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Math. Slovaca 33,1983, No. 1,45—51 

ON THE FUNCTIONAL INTEGRABILITY 
AND ASYMPTOTIC BEHAVIOURS OF A CERTAIN 

DIFFERENTIAL EQUATION WITH DELAY 

ALEKSANDRA WYRWlfiSKA 

The present paper is a study of asymptotic properties of functionally integrable 
solutions of the differential equation with a deviating argument 

(r(t)x'(t)Y + / ( ' , x(g(t))) = h(t), (1) 

where the functions: 

r: [/o, <»)-* R 
h: [to, oo)-*R 
f:[t0,°o)xR-+R 
g: [to, <*>)->R+,g'(t)l2:0 and 
lim g(t) = oo 

are continuous. 
We restrict our attention to nontrivial solutions of (1), which exist on the interval 

[to, °°). 

Definition 1. A solution x(t) of equation (1) is said to be oscillatory if there exists 

a sequence (t„}r=i such that lim t„ = oo. Otherwise, it is said to be nonoscillatory. 
n—*«> 

Definition 2. (cf. [3]) Letx(t) be a solution of the differential equation (1). If 

0 < f smW(\x(s)\)As<oo, 
Jto 

m-real number, where W: [to, oo)—*!?, W(|w|)^0 is a given continuous nondec-
reasing function, then x(t) belongs to class L(m, W(-)). 

If in the definition we put m = 0 and Ml^DH".' ' P>0> t h e n w e obtain the 
wellknown class L(0, |- \p) = Lp[t0, °°), i.e. 

0<f \u(s)\pds <oo. 
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The results of this paper extend some results for the differential equation 

(r(t)x'(t))' + a(t)xa(t) = b(t) 

and for the class Lp[t0, <») obtained in paper [1]. An analogous problem was 
recently investigated in paper [2]. 

The proofs of theorems are based on the following lemma given in [3]. 

Lemma. If the function u(t) satisfies the following conditions 

\u(m)(t)\^M for t^t0>0 and m^l, ueL(m-l, W(-)), 

then lim u(t) = 0. 
t-K*> 

Let us start with the assumptions: 
(I) \f(t,u)\^a(t)W(\u\) 

(II) \f(t, u)\^a(t)[W(\u\)]Vp, p>l where the functions a: [to, <*>)^> R+, W: 
[t0, co)—>R, W(\u\)^0 are continuous and W(|«|) is a nondecreasing function. 

Theorem 1. Let h(t) = 0 and (I) be satisfied. If 

I sm\r(s)\2ds = <*> for meR (2) 
J t0 

a(t)^Mg'(t)gm(t), (3) 

then for arbitrary two solutions Xi(t) and x2(t) of (1) such that 

|W 1 / 2 ( | jc 1 (0 | )^( t )-^( t )W 1 / 2 ( | jc 2 ( t ) | ) |^k>0 for t^to>0 (4) 

we have 

XieL(m, W())^>x2^L(m, W(-)). 

Proof. Assume that there exist two solutions Xi(t) and x2(t) of equation (1) for 
which (4) holds and assume that xk e L(m, W( •)) (k = 1, 2). Integrating (1) from t0 

to / we obtain (k = 1, 2) 

r(t)x'k(t) = c-f f(s, xk(g(s))) ds, 
Jto 

where c = r(t0) xk(t0). From (I) and (3) we get 

\r(t)\ \x'k(t)\^\c\ + P \f(s, xk(g(s)))\ ds^\c\ + 
Jt0 

f a(s)W(\xk(g(s))\) ds^\c\ +M[' g'(s)gm(s)W(\xk(g(s))\) ds = 
Jto Jto 

^

9(t) 

umW(\u\)du. 
j(to) 

+ 

JвOo) 
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From this it follows that there exists a positive constant B such that 

\r(t)\\xiJ(t)\^B if t^to>0. 

Now we can write 

flw^kWD^ -̂̂ WW l̂̂ woivirWPd /̂w. 
Jto 

From (4) we have 

I(t)>k2\' s"\r(s)\2.ds, 

Jto 

which from (2) implies that 

lim/(t) = oo. (5) 

On the other hand we have 
2 

- X ' X g (*) £ \r(s)x^(s)\\2-k\r(s)x[(s)\kW<2-kV2(\x1(s)\)Wk'2(\x2(s)\)sm ds. 

However, the integrals 

f'|#<*)*i(*)|a-*lK*)*K')l*^-*w(l*i(*)l)*^-*^w^(k(*)l)*^d*^ 
Jto 

^B2 f [smW(\x1(s)\)f*kV2[smW(\x2(s)\)]ua dst* 
Jto 

a t v (2-*)/2 / rt v k/2 

^ s"W(\Xl(s)\) ds) ( | s"W(\x2(s)\) ds) 
are finite as t-»oo. Hence I(t) is finite as t-*oo? which contradicts (5). Hence the 
supposition that there exist two solutions of (1) satisfying (4) and both belonging to 
the class L(m, W(-)) is not true. 

Theorem 2. Let h(t) = 0 and (II) hold, and moreover assume that 

r(t)>0 for t6[to, oo) (6) 

аp(t) 

£&<- <7> 
•€L(0,1-|1/°'-,)) for meR; (8) 

9'(t)9m(t) 

then every oscillatory solution of (1) does not belong to class L(m, W( •)). 
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Proof. Let x(t) be an oscillatory solution of (1). There exists a sequence {tn}n-i 
of consecutive zeros of x(t). Let tk-u 4 be two successive zeros of x(t) and let 
Zk € [tk-u tk] such that |*(z.0| = dk, where dk is a true maximum of |JC(/)| in [tk 1, tk] 

3 
and let A -̂  T d for all k ^ 1 where d = const. > 0. Let ak be the largest point before 

Zk and let bk be the smallest point after Zk such that 

\x(ak)\ = \x(bk)\=% for k&l. (9) 

The choice of ak and 6* implies that 

|JC(/)| > f in (^,60. 
Now 

implies 

From (9) and (10) 

Proceeding similarly we obtain 

x(zk) = x(ak) + I x'(s) ás 
Jak 

(zk)\*š\x(ak)\+r)x'(s)\ds. (10) 
Jak 

^£\x'(s)\ds. (11) 

|^ |V'(5) |d5 . (12) 

By summation of the inequalities (11) and (12) we have 

dk^\b)x'(s)\ds. (13) 
Jak 

Squaring both sides of (13) we get by Schwarz's inequality 

<%* [ [ )x'(s)\ dsf = {J' ^= y/rJT) VRwl VkWl d*}2 

< £ ' ^ dsJ V(s)*'(s)K(*) d5, 

and by integrating by parts 

:f k{r(s)x'(s)}x'(s)ds= (14) 
Jak 

\2 
:< 

dì 
f"-_ds 

Ja„ Г(. (s) 
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= r(bk)x'(bk)x(bk)-r(ak)x'(ak)x(ak)- f "{r(s)x'(s))'x(s) ds. 
Jak 

If *( t)>0 in the interval [t*-i, t*], then the choice of ak and bk in [t*-i, t*] implies 
x'(bk)^0 and x'(ak)**0. Similarly if jc(t)<0 in the interval [tk-u t*], then the 
choice of ak and bk in [tk-u tk] implies x'(bk)>0 and x'(ak)^0. Thus in any case 
we have the following inequality for the first term on the right-hand side of (14), 
namely 

r(bk)x'(bk)x(bk)~ r(ak)x'(ak)x(ak)^0. (15) 

From (14) and (15) we have 

di 

.L ҚS) 

Since \x(t)\*šdk for te(ak, bk) 

dk 

l-Г{r(s)x'(s))'x(s)ds. (16) 
Jak 

f)f(s, x(g(s)))\ ds 
Jak p ds 

Jak r(s) 

on the basis of equation (1). Since 

f\f(s, x(g(s)))\ ds^± \")f(s, x(g(s)))\ ds, 
J to * = 1 Jak 

we obtain the inequality 

4 ^?T\_7^ ?, 7\_E^ 
) a k r(s) )ak r(s) 

^ 1 Pl/(s, x(g(s)))\ ds^ [\f(s, x(g(s)))\ ds. 
* = 1 Jak Jto 

But then the left hand side of the last inequality tends to oo at r—>oo since d>0, 
hence 

ooss f\f(s, x(g(s)))\ ds*Z fa(s)[W(\x(g(s))\)Y"' ds = 
Jto Jto 

= [ [g'(S)g\s)y ti'(s)ffm(s)W(\x(g(s))\)]1"' ds^ 

<i^r'T'x»-<'»H''' 
49 



On the basis of assumptions of the theorem it follows that x^L(m, W()). With 
this the proof is achieved. 

Theorem 3. Suppose that (II) holds. If 

\r(t)\^Q>0 for t^to>0 (17) 

heL(0,\\) (18) 

^eL(0,ir-% (19) 

then for every solution xeL(0, W()) of (1) 

lim x(t) = 0. 

Proof. Let us show first that the derivative of the solution is bounded for t^t0. 
Integrating both sides of (1) from to to t it follows that 

r(t)x'(t) = B+[ h(s)ds- P f(s, x(g(s))) ds, 
Jt0 Jt0 

where B = r(t0)x'(t0). By the Holder inequality 

IK')I W(t)\ * f \h(s)\ ds + P |/(5, x(g(s)))\ ds + \B\ ̂  (20) 
Jt0 Jto 

*= f \h(s)\ ds+ f' a(s)[W(\x(g(s))\)]1* ds + \B\ = 
Jto Jto 

= jjh(s)\ds + £^^[g'(s)W(\x(g(s))\)]1'>ds + \B\< 

. [ ? $ ] is) (LWM)du) +I-I+J[I*WI<-
and by the assumption of the theorem we have the estimation |x'(t)\ ^Mfor t^t0. 

On the basis of the Lemma it follows that lim x(t) = 0. With this the proof is 

achieved. 

Theorem 4. Assume (I) and let 

heL(0,\\) (21) 

\r(t)\^g>0 for t^to>0 (22) 

a(t)^Mg'(t); (23) 

then for every solution xeL(0, W()) of (1) lim x(t) = 0 holds. 
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Proof. It follows from (1) and (I) that 

\r(t)\\x'(t)\^ f \h(s)\ ds+ f \f(s, x(g(s)))\ ds + D^ 
Jto Jto 

*£ P \h(s)\ ds+ P a(s)W(\x(g(s))\) ds + D, 
Jt0 Jto 

where D= \r(t0)\ |jc'(t0)|. On the basis of assumptions of the theorem 

J
't rg(t) 

\h(s)\ds + M\ W(\u\)du + D. 
to Jg(to) 

Since heL(0, \ • |) and xeL(0, W(-))9 we have |*'(t)| ^ N . Applying Lemma we 

obtain lim x(t) = 0. 
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POLЛND 

O ФУHKЦИOHAЛЬHOЙ ИHTEГPИPУEMOCTИ 
И ACИMПTOTИЧECKOM ПOBEДEHИИ 

HEKOTOPOГO ДИФФEPEHЦИAЛЬHOГO УPABHEHИЯ C ЗAПAЗДЫBAHИEM 

Aleksandгa Wyrwińska 

Peзюмe 

B cтaтьe дaютcя дocтaточныe ycлoвия, пpи кoтоpыx нeлинeйнoe диффepeнциaльнoe ypaвнeниe 
c зaпaздывaниeм (1) имeeт кoлeблюшиecя peшeния, пpинaдлeжaщиe или нeпpинaдлeжaщиe 
клaccy L(/n, W(0)' Дaютcя тaкжe ycлoвия cтpeмлeния к нyлю пpи t—юo peшeний (1), пpинaд-
лeжaщиx клaccy L(m, W()). 
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