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ON PARTIALLY DIRECTED GEODETIC GRAPHS

PAVOL HIC

1. Introduction

Geodetic graphs (undirected, directed or mixed) have been studied in several
papers [1, 2, 3, 4, 5, 8]. The class of planar geodetic graphs was characterized by
Stemple and Watkins [7]. Plesnik [6] and Zelinka [9] have dealt with
construction of undirected geodetic graphs. In the present paper we construct
partially directed geodetic graphs Z, ,. Further, we show that for any integer d =3
the graph Z,, is a P-graph that is neither a quasitree nor a graph similar to
a T-graph. This implies that the converse to Theorem 10 in [3] is not true and
Problem 5 of [2] is solved.

2. Notations and preliminary results

The graphs considered in this paper are partially directed, i.e., they may contain
directed edges as well as undirected ones; in particular, there are studied mixed
graphs, i.e., they contain at least one directed edge and at least one undirected
edge.

For a given graph G, V(G) and E(G) denote its vertex set and edge set,
respectively.

A semitrail from u to v (or u — v semitrail) in a graph G is a finite sequence

s=[‘l)o, €1, V1, €25 «..y Un 1, €n, ‘U,.],

where n is a non-negative integer (the length of §); vo=u, vi, v ..., Va1,
v.=v € V(G); ey, e, ..., e, are mutually different edges of G and v, |, v, are the
end vertices of e, € E(G) for i=1, 2, ..., n. A semitrail whose vertices are mutually
different is called a semipath. A semipath [semitrail] S whose every edge e, is
either undirected or directed from v, ; to v, is called a path [trail]. The length of S
will be denoted by |S|. A segment of S between the vertices v, = x and v, =y (i <j)
will be denoted by S[x, y].
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A semitrail [trail] from u to v is called a semicycle [cycle] if 1t has a positive
length and if 1ts vertices are mutually different with the exception of v .

A graph G is said to be connected [strongly connected] if for every ordered pair
[u, v] of vertices of G there exists a semipath [path] from u to v The distance
between the vertices u, ve V(G) is denoted by gs(u v) and it is the length of
a shortest u v path of G, if any. The supremum of all distances in G is the
diameter G and is denoted by d(G). A graph 1s said to be geodetic if two arbitrary
vertices are connected by a unique shortest path.

Let C be an even semicycle (i.e., C has an even length) of a graph G and let w.
v be two vertices of C. Then we shall say that the vertices u, v are C-opposite in G
if from the vertices and edges of C there is possible to form two different «
paths each of the length |C| 2.

Theorem 1. (cf. Stemple and Watkins [7, Theorem 2]). A partially directed
graph G is geodetic if and only if G is strongly connected and G contains no even
semicycle C such that for some C-opposite pair of its vertices u v we have

oa(u, v)=1Cl 2.

Proof. Let a graph G be geodetic. Then obviously G is strongly connected. Let
there exist an even semicycle C such that there are C opposite vertices u, v and
0c(u, v)=|C| 2. Then there exist two different shortest u v paths of the length
|C| 2 =06(u, v) and this is a contradiction to the definition of a geodetic graph.

Conversely, let us assume that G is strongly connected but not geodetic Then
there exist vertices u, v € V(G) such that there are two distinct shortest ¥ — v paths
P, and P,. Let u = xy, x4, x2, ..., X, = v be the vertices of P,. Then at least one of the
vertices xi, X2, . ., X, is not on P.. Let x, be the first vertex of P, that 1s not on P.
and let x; be the first vertex of P, occurring in P, after x, such that x, 1s on P,. Then

we must have
[P [x x| =[P [x 1, x|

(If, e.g , |Pi[x. 1, xi]|>|P:[x. 1, xi]|, then the path with the vertices u  x, x, ...,
X, =Y, Y2, .-y Yo Xk, Xis1, . ., X, =0 would be shorter than P and this is
a contradiction ; here yi, ys, . ., y, are the vertices of the path P [x ,, xx].) Let Cbe
the semitrail consisting of the semipaths P [x ., x.] and S{[x, x ], where
S [x, x 1] is the semipath arisen from the path P [x, ), xi] by reversing the order
its elements. C is an even semicycle and

0c(x, 1, 1)~ |C] 2.
QE.D.

Lemma 1. Let C be an even cycle of graph G of the length 2n. Let any maximal
undirected subpath of C have the length <n. Then there are no C-opposite vertices
in G.
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Proof. Let there be in G C-opposite vertices x, y. Then there exist two distinct
x —y paths P, and P; such that

|P.|=|P:|=|Cl/2,

and C can be composed of the paths P, and P, by reversing one of them. As P, and
P; are paths and all directed edges are directed in the same direction, they must be
all contained either in P, or P,. Let them be contained, e.g., in P,. Then P; is an
undirected path of length |[C|/2 = n and this is a contradiction, as P, or the reverse

of P_is a subpath of C. Q.E.D.
Y1dq  Yid
Uz d1 Uog
U3z g4 U3g
Y4 dd Y g
Ui d4 Yg

Fig. 1

3. Construction of Z, ; graphs

For given positive integers d and / we construct a graph Z, , as follows (see
Fig. 1):

V(Z.)={wl|i=1,2,..,1; j=1,2, ..., d}

E(Z.4)= {tat:]j— i=1(mod )}

{Uatgli— j=1 (mod I)}u
1
Uf{uu,]j=1,2,...,d—1}.
1

Evidently, the graph Z, , is strongly connected for any 4 and /. The graphs Z; ,
and Z, . are drawn in Fig. 2.
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Theorem 2. The graph Z, ; is geodetic if and only if [ is odd.
Proof. Let G=2, , be geodeticand let / 2k, where k is an integer >1. Let us

consider a semicycle C=[uy1, s, ..., Ui, Uirrsy W12, ooy Uieras Uerzay .nny Uokds
Ua, ..., un] (see Fig. 3). Evidently, |C|—2k +2(d 1). Obviously, the vertices ui,
and ux... are C-opposite. As

QG(Un,uk va)=k+d 1_|C| 2,

Theorem 1 implies that Z , is not geodetic.

-
34 232
Fig. 2
Y11 U Y141 Yig
Ut 1 Yika?2 Ykt d 1 q
Y2k d
Fig. 3
Fig 4

Conversely, let /=2k + 1 and k > 0. Then any even semicycle of Z, , satisfies the
conditions of Lemma 1 and, as Z, , is strongly connected, Theorem 1 implies that
Z, 4 is geodetic. (Especially if / — 1, the Z, , has no semicycle with the exception of
directed loops (see Fig. 4), and is evidently geodetic ) QED.
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Theorem 3. The graph Z, , has the diameter
k=[12]+d-1.

Proof. Put G=2, 4. Evidently, oc(un, w+22a) = [{/2]+d—1. There-
fore it is sufficient to prove

Qo(u, v)$[1/2] +d-1

for any u, ve V(G). Let u=u,, v=uy, 1<i, I<l, 1<j, J<d. (See Fig. 5.) If
i=1, then

oc(u, v)=|J—jlsd—-1<[l/2)+d-1.

Otherwise, there exist two paths, namely w,, ..., w1, ..., Un, ..., Uy, and u,, ...,
WU, ..., Uiy ..., Uy. The sum of their lengths is / +2(d — 1) so that at least one of
them has the length <[//2]+d —1. Q.E.D.
y
Py a<lln TR
]
4
)
pun n=r'n Lln‘
[
Fig. 5

4. P-graphs and T-graphs

A partially directed graph G is said to be a T-graph [P-graph] if for each
ordered pair [u, v] of vertices of G there exists in G exactly one trail [path,
respectively] from u to v of a length not greater than the diameter of G.

A graph G is said to be a quasitree if for each ordered pair [u, v] of vertices of G
there exists exactly one path from u to v.

Lemma 2. (Bosik [1, Theorem 6]) A graph G is a quasitree if and only if G is
connected and every block of G is isomorphic to K,, C, or a directed cycle.

259



Lemma 3. (Bosédk [3, Theorem 10])
(1) Every quasitree is a P-graph.
(2) Every graph similar to a T-graph is a P-graph.

(The graphs G and H are said to be similar if deleting all the loops and replacing
every undirected edge by a pair of oppositely directed edges in both G and H yields
two isomorphic directed graphs.)

J. Bosdk in [1, 2, 3] has suggested the following problem: Is the converse of
Theorem 10 in [3] true in the sense that every P-graph is either a quasitree or
similar to a T-graph?

In the case of undirected graphs the answer to this problem is obviously positive
as then we have:

Lemma 4. (see Bosdk [1, Lemma 8]) Let G be a loopless undirected graph.
Then G is a P-graph if and only if G is a T-graph.

In the case of mixed or directed graphs it will be proved that the converse of
[.emma 3 is not true (see Corollary to Theorem 5 below).

Theorem 4. Let [ and d be positive integers. The graph Z, 4 is a P-graph if and
only if at least one of the following conditions hold:
(1 1—-1
(2) I1=3
(3) /is odd and d — 1.

Proof. It is easy to verify that the graph Z, , [Z; \] is a P-graph for every d [for
every odd /, respectively]. We prove that Z; , is a P-graph for every d. From
Theorem 3 it follows that the diameter of Z, , is d. Therefore it is sufficient to
prove that for any u, v € V(G) there exists at mostone 1 v path of the length not
greater than d. Let u=uw,, v=uy, 1 <i, I<3,1<j J<d.If i=1, then the length
of a path P, is

|P)|=o0c(u, v)=|J—j]<d-1.
For any other u — v path P,, the length of P, is

|P:|>d—-1+2>d.
If i+ I, then for any two distinct u — v paths P;, P, we have
|P|+|P|>2(d—1)+3=2d+1

so that at most one of them has the length >d. (Sec Fig. 6.)
Conversely, let Z, , be a P-graph. Then Z, , is geodetic and by Theorem 2 [ is
odd. Let /=5 and d>2. According to theorem 3 the diameter of Z, , is

[12]+d-1>[52]+d—1=d+]1.
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But there exist in Z;, , two different paths from u,, to uis (see Fig. 1):

Py =[un, w2, ..., u), |P1|=d—] and
Py=[un, uza, Uz, ..., Uza, Urdl, |P2|=d+ 1.

The length of both paths is less than or equal to the diameter of Z, 4 so that Z, , is

not a P-graph. Q.E.D.
d-1
- A ™~
i1 UIJ =y U'd
U"l UIJ =V UId
Fig. 6

Theorem 5.
(A) The graph Z, 4 is a quasitree if and only if I =1.
(B) The graph Z, 4 is similar to a T-graph if and only if one of the following cases

occurs:
(1) 1=1
(2) 1=3,d=2

(3) lis odd and d=1.
Proof. (A) follows from Lemma 2, (B) from Theorem 4 and Lemma 3 as Z; 4
for d=3 contains a cycle of length 3, which is less than the diameter of Z, ..
Q.E.D.

Corollary. The graph Z; , for d=3 is a mixed P-graph of diameter d that is
neither a quasitree nor a graph similar to a T-graph.

Proof follows from Theorems 3—S5.

Remark. To get a directed example, replace in Z; , each undirected edge by
a pair of opposite directed edges.
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0O YACTUYHO OPUEHTUPOBAHHLIX FEOJE3UYECKHUX NPADAX
[TaBon Xuu
Pesome

YacTtnuHo OPHEHTHPOBAHHbLIH rpacb G Ha3biBaeTCs TE€OJIE3UHECKHUM, €CITH 11 KaXAbIX N1BYX BEPLIMH
CYWECTBYET €AHHCTBEHHbLIW KPATHAHIUKAN NYTh MCXIY HHMH. YacTuuHo OPHEHTHPOBAHHbLIH rpad) G
nasbiBaetcs T-rpacdom [P rpadom], ecnu nast BeskoW ynopspodeHod napet [u, v] ero Bepumu
cywectsyeT B G TOYHO OfiHA Uenb [OAUH nyTb] AMHHBIL, He npeBblLatole AvameTp rpaca G. ABTop
[aeT KOHCTPYKLUMIO Teofie3udeckux rpacoB Z 4 (puc.1) H janee nmokasbiBaeT, 4TO AN KaXAOTO
HaTypanbHot o uncna d >3, Z, , saBnsetca P rpacom u He snsieTcs HH T-rpachoM. HH KBa3HIEPEBOM
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