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THE COVERING OF RINGS BY VALUATION
RINGS

JAN MINAC

For the question dealt with in the present paper it is sufficient to recall the
following definition of a valuation ring.

A subring A of the field K is said to be a valuation ring of the field K if and only
if for every xe K—{0} at least one of x,x”' telongs to A. (See, e.g., [1],
Chapter 3, 16, Theorem 16.3, (6)).

The valuation rings in a field have some properties analogous to those of prime
ideals in a ring. It is easy to understand this from the historical origin of these
notions. A valuation ring can be defined in a way completely analogous to that of
a prime ideal. '

As a matter of fact a subring of a field is a valuation ring if and only if its
complement is closed under multiplication. (Throughout the whole paper, with the
exception of Remark 2, we assume that the ring has a unit element.)

Indeed, if A is a valuation ring of the field K and x, ye K— A, then x7, y~'
belong to the ring A. If there were x-y€ A, then x=(x-y)-y '€ A, which is
a contradiction with the assumption that x, y ¢ A. Thus the complement of A is
closed under multiplication.

If conversely the complement of a subring A of the field K is closed under
multiplication, then from x-x™' = 1€ A for every xe K—{0} we have x or
x'e A and A is a valuation ring of the field K.

N. H. McCoy has shown in [3] (see also [1], Chapter 1, § 4, 4.9 Proposition) that
if in a commutative ring an ideal A is covered by a finite number of ideals
Ay, ..., As,where all A;, i=1, ..., n, with the exception of at most two of them, are
prime ideals, then the covered ideal A is contained in some A;, i=1, 2, ..., n.

We now prove the following Theorem. (This Theorem can be viewed also as
a generalisation of the Lemma used in [2].)

1

Theorem. Let A,, A, ..., A, be subrings of the field K such that all of them
except -at most two.are valuation rings. Then for every subring B of K such that

BanJAi there exists an A;€ {A,, ..., A.} such that B c A;.

i=1
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Proof. We proceed by induction with respect to n. For n =2 the assertion is
easy to prove. Let Bc A;UA:; and, e.g., B& A;. Then there exists an element
a,€ BnA;— A, and for every element a,e BnA, we have a=ai+a, € Bc
A;UA,. But the element a cannot be contained in A;, since otherwise a,=
a —a, € A, contrary to hypothesis. And so a € A,, and we have a;,=a —a; € A,.
Since a, is an arbitrary element from BN A,; and Bc AjUA;, we have Bc A,.

Let now Bc< L"J Ai, where B is a subring of K and A, ..., A, are valuation rings

i=1

with the exception of at most two of them. By the inductive supposition we may

assume that B& |J A, for every je{l, 2, ..., n}. Thus we can find the elements

i*j
ae BnA, — |JA), 1<i<n. Now we assume that the rings A, A, ..., A, are
j#i
valuation rings. Further we may assume that the elements as, a, ..., a. are units in
the rings As, ..., A,, respectively. Since if a; is not a unit we may replace it by 1+ a,
which is a unit in A; and it is contained in BhAi — J A;. (To see that 1+a, is
jEi
a unit if @;# 0 is not a unit in A; ({=3), notice that we have successively, a; ' ¢ A,
ai'+1¢A, 1—a(l+a)™" = (1+a) '€ A).

Put z=aa; ... a,. Then z ¢ AsU...UA,. To prove this suppose for an indirect
proof that z € A;, (i=3). This implies za; ' € A, i.e. @1a; ... ai-1@i+1 ... @, € Ai. Now
by the choice of a each ax(k=1, ...,i—1,i+1, ..., n) is contained in K — A, and
since A; is a valuation ring their product is in K — A,. This contradiction proves our
statement.

Now ze Bc A1UAL ... UA, implies ze€ A;UA,. Let us put

as+z if ze AinA;
y={ a+z if zeA —A;"
a+2z if ZEAz—Al

Then the element y belongs to B, but it does not belong to any A;, i=1,2, ..., n.
Indeed, if ze AinA,;, then as+z¢é AjUAUA;s. For i=4 we have as+z
= as(1+ ai1azas4 ... a,), which does not belong to A; since neither as nor 1+
a,a.a, ... a, belongs to A;. If ze A;— A, then a.+2z¢ AUA; and to show

a:+z¢éJA: we use the same argument as above. The case ze€ A,— A, is
i=3
symmetrical with the case z€ A; — A,.
And so we have found an element ye B—|J A, a contradiction with the
i=1

assumtion B < |J Ai. Our Theorem is proved.

i=1
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Remark 1. We give an example to show that if more than two subrings A; are
not valuation rings, our Theorem need not hold.

Example 1. Let T; be the field of residue classes mod 2 and K = T»(x, y) the
field of rational functions in two variables x, y. The rings A,, A, A; are defined as
subrings of T3[x, y] in the following manner.

A, is the set of all polynomials p(x, y)

p(x, ¥) = Goo+ arox + aony + anxy + x>+ any’ + ... + amx™y" € To[x, y]

such that 4o =0
A; is the set of all polynomials with a,0=0.
Aj; is the set of all polynomials g(x, y)

q(x,’y) = boo+ biox + bory + buxy + ...+ byx*y’ € To[x, y]
such that bio=bo;=0 or bjo=by,=1.

We have Ty[x, y]=Ai1UA,UA;, but T[x, y] is contained in none of the rings
A1, Az, A; (which are, of course, not valuation rings of Tx(x, y)).

Remark 2. Denote by Gk the family of all subrings R of a given field K having
the following property: R does not contain the unit element, and K—R is
multiplicative closed. .

In [4] we have stressed that Gk and the set of all prime ideals of a ring have some
common features.

We show that our Theorem does not hold if valuation rings are replaced by the
rings contained in Gk. To be more exact: We construct a field K and its subrings B,
Bi1, B;, M without unit such that M e Gk. Here we have B < B,uB,UM, but B is
contained in none of the rings B;, B., M. This is the subject of the following
example.

Example 2. Denote by T>{y} the field of all formal series in the indeterminate
y over T.. Define K= T{y}{x}. (Hence the field of formal series in x over

T{y}).
Define first the ring A as the ideal in T3[x, y] generated by x(1 + y), x(1 +x),

y(1+y).
a) Definition of the rings Bi, B,, B;, M.
In the following A +u denotes {v+u|veA}.
Define

Bi=(1+x+A)UA,
Bs=(x+y+A)UA,

M ={bo(y)+ b:i(y)X+...+ b.(y)x" + ..., where by) are formal series in the
variable y and in bo(y) only the positive powers of y occur}.



We prove that these are rings. Since it is clear that the-sets B, B, B; are abelian
groups, it is sufficient to prove that they are closed under multiplication. This
follows from the following inclusions where a, d€ A.

A+x+a)(Q+x+ad)=1+x+x(1+x)+a(l+x)+d(1+x+a)eB,,
(x+y+a)(x+y+d)=x+y+(x+x)+(y+y)+a(x+y)+d(x+y+a)eBs,
(+y+a)(Q+y+ad)=1+y+y(l+y)+a(l+y)+d(l+y+a)eB,,

b) The rings Bi, B;, Bs, M do not contain the unit element of K.

First of all we prove that the ring A does not contain the unit element of K.

Indeed, if this were not true, then there would exist three polynomials P;(x, y),
Py(x, y), Ps(x, y) € To[x, y] such that

x(1+x)Pi(x, y)+ y(1+ y)Py(x, y) +x(1 +_y')'P3(x, y)=1.

If we put x=0, we get
y(1+y)P(0, y)=1,

which is impossible, since on the left hand side we have either zero or
a non-constant polynomial.

Now we prove that the ring B; does not contain 1€ K.

If this were not true, then there would exist an element ae€ A such that
1+x+a=1. This means that x€ A. But this implies that there exist three
polynomials Qi(x, y), Qxx, y), Qs(x, y) € Ti[x, y] such that we have

x(1+x)Qu(x, y) +y(1+y)Qu(x, y) +x(1+y)Qs(x, y)=x
If we put y=1, we get
x(1+x)Qu(x, 1)=x

which is impossible, since on the left — hand side we have either zero or
a polynomial of degree at least 2. )

The fact that-the ring B, does not contain 1 € K folows in an analogous manner.

Finally it is clear from the definition that the rings B; and M do not contain unit
element € K.

c) We show that none of the inclusions-B;= B; (i, j=1, 2, 3, i#J) holds.

If there were, e.g., B; > B,, we would have 1 +y € B and there would exist three
polynomials Si(x, y), Sy(x, y), Ss(x, y) € T[x, y] such that

1+ y=8i(x, y)x(1+x)+ S:(x, y)y(1 +y)+Ss(x, y)x(1+y)+ (1 +x).
If we put x =0, we get
y =50, Y)y(1+);

which is impossible.
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If there were B:> B, then there would exist three polynomials Ui(x, y),
Ux(x, y), Us(x, y) € T:[x, y] such that

x+y=1+x+ Ui(x, y)x(1+x)+ Ux(x, y)y(1 +y) + x(1 + y) Us(x,y).

If we put x=y=0, we get 0=1 — a contradiction.

It is clear that B; is neither an overring of B., nor of B;. From the considerations
analogical to those above it follows that B, is not an overring of B; or B;. Hence
none of the inclusions Bic B; (i, j=1, 2, 3, i#j) holds.

d) Next we prove that B = B;uB,U B, is a ring. Since it is easy to see that B is an
abelian group, with respect to the addition we have only to show that B is closed
under multiplication.

We have

Q+x+a)(Q+y+d)=1+y+x(1+y)+a(l+y+d)+d(l+x)eB,,

so that B1 . B2 c Bz.
Further

(1+x+a)(x+y+d)=x+y+x(1+x)+x(1+y)+d(1+x+a)+a(x+y)eBs,

so that B; - Bsc Bs.
Finally, we have

A+y+a)(x+y+a)=x(1+y)+y(l+y)+d(1l+y+a)+a(x+y)eA,

so that B, - Bsc A.

These inclusions imply that B is a ring.

e) We prove that.the complement of the ring M is closed under multiplication.

Let C, D be elements of the field K such that C - D € M. Let us consider C, D as
formal series in the variable x over the field T>{y}. Recall that the elements of the
ring M contain only non-negative- powers of x.

To satisfy C- D e M we have only two possibilities.

a) One of the elements C, D, say C, contains negative powers of x.
Then D contains necessarily only positive powers of x. Hence D € M. Therefore
C- De M. implies De M.

b) Both C, D have only non-negative powers of x. Let there be C=ci(y)
+ a(y)x+..., D = do(y) + di(y)x+.... Then C- D e M implies that co(y)do(y)
contains only positive powers of y. Hence at least one of them, say do(y), contains
only positive powers of y. But then D e M. Hence C: D e M implies D e M.

Summarily we have shown that C- D € M implies that either Ce M or D e M.
Otherwise expressed the complement of M is multiplicatively closed and M € Gk.

Thus we may conclude that obviously B= B,uB,UB; = B;uB,UM; where
M e Gk. But none of the. inclusions B = B, B < B,, B< M holds. This proves our
statement.
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IMOKPBLITUE KOJIEH KOJIBLIAMY -HOPMVPOBAHWS
Slu-Munau

Pesiome

B paGote poka3ana ciaegytowmas reopema: Ilycts A, By, ., Banogkonsua c eguuunei nons K, Takue,
4TO

AclUB
(B3]
u Bee xonbla B, i=1, ..., k, Kpome ObITb MOXET JIBYX, SIBJISIOTCSA KOJLLUAMU HOpMHpoBaHus. Toraa
cymecTsyeT Takoe Konslio B, i€ {1, ..., k}, uto A< B.

IToka3aHo, 4YTO aHaNOrHYHASA TEOpEMA HE BEPHA JJIA- KOJ€EL 6e3 equHMLBI.
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