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ORIENTABILITY OF TOTAL SPACES OF FIBRE
~ BUNDLES OVER RP"

MILOS BOZEK

1. Introduction

There are two well-known results on orientability of topological manifolds:
Theorem A. Any open submanifold of orientable manifold is orientable.

Theorem B. The product-manifold is orientable if and only if both factors are
orientable.

Theorem A can be reformulated in the following way:

Theorem A’'. Every manifold containing an open non-orientable submanifold is
non-orientable.

The part “if” of Theorem B fails for total spaces of fibrations as the Klein bottle
shows regarded as a total space of the standart fibration over S with the fibre S".
On the other hand, the part “only if” of Theorem B remains valid for a large class
of fibrations™®.

Theorem 1. The total space E of a locally trivial fibration &= (E, p, B) with
a non-orientable fibre F is non-orientable. .

Proof. By Theorem B, every manifold U X F, U < B open, is non-orientable.
This means that E contains a non-orientable open submanifold, thus by
Theorem A’ E is non-orientable.

Let RP""" be a hyperplane in the n-dimensional real projective space RP". The
main result of this paper is the following

Theorem 2. Let £=(E, p, RP"), n=2 be a fibre bundle with a compact
connected and orientable fibre F. Then the total space E of & is orientable if and
only if the manifold E' = p~'(RP"™") is non-orientable.

For every k=0, 1, ..., n we define the k" derivative of the fibre bundle
&=(E, p, rp") as the manifold E¥ = p~'(RP*™). Clearly E”=E and E® is

@ In this paper all fibrations belong to the category of topological manifolds and continuous maps.
Under a fibre bundle we mean a fibration associated with a locally trivial principal fibration [2, Chap. 4].
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homeomorphic to F. For every manifold M put w(M) =1 or 0 if M is orientable or
non-orientable, respectively. The next Theorem is an easy consequence of
Theorem 2.

Theorem 3. Under the assumptions of Theorem 2 we have
. o(E)=w(E®)+k (mod2)
for all k=1, ..., n—1.
Theorem 2 will be proved in Section 3. An application of Theorems 1 and 2 will
be given in Section 4.

2. Very strong deformation retracts

In the proof of Theorem 2 we shall make use of some special kind of
deformation retracts.

A very strong deformation retraction of a topological space X to a subspace A is
a retraction r: x— A for which there exists a homotopy k.: X— X, te I=[0, 1]
with the following properties:

(i) ho=\1x,

(ii) Ai=ior, where i: A— X is the inclusion map, -

(iii) A|A=1a4,

@Gv) roh.=r
for all tel.

A subspace A of X is called a very strong deformation retract of X if there exists
a very strong deformation retraction of X to A.

Clearly every very strong deformation retraction (retract) is a strong deforma-
tion retraction (retract) in the usual sense cf. [4, p. 30]. .

Example 1. Let there be given a topological space X consisting of all points
(x, y) of R? such that 0=x, y=1 and x=1 or y=0 or y=1 and let A be
a subspace of X given by y =0 (see Fig. 1). Then the map r: X— A defined by
r(x, y) = (x,0) is a strong deformation retraction of X to A but it is not a very
strong deformation retraction. However, A is a very strong deformation retract of
X under another retraction r': X— A defined by 7'(x, y)=(1,0) if y>0 and
r'(x, y) = (x,y) otherwise.

Problem. Is every strong deformation retract a very strong deformation

retract? .
Example 2. Let (xo, X1, ..., X.) be homogeneous coordinates in RP". Let us

consider the following five subspaces of RP":
RP’: x;=...x,=0; RP"'.x=0;
Sl xi—x3—..—x2=0; X,=RP"—RP""',
X,=RP"—RP°.
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Then RP°, RP*™' and $"™' are very strong deformation retracts of Xi, X, and
X, = X,nX,, respectively. The corresponding homotopies &:, i=1, 2, 3, te I, are
defined by

hl,(XO, X1y eeny x,.) =(xo, (1 - t)xl, ceny (1 - t)xn),
h’,(xo, X1y ooy x,.) =((1 - t)x'o, X1y euey Xn),
hi(xo, X1y «.vy Xa)=(cxo, (t+c(1 = ))xy, ..., (t+c(1 —1))x,),

Xt ...+ X2
where c¢=\——F—.
Xo

The next Proposition will explain the reason of introducing the notion ‘“very
strong deformation retract”.

y
A

\_'_V_‘—’ . X
A

Fig. 1

Proposition 1. Let £=(E, p, B) be a fibre bundle and let B be a very strong
deformation retract of B. Then E = p~(B) is a strong deformation retract of E.

Proof. Let i: B—» B and i': E— E be inclusion maps and let 7: B—>B be
a very strong deformation retraction and k., tel its corresponding homotopy.
Finally, let £ be the restriction of the fibre bundle £ to B. It is known that there
exists a canonical isomorphism r*£=(i-7)* in the category Buns of all fibrations
over B. As ior is homotopic to the identity map 15 it is (ior)*E= . Hence there
exists an isomorphism wu:r*§=E. It is easy to show that u'(E)
= {(b,x)er*E|beB) and the map 7:r*E—u '(E) given by #(b, x)
= (r(b), x) for all (b, x) € r*E is a well-defined retraction. The equality roh, = r
implies that there is a homotopy A: r*E— r*E defined by A(b, x) = (h(b), x)
for all (b, x) € r*E, t e I. The properties (i), (ii), (iii) of 4, yield the corresponding
properties for 4. It means that u~'(E) is a strong deformation retract of r*E and,
going back to & via the isomorphism u: r*§=E, we see that E is a strong
deformation retract of E.
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Remark. In fact we have proved that E is a very strong deformation retract
of E.

3. Proof of Tﬁeorem 2

Throughout this paragraph the symbols &€ =(E, p, B), n, F, RP" and RP""' are
assumed to satisfy the assumptions of Theorem 2. In addition the homogeneous
coordinates (xo, X1, ..., X») in RP" are arranged in such a way that the hyperplane
RP"' is given by the equation xo=0. Finally, let RP’, $"~*, X, X; be subspaces of
RP" as in Example 2.

Proposition 2. There is a long exact sequence

(1) .= H,(F)®H,(E')> Hy(E)—> H,-{ )~
—»Hq_l(F)@H -1(E')—>...

for all g=n.

Proof. Using the results of Example 2 and Proposmon 1 we get the following
homotopy equivalences

@  p(X)~p (RP)=F,
(3) : p7'(X2)~p ' (RPH)=FE', '
4) pTi(XinX)~p7I(S™7Y).

Recall that the base X; of the restricted fibre bundle &|X; is contractible. By
[1, Theorem 4.9.9] the fibre bundle &| X is trivial, therefore the subbundle &| $"*
of £|X, is trivial as well, hence there is a homeomorphism a: p~'($*") =~
$"~! x F. Now, the sequence (1) follows from the Mayer—Vietoris sequence of the
excisive triad (E; P'(X1), p '(X2)) and from the natural isomorphism
B: H,«(S" ' x F) = H,_.(F).

Let us denote m=dim F. Then dimE = n+m and dim E' = n+m—1.
Further, dim F < dim E —1 because of n=2. Putting g =n+ m in (1) we obtain
the first assertion of the following

Proposition 3. (a) There is an exact sequence

®) 0 Ho e E)—> Fn(F)=3 Hurma(E).

(b) If the manifold E' is orientable, then ¢ is injective.

Proof. Let r: X,— RP""" be the retraction 4} from Example 2, i.e. r(xo, X3, ...,
x) = (0, x1, ..., x») and let 7: p”}(Xz)> E’' be the “lift” of r given by
- Proposition 1.. Finally let 7=7|p™'($"™).
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First we prove
(6) : ker p=ker 7 nim-1.
From the construction of the sequencé (1) we have
=(Fojoio @), nem-100""
where i: p7I(S" ) p(XinX;) and j: pT(XinXz) — p(X;) are inclusion
maps. Obviously 7ojoi=F, therefore @ = F+ nem-10Qs nem-10f~", which implies

(6)-

Now we are going to prove that
™) Fipi(S™ l) — E' is a double covering.

As usually r*E’ ={(b, x) € X, X E'| r(b) =p(x)}. The retraction r: X2 RP™!
is a homotopy equivalence, therefore there is a homéomorphism u: p~'(X:) —
r*E’' such that pou™'(b,x)=b and Fou'(b,x) = u'(r(b),x) for all
(b, x)e r*E'. Hence

u(p™(S" ) ={(b, x) € S" X E' | r(b) = p(x)}

and Fou'(b,x) = (r(b),x) for all (b,x) € u(p™'(S"™")). Clearly, the
map r|8"7': S"™' —» RP""'is the standart double covering and (7) follows.

Let us return to the proof of the part (b) of Proposition 3. If E’ is orientable,
then (7) yields that p~*(S”™") is orientable, too, and that ., ..=-1 is injective. The
assertion (6) implies injectivity of @, which concludes the proof of Proposition 3.

We can now easily prove Theorem 2. By our assumptions regarding F we have
H,(F)=Z. Further H..m-1(E') = Z or 0 if E' is orientable or non-orientable,
respectively. The second statement of Proposition 3 says that ker ¢ =0 or H,.(F)
in the corresponding cases. Theorem 2 follows then from the exact sequence (5).

4. Orientability of the incidence manifold of RP"

In paper [3] E. RuzZicky studied the submanifold F(n) of the product-manifold
RP” x G{(RP")® consisting of all couples (x, y) for which x € y. He has proved
that for all n odd F(n) is non-orientable. This result can be strengthened in the
following way.

Theorem 4. The manifold F(n) is orientable if and only if n is even for all n =2.

Proof. Let us consider the fibre bundle &= (F(n), p, RP") where p(x, y)=x
for all (x, y)e F(n). The fibre F of & is homeomorphic to RP*"'| thus F is
non-orientable for n odd. In virtue of Theorem 1 F(n) is non-orientable for n odd.

@ G\(RP") or G/(E") is the first Grassmannian of the projective space RP" or the euclidean space
E", respectively.
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From now on let us assume that r is even, which implies that the fibre F 1s
orientable. With respect to Theorem 2 we have to prove that the manifold F(n)’
—= p~'(RP"™") is non-orientable. According to Theorem A’ to prove this it is
sufficient to show that the open submanifold M(n) of F(n)' consisting of all the
elements (x, y) of F(n) for which x € RP"™" and y¢ RP"™" is non-orientable. Since
yNRP"'={x} for all (x, y) € M(n), M(n) is homeomorphic to the Grassmannian
G1(E™). The rest of the proof of Theorem 4 is a consequence of the following

Lemma. If n is even, then Gi(E") is non-orientable.

Proof. If n=2, then Gi(E*) = Gi(RP?) — {RP'} = RP?> — RP°, therefore
Gi(E?) is homeomorphic to the (open) Mdobius band, and so G.(E?) is
non-orientable.

If n>>2, choose a point o of E" and denote by G,(E") the open submanifold of
G(E") consisting of all lines in E" not passing through o. Consider the fibre
bundle £=(G\(E"), p, E" —{0)}) whete p(y) is the orthogonal projection of the
point o into the line y for all y e Gi(E"). The fibre F of £ is homeomorphic to
RP"? thus I is non-orientable. A direct application of Theorems 1 and A’
concludes the proof of Lemma.
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OPUEHTHPYEMOCTDb TOTAJIbHBIX ITPOCTPAHCTB PACCIIOEHHBIX
IMPOCTPAHCTB HAJl RP"

Munowr Boxexk

Peswome

OCHOBHBIMH pe3ynbTaTaMi paGoTsl SBIAIOTCA: 1) TOTaXLHOE MPOCTPAHCTBO JIOKAJILHO TPHBHANb-
HOTO PACCIOEHHSI C HEOPHEHTHPYEMBIM CJI0EM SIBJISETCS HEOPHEHTHPYEMBIM MHOroobpasueM; 2) To-
TaJBHOE MPOCTPAHCTBO paccioeHHoro npocrpaicrsa &= (E, p, RP"), n =2, KOMIaKTHBIM CBS3HBIM
OpHEHTHPYEMBIM ClloeM [ OpHEHTHpyeMO TOTAa H TONbKO TOTHd, Korma MHoroobpasue E'=
p'(RP"™") HeopueHTHpyeMOo. B KavecTBe NpPWIOXEHHS pelleH BONPOC 06 OPHEHTHPYEMOCTH
MHOrooGpasust F(n), To4kaMu KOTOpOro SBASIOTCS Bee napsl (X, y) € RP™ X Gy(RP"), nnst KOTOpBIX

X€ey.

172



		webmaster@dml.cz
	2012-07-31T23:43:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




