=1. We produced by induction on #n. If n =1, then R, = R,. Suppose
that [b,_]©o€ Ry, [bn-1]O < [b]@,. According to the induction assumption, all
finite maximal chains from [a]®, to [b,.,]©, have the same lengths n—1. If
[ba-1]©0€R,;, then card R, = card R,. Let [b.-1]©.¢é R,. Then there exists
[c]®o€ R; such that [c]@,<[b]O, and [b]O,, [b.-1]O, are incomparable. By
Lemma 15 there exists [u]@, such that [u]@,<[c]O,, [u]Oo<[b.-:]O, and
moreover [a]®, < [u]©O,. Let R, be a maximal finite chain from [a]©, to [u]O,.
As the chain R; is of the length n —2, the chain R,u{[c]®,} is of the length n — 1.
Since by the induction assumption all finite maximal chains from [a] O, to [c]©, are
of the same length n — 1, the chain R, is of the length n because [¢]@,<[b]O,.

Lemma 17. Let i € {0, 1}. The partially ordered set /O, = (M/©;, <) is of
locally finite length.

Proof. Let [a]©, <[b]O;. We may suppose that a <b. There exists a maximal
chaina=¢, < ¢; < ... < ¢x=b, m=1 in the multilattice #. From Lemma 14 it
follows that in /O, either [¢]O:; = [¢;+,]O; or [¢]O: < [¢;+1]®: (0<j<m).
Hence there exists a finite maximal chain R from [a]©, to [b]©.. If R is of the
length m =1, then all maximal chains from [a]®, to [b]©, are of the length 1.
Suppose that if there is a maximal chain of the length m — 1 between two elements
in 4/ ©,, then all maximal chains between the same elements are finite. Let R’ be
a maximal chain from [a]©, to [b]©,, R' # R. If all elements of the chain R’ are
comparable with the element [c,.-1]©;, then card R = card R’. Suppose that there
exists [c]©; e R’ such that [c]O;, [c.-1]O: are incomparable. According to Lem-
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ma 15 there exists [u]©; € M/©; such that [u]©, < [c]O;, [u]®O; < [c,n_,]O:. From
the induction assumption and Lemma 16 it follows that all maximal chains from
[a]®: to [u]©, are finite and they are of the length m — 2 at most. This yields that
all chains from [a]©; to [c]®, are finite and they are of the length m — 1 at most.
Now we show that the maximal chains from [c]©; to [b]©; are finite. Let [¢,.—1]©O:
= [e]®: > [e1]O: > ... > [e,]O:; = [u]O; be a maximal chain of the length n.
First we show that if n'=1, then [c]©; < [b]6O.. Let [x]O®, e M/O; be such that
[c]®: < [x]O; < [b]O:. According to Lemma 15 there exists [u,]0; € M/, such
that [4,]©; = [u]©; and [,]O; < [x]O.. Then [u,]O; = [u]O.. This yields [u]6;
< [x]©; contradicting [u]©, < [c]®:. Let n>1 and [y]®; € M/O; be such that
[c]®, < [y]®: < [b]O.. Assume that the assertion is valid if some chain between
[cm-1]©; and [u]®, is of the lenth p<n —1. Since [u]O; < [y]®;, according to
Lemma 15 there exists [u,]0, € M/6, such that [u,]O; > [u]©; and [u,]O; <
[y]©.. All maximal chains between [u,]©;, [c..-1]©: or [u]O;, [u.]©;, respectively,
are of the length n — 1 at most, hence all maximal chains between [y]©;, [b]©; or
[c]@, [y]O, respectively, are finite.

From Lemmas 15, 17 and from the definition of the relation < on the set M/©,,
ie{0,1} it follows that the partially ordered set #/O, (M'/O}) is a lower
semimodular multilattice.

The following Lemmas 18, 19, 20 can be proved in the same way as the Lemmas
3.6.7, 3.6.8, 3.6.9 in [2].

Lemma 18. a) [y]©0<[x]0, in 4/ O, iff [y'|@} < [x']O% in M'/O}. b) [y]©; <
[x]O©, in M/0, iff [x']©, < [y'|®, in M'] 6.

Lemma 19. M'/O;~M/Oo, M'/O]~M"/O,.

Lemma 20. The multilattice #/©, is directed and modular.

Let f be a mapping M — M/ Oy X M/©O,, g' be a mapping M' —M'/ Oy X M']/ O}
such that f(x) = ([x]©,, [x]®,) for each x e M and g'(x’) = ([x']O, [x']O}) for
each x' e M’.

Lemma 21. Let x, y e M. If f(x) <f(y) in the multilattice M/©,x M/®O,, then
x <y in the multilattice M.

Proof. From the assumption of the assertion it follows that either

) [x]1€0<[y]@o and [x]O,=[y]6,
or
() [x]©:<[y]®: and [x]@o=[y]O,.

Let the case (1) be valid. Then (x, y) € ©,, (x, y) é ©,. According to Lemma 12
there exist x,€[x]O,, y,€[y]©@, such that x,<y, and (x,, y.) é ©,. This implies
(x1, y1) € ©,. By Lemma 8 there exists z, € y Ay, such that the intervals [zi, y1l,
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[z1, y] are reversed. Choose z:€ x,Az,. From Lemma 3 it follows that [z,, z,] is
a prime interval which is preserved and by Lemma 6 the interval [z, z,] is reversed
Then z;<zi and y'<z) in M'. Choose u'€z3Ay’. According to Lemma 3 the
interval [u’, y'] is preserved and by Lemma 6 it is reversed. Since the interval
[x1, z3] is reversed, we get (u’, x1)e @q, (u', y') € @;. This implies (u, x,) € O,,
(u, y)e ©,. We have (y, x)e ©,, hence (u, x) € ©,. From the transitivity of ©, we
obtain (u, x) € ©,, because (x,, x)e @,. According to Lemma 11, u=x. Thus
x <y.

In the case (2) there exist elements y,e[y]®,, x:€[x]®, such that x,<y,
according to Lemma 12. Since (x,, y,) ¢ ©,, we have (x;, y1) € @oand y; <xjin Al .
From Lemma 8’ it follows that there exists ziex'Ax; such that the intervals
[z1, x1], [z1, x'] are preserved. Choose z5€ yjAzi. Then [2;, z1] is a prime interval
which is reversed by Lemma 3’ and the interval [z5, y'] is preserved according to
Lemma 6'. From Lemma 8’ it follows that there exists t} € y' Az} such that the
intervals [t{, z3], [t}, y'] are reversed because (z5, y') € 1. Choose u' € (x'Ay'),, .
By Lemma 5’ the interval [u’, y'] is preserved. From (x, y) € O, it follows that
there exists v €ex Ay such that the intervals [v, x], [v, y] are reversed. Hence
v'=x', v'=y" and the intervals [x’, v'], [y’, v'] are reversed. The intervals
[u’, y']. [u', x'] are reversed by Lemma 6'. This yields u’' =y’ and the interval
[y, x] is reversed. Hence x<y. Now we show that t'eziAy’. Choose
t2€(ziny"),. The interval [ti, t;] is preserved by Lemma 5’ because the interval
[ti, y'] is preserved. Since the interval [z3, z1] is reversed, the interval [¢], t5] is
reversed by Lemma 6. Hence t; =t and t;ez;Ay’. Using Lemma 6’ we get that
the interval [t], z3] is reversed. This yields t; =z;. We have that x’ e z{vy’ (in fact,
if r' € (zivy')., then the interval [r’, x'] is simultaneously preserved and reversed,
hence r' = x"). From this we obtain that [y’, x'] is a prime interval by Lemma 7.

Lemma 22. Let T =(T; <), 9'=(T, <) be the images of the multilattices
M, M’ under the mappings f, g'. Then f, g' are isomorphisms of the multilattices
M, M' onto the multilattices T, T'.

Proof. According to Lemma 17 the multilattice (/O X AM/©, is of locally
finite length. Hence the multilattice J is of locally finite length. Let x, y € M such
that x <y. From Lemma 11 it follows that either (x, y) ¢ ©,, or (x, y)¢ ©,. Let
(x, y) ¢ @,. Then [x]O,<[y]O, in 4/ O, by Lemma 14. Since x <y and (x, y) ¢ O,
we have (x, y)e ©,. Hence f(x)=([x]O,, [x]O)) < f(y)=(y]O [y]O)) in
MOy X M/O,. If we assume (x, y) ¢ ©,, we arrive at the same conclusion.

Let us assume that f(x) <f(y) in #/0O, X M/O,. From Lemma 21 it follows that
x <y in M. Since the ordering relations on J and . are uniquely determined by
the corresponding covering relations, we have #{ ~ J. Analogously we can prove
M ~T'.

Let ko:[x']@i—[x]O0, ki:[x']@1—[x]O, be the isomorphisms from Lem-
ma 19. Denote M/Oy=s, M/O,=RB, M'/Os=A", M'/O1=RB". Then ko X k, is
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an isomorphism of s{’ X B’ onto ¢ X %. If we denote g = (koX k1)og', then the
mapping g is an isomorphism from ' to &/ X % and Im f=Im g.

From the definition of the mappings f, g it follows that the projection of Im f
(Im g) to the set A(B) is the whole set A (B).

By summarizing, we obtain the following theorem:

Theorem 2. Let ., ' be lower semimodular multilattices of a locally finite
length and let @ be an isomorphism of the graph G () onto the graph G(A') such
that no elementary square of the multilattice 4, /(' respectively is broken by g,
@~ respectively. Then there exist a lower semimodular multilattice &/, a modular
multilattice B (4, B of a locally finite length) and subdirect representations
frl—AXRB, g: M'— 54 xR such that Im f=Im g.
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MYINBTUCTPYKTYPbI C UBOMOP®HBIMH I'PAPAMU
Mapua TomkoBa

Pesome

B aroii crathe 06061eHbI ABe TeopeMbl M. KonuGuapa, kaccaromuecs map nonycrpyktyp. Ecnmu M,
M', A, B cHu3y HampapleHHbIE MYJIbTHUCTPYKTYPBI JIOKANLHO KOHEYHOi puuHbl U f: M— A X B,
g: M'—> A XB sBnsiorcs NONyNpAMBIMH NPENCTABICHHIMH TakuMH, yto Im f=Im g, To rpacdmt
G(M), G(M') uzomopcdusl. HaiiieHo ycnosme, Npu KOTOPOM CIpaBefIMBO OGpaTHOE YTBEpPXAEHHE
B CJly4ae CHM3Y MOAYJAPHBILX MYJIbTHCTPYKTYp M, M'.
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