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ON THE FUNCTIONAL INTEGRABILITY
AND ASYMPTOTIC BEHAVIOURS OF A CERTAIN
DIFFERENTIAL EQUATION WITH DELAY

ALEKSANDRA WYRWINSKA

The present paper is a study of asymptotic properties of functionally integrable
solutions of the differential equation with a deviating argument

| (r()x' (1)) + (8, x(9(1))) = h(?), (1)
where the functions: :

r: [t, ©)> R

h: [fo, w)—>R

f: [to, ©)X R>R

g: [to, ®)>R,, g’'(#)=0 and
lim g(1)==

are continuous.
We restrict our attention to nontrivial solutions of (1), which exist on the interval

[to, w).
Definition 1. A solution x(t) of equation (1) is said to be oscillatory if there exists

a sequence {t,}.-1 such that lim ¢, = . Otherwise, it is said to be nonoscillatory.

Definition 2. (cf. [3]) Let x(¢) be a solution of the differential equation (1). If

0< f s"W(|x(s)]) ds <o,
o

m-real number, where W: [t,, ©)— R, W(|u|)=0 is a given continuous nondec-
reasing function, then x(t) belongs to class L(m, W(+)).

If in the definition we put 7 =0 and W(|u|)=|u|?, p>0, then we obtain the
wellknown class L(0, |- |?) = L,[t, =), i.e.

0<f |u(s)|? ds <co.
o
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The results of this paper extend some results for the differential equation
(r()x'(0))" +a()x* ()= b(2)

and for the class L,[%, ©) obtained in paper [1]. An analogous problem was
recently investigated in paper [2].
The proofs of theorems are based on the following lemma given in [3].

Lemma. If the function u(t) satisfies the following conditions
|u(£)|<M for t=4>0 and m=1, ue L(m—1, W(-)),
then lim u(z) =0.

Let us start with the assumptions:
@ |f(t, w)|<a(t)W(|ul)
(D |f(¢, w)|<a(®)[W(ul)]"?, p>1 where the functions a: [t, ©)—R., W:
[fo, ®)— R, W(|u|)=0 are continuous and W(]u|) is a nondecreasing function.

Theorem 1. Let A(¢t)=0 and (1) be satisfied. If

f s”|r(s)|?ds=o for meR 2)
a(t)y<Mg'(t)g™ (1), 3

then for arbitrary two solutions x,(t) and x,(t) of (1) such that
| W2(|x1(0) ) x3(8) — xi () W(| x| = k>0 for t=4>0 4)

we have
xi€ L(m, W(-))=> x, & L(m, W(+)).

Proof. Assume that there exist two solutions x1(#) and x2(¢) of equation (1) for
which (4) holds and assume that x. € L(m, W(+)) (k =1, 2). Integrating (1) from %
to ¢t we obtain (k=1, 2)

i) == [ fs, mlg () ds,

where ¢ =r(t) xi(t). From (I) and (3) we get
[r(2)] le(t)IS.Icl +[ [f(s, x(g()))| ds<|c| +
+[[ o W(ng(s)) ds<lel+ M 9/ ()a™ (Y Wxg(s))) ds =

(1)
=lc|+M|  wW(|ul) du.

g(t0)
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From this it follows that there exists a positive constant B such that
[r()||x()|<B if t=6>0.
Now we can write

[ 1w2(13)xt(5) = xi(5) W)l (5) ds = 1.

From (4) we have

I(t)?kZJ’ s™|r(s)|? ds,

o

which from (2) implies that
lim I(¢) = oo. %)
paet

On the other hand we have
< 2 ' ! - ' - m
10=3, () [ Mm@ ruEFWe2 u@) WH(a(s)s™ ds.
However, the integrals

[ I xs(o) 1oy W)™ WA )™ s <
< B[ "Wl DIE L5 W(la(s) DI ds <

<5 ( f " W(|x(s)]) ds)(z-km ( f o)) ds)m

o L

are finite as #— . Hence I(?) is finite as #— o, which contradicts (5). Hence the
supposition that there exist two solutions of (1) satisfying (4) and both belonging to
the class L(m, W(-)) is not true.

Theorem 2. Let h(¢)=0 and (I1) hold, and moreover assume that

r(H)>0 for te[t, ®) (6)

J == 0

2O __cr(0,1-["e) £ R; @
OO or meR; )

then every oscillatory solution of (1) does not belong to class L(m, W(-)).
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Proof. Let x(¢) be an oscillatory solution of (1). There exists a sequence {f, } -1
of consecutive zeros of x(#). Let #-1, & be two successive zeros of x(¢) and let
2 € [fi-1, &] such that |x(z:)| = dx, where di is a true maximum of |x(¢)| in [# 1, &]

and let di, = /3 d for all k=1 where d =const.>0. Let ax be the largest point before

Z and let bk be the smallest point after z. such that
[x(ax)] = |x(b:)| =%‘ for k=1. )
The choice of a. and by implies that

dec .
I.X'(t)|>5k m (ak, bk)

Now
(z) = x(a) + j :‘x'(s) ds
implies
x@l<lx@)]+ [ 1 (s)] ds. (10)
From (9) and (10)
%‘s f :“|x'(s)| ds. (11)

Proceeding similarly we obtain

d_ ™,
2] [x'(s)| ds. (12)

By summation of the inequalities (11) and (12) we have

bk
dksf x'(s)| ds. (13)

Squaring both sides of (13) we get by Schwarz’s inequality

L

is{[bklx'(s)l ds}2={ VG )\/r(s) VIx'(s)| V[x'(s)| ds} <

3

by

1
< o) ds {r(s)x (s)}x'(s) ds,

and by integrating by parts

r. <[ @) as= (14)

. (s)
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= r(bi)x' (b )x(b) — r(a)x’ (a)x(ai) — J:k{ r(s)x'(s)} x(s) ds.

If x(¢)>0 in the interval [#-1, #], then the choice of ax and bx in [#-1, ] implies
x'(b)<0 and x'(ax)=0. Similarly if x(£)<O in the interval [#-1, &], then the
choice of ax and by in [f—1, #] implies x’(b«)=0 and x’(ax) <O0. Thus in any case
we have the following inequality for the first term on the right-hand side of (14),
namely

r(bu)x' (be)x(bi) — r(a)x'(a)x(a) <O. (15)
From (14) and (15) we have
fb* <[ rer Y @ (16)
o 7(5)

Since |x(¢)|<dx for te(ax, bx)

d, b
g S f |£(s, x(g(s)))| ds
.76

on the basis of equation (1). Since

1565, xtao) as< 3, [ 1t oo as,

we obtain the inequality
3. 1
Zd,;jh ds Er
a 1(s) ax r(S)
<3 [ xtaml as< Ists, xtatsl as.

But then the left hand side of the last inequality tends to o at #— o since d >0,
hence

°°$J::|f(s, x(g(s)))| dS$J:a(s)[W(lx(g(s))l)]l/p ds=

oo

~ (s , ” Up 3o
-[ m[g (5)g™(s) W(|x(g(s))])]"” ds <

([ Feeml ) ([l wrwub )

49



On the basis of assumptions of the theorem it follows that x & L(m, W(-)). With

this the proof is achieved.
Theorem 3. Suppose that (II) holds. If
|r(£)|=0>0 for t=1t>0
heL(0,|-])

ap(t) 1/(p—1
g’(t)eL(O’ l' ¢ ))’

then for every solution x € L(0, W()) of (1)

lim x(¢)=0.

(17)
(18)

(19)

Proof. Let us show first that the derivative of the solution is bounded for = ¢,.

Integrating both sides of (1) from ¢ to ¢ it follows that

HO)x'(6) = B+ f h(s) ds — L £(s, x(9(s))) ds,

where B =r(t)x’'(t). By the Holder inequality

[r(2)] lx’(f)lﬂLt |h(s)| ds +£ |£(s, x(g(s)))] ds+|B|<
s f |A(s)] ds + f a(s)[W(|x(g(s)))]"” ds +|B| =

= f i)l ds+ [ =28 g5y Wl x(a()DT"* ds +] Bl <

w [9'(D]"

o 9(t0)

<([ |29 a)" " (77 waub au)” 4181+ [[ 1) as

(20)

and by the assumption of the theorem we have the estimation |x'(#)| < M for =1,

On the basis of the Lemma it follows that !im x(#) =0. With this the proof is

achieved.
Theorem 4. Assume (1) and let
heL(0,|-])
|r(H)|=0>0 for t=2>0
a()<Mg'(1);

then for every solution x € L(0, W(-)) of (1) lim x(2)=0 holds.
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(22)
(23)



Proof. It follows from (1) and (I) that

1ol @l [ 1h6) as+ [ 1165, x(g(s))] ds+ D=

< f h(s)| ds + f a(s)W(|x(g(s))]) ds + D,
where D =|r(%)||x'(t)|. On the basis of assumptions of the theorem
¢ 9(0)
glx'(;)|sf |h(s)| ds+Mj W(|ul) du+ D.
to (%)

Since A€ L(0, |-|) and x e L(0, W(-)), we have |x'(¢)| <N. Applying Lemma we

obtain lim x(£)=0.
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O ®YHKIIMOHAJILHOM UHTErPUPYEMOCTU
N ACUMIITOTUYECKOM IOBEJEHUU
HEKOTOPOI'O ITU®PEPEHIIMATBHOI'O YPABHEHUS C 3AINA3OBIBAHUEM
Aleksandra Wyrwinska
Pesiome
B cratbe narorcs noc’ra'ro-mblebycnonm, NIPH KOTOPBIX HeNMHeiHOe auddepeHIManLHOe ypaBHeHHE
¢ 3ana3gbBanueM (1) uMeeT KoneGmommecs pellleHWs, MPHHajJIeXallie WIH HempHHajIexalme

knaccy L(m, W(+)). [JatoTcsl TakKe YCIOBMA CTPEMICHUS K HymIO npu f— % pemenwmit (1), mpunan-
nexaumx knaccy L(m, W(-)).
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