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QUASI-CONTINUOUS MULTIVALUED MAPPINGS
JANINA EWERT—TADEUSZ LIPSKI

Let X be a topological space. The closure, the interior and the boundary of a set
A will be denoted by A, Int A, Fr A, respectively.

Definition 1. [4, 2]. A set A c X is called semi-open if there is an open set Uc X
such that Uc AcU. A set A is semi-closed if its complementary X\A is
semi-open.

The following propositions are an immediate consequence of the definition.

Proposition 2. 1) A set A is semi-open if and only if A =Int A.
2) A set A is semi-open if and only if A= (Int A)uB, where BcFrA.

Proposition 3. [4, 2]. 1) The union of semi-open sets and the intersection of an
open and a semi-open set are semi-open.

2) If A is a semi-open (semi-closed) set, then all of the sets: IntA, A are
semi-open (semi-closed).

The reader can easily verify the following:

Lemma 4. 1) If A is a semi-open set, then Fr A =Fr(Int A).

2) If A is a semi-open (semi-closed) set, then Fr A is a border set.

Any semi-open set U such that x € U will be called a semineighbourhood of
a point x (briefly s-neighbourhood). Let X, Y be topological spaces and let #(Y),
4(Y), ¥(Y) be classes of all non-empty, non-empty-closed and non-empty
compact subsets of Y, respectively. For a multivalued map F: X— H(Y) we will
denote

F(A)= U F(x), F(B)={xeX: F(x)nB+#}, F'(B)={xe X: F(x)c B}

for any sets Ac X, BcY.

Definition 5. [8]. A multivalued map F: X—>%(Y) is said to be
[-quasi-continuous (u-quasi-continous) at a point x.€ X if for any open set Wc'Y
such thatF(xo)n W+ @ (F(x,) = W) there is an s-neighbourhood U of the point x,
such that F(x)nW#@ (F(x)< W) for every xeU. A multivalued map F is
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l-quasi-continuous (u-quasi-continuous) in X if it is [-quasi-continuous (u-quasi-
-continuous) at every point of X.

Definition 6. A multivalued map F is said to be:
— injective if for any xi, x2€ X, x1# x, we have F(x1)nF(x;)—@ ([1], p. 22);
— pre-semi-open if for any semi-open set A c X the set F(A) 1s semi-open.

Theorem 7. Let Y be a regular topological space and let F: X— %(Y) be
a pre-semi-open, u-quasi-continuous multivalued map. If one of the two conditions
is satisfied :

1) Int F(x)=@ for every x€ X; or

2) F is injective and I-quasi continuous, then F is lower semi-continuous.

(For the definition of a lower and upper semi-continuity see [1].)

Proof: Suppose that F is not lower semi-continuous. There is an open set
G < Y such that F (G) is not open; F (G)# X. Thus there is a point x € F (G)
such that x e Fr F (G).

Let ye F(x)nG. Since Y is regular, there exists an open set V such that
ye Ve Ve G. Hence we have xe F(V)c F(G) and xeFrF (V). The set
X\F (V) is non-empty and semi-open, and moreover x € Fr[ X\ F(V)]. Therefore
U= {x}U[X\F (V)] = {x}UF*(Y\V)is a semi-open set. Thus the sets F(U) and
F(U)NV are semi-open. But F(U)nV = [F(x)UF(F'(YAV))|nV = F(x)nV.
If 1) is satisfied, then Int[F(U)n V] = Int[F(x)n V] =4@. If 2) holds then the set
F[F(U)NnV]={x} has the non-empty interior. On the other hand {x}c
Fr[F (V)] and Int Fr[F (V)] =0 (Ilemma 4), therefore the proof is completed.

Remark 8. Theorem 7 remains true if we suppose instead of regularity that the
space Y has a basis composed of open-closed sets. Simple examples show that such
a space need not be regular.

Definition 9. A multivalued map F: X— $(Y) is said to be l-irresolute
(u-irresolute) at a point x,e X if for any semi-open set Wc'Y such that
F(xo)n W+ @ (F(x0) = W) there exists an s-neighbourhood U of the point x, such
that F(x)n W#@ (F(x) = W) for every x€ U. A multivalued map is [-irresolute
(u-irresolute) in X if it is I-irresolute (u-irresolute) at every point of X.

A set A is said to be the open domain if A=IntA.

Theorem 10. Let Y be a topological space, which has a basis composed of open
domains and let F: X— ¥(Y) be a pre-semiopen, u-irresolute multivalued map. If
one of the conditions holds: 1) Int F(x) =@ for every x € X ; or 2) F is injective,
[-quasi-continuous; then F is lower semi-continuous.

The proof is similar to that of theorem 7.

Theorem 11. Let Y be a regular topological space or a space which has a basis
composed of open-closed sets. If F: X— #(Y) is a pre-semi-open, [-quasi-cont-
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inuous, u-irresolute and injective multivalued map, then it is upper
semi-continuous.

Proof: Suppose that F is not upper semi-continuous and let G< Y be an open
set such that F'(G) is not open. Then ## F'(G)# X. There exists a point
x € F*(G) such that x e Fr F*(G). Let Y be regular. Since F(x) is compact, there
exists an open set V such that F(x)c Ve Vc G. So we have xe F*(V)c F'(G)
and xeFrF*(V). Since the set F(Y\V) is semi-open and x e Fr F(Y\V), it
follows that U= {x}UF (Y\V) is semi-open. Hence the sets F(U)nV and
F'[F(U)NV] are semi-open. On the other hand, F'[F(U)nV]=
= F[(F(x)UF(F(Y\V)))nV] = {x}UF*[F(F (Y\V))n V]. We will show that
fIF(F(Y\V))AV]=4. On the contrary, assume that x,€ F'[F(F (Y\V))nV].
Then F(x0) = F(F-(Y\V))nV and by the injectivity of F we have xoe F(Y\V);
this is a contradiction. Hence F'[F(U)nV]={x}cFrF*(V); by lemma4
Int F*[F(U)n V] =0 and the proof is completed. If we assume that Y has a basis
composed of open-closed sets, the proof is exactly the same.

By 2" we denote the set €(Y) with the Vietoris topology ([3], p. 162). As an
immediate consequence of theorems 7 and 11 we have:

Corollary 12. Let Y be a regular topological space or a space which has a basis
composed of open-closed sets, and let F: X— X(Y) be a pre-semi-open, injective,
I-quasi-continuous map. 1) If F is u-quasi-continuous map, then the ordinary map
F: X—2Y is quasi-continuous (for a definition of a quasicontinuity see [5]). 2) If
F is u-irresolute, then the map F: X—2" is continuous.

An ordinary map f: X— Y may be interpreted as a multivalued map, which
assigns to every point x € X the set {f(x)}. Moreover, we have f (A)=f"(A)=
f'(A), where f'(A) denotes the inverse image of the set Ac Y. In this case
[-quasicontinuity and u-quasi-continuity mean quasi-continuity of map f (called
sometimes semi-continuity of f; cf. [2, 6]). By theorem 7 and remark 8 we have :

Corollary 13. Let Y be a regular topological space or a space which has a basis
composed of open-closed sets, and let
f: X— Y be a pre-semi-open and quasi-continuous map. If one of two conditions is
satisfied: 1) the space Y is dense in itself ([6], theorem 7); 2) f is one-to-one ; them
f is continuous.

Similarly, theorem 10 implies

Corollary 14. Let Y be a topological space which has a basis composed of open
domains. If f: X— Y is a pre-semi-open, irresolute map and one of the conditions
is satisfied: 1) the space Y is dense in itself; 2) f is one-to-one; then f is
continuous. '

From 14 (1) we have the theorem of Piotrowski ([6], theorem 8).
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Theorem 15. Let Y be a second countable topological space. If F: X— #(Y) is
a u-quasi-continuous multivalued map, then the set A of all points at which F is not
upper semicontinuous is the first category in the sense of Baire.

Proof: Let {V,}.-: be a basis of Y. Let us denote by « the set of all finite,
one-to-one sequences of natural numbers. Then we have of = {ai}x-1, where

jk
o = (M, 15 Pk,25 ---5 Rk jy)- Let us put W= U V... If xo€e A, then there exists an
i=1

open set Uc Y such that xoe F*(U) and xo,€ Fr F*(U). By the compactivity of
F(x,) there is a natural number k such that F(x,) = Wi < U, hence x, € Fr F*(W,).

Thus we have A = CJ Fr F*(W,). As the sets F*(W,) are semi-open, by lemma 4
k=1
FrF* (W), k=1, 2, ... are nowhere dense and the proof is completed.

Theorem 16. Let Y be a second countable topological space. If F: X— H(Y) is
a [-quasi-continuous multivalued map, then the set A of all points at which F is not
lower semicontinuous is the first category.

Proof: It follows from the inclusion: AcClFrF‘ (V.), where {V,.}i_: is
n=1

a basis of a space Y.

Remark 17. From theorem 15 or 16 we obtain a theorem of Levine [4] for an
ordinary map.

Let Y be a metric space. If A< X is a set of all quasicontinuity points of an
ordinary map f: X— Y, then the set (Int A)\A is the first category in the sense of
Baire [5, remark 3]. For multivalued maps — in general — this condition does not
hold.

Example 18. The multivalued map F defined on the space of real numbers by
the formula: F(x) =[0, 2] if x is rational and F(x) =[1, 2] in the other case, has the
set A of all u-quasicontinuity points equal to the set of rational numbers. Thus
(Int A)\A is equal to the set of irrational numbers; this is not the first category.
Similarly the set A of /-quasi-continuity points of the map F; given by: Fi(x)=
[1, 2] if x is rational and F;(x) =[O0, 2] in the other case does not satisfy the above
condition.

Theorem 19. Let Y be a second countable regular space and let F: X— H#(Y) be
an l-irresolute map. If A c X is a set of u-quasi-continuity points of F, then the set
(Int A)\A is the first category.

Proof: Let {V,}..; be a basis of a space Y. Let us denote by &/ the set of all
finite one-to-one sequences of natural numbers. Then & = {a«}x-1, where ax =

ik
(Me.15 Nk2, ..y R jo)- Let us put Wi =U V..... We will denote by G the set of all
i=1

points x € X such that the following condition is satisfied: if F(x)<Int Wi, then
there exists a neighbourhood U of the point x such that F(U) < Int W.. Let x € G..
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If F(x)cIntW, then xeIntGi. In the other case xe€ F (Y\Int Wi). Because
Y\Int W, is the semi-open set and F is /-irresolute, F-(Y\Int W,) is semi-open.

Moreover F-(Y\Int Wi) c Gy, hence x € Int G.. Hence we have shown that G is
semi-open. Let x € ﬁ G and let V< Y be an open set such that F(x) = V. By the
k=1

regularity of the space Y we have F(x)c Wic Wic V for some Wi, and
F(x)cInt Wi < V. Then there exists an open set U such that xe U and F(U)c
Int W.. Thus F is upper semicontinuous at the point x. On the other hand every

point of the upper semi-continuity of F belongs to ﬁ G ; thus ﬁ G is the set of
k=1 k=1

all points at which F is upper semi-continuous. Hence (| Gk= A. Now, let xe A
k=1

be a point such that F(x) < Int Wi, and let U be any neighbourhood of x. There
exists an open set U’, @+ U’ < U such that F(U’) cInt W.. It implies U’ < G,
therefore UnInt G« # @ and x € Gi. If x € A and F(x) ¢ Int W, then x € Gi. Finally
we obtain A = Gi. From this it follows Int A = G and (Int A)\Gi < Gi\Gi =
Fr G.. Since Fr G, is nowhere dense by lemma 4 neither (Int A)\G. is nowhere

dense. Hence Cl [(Int A)\G4] is the first category set. But
k=1

(Int ANA < (Int AN() G = U [(nt ANG]

and this is the inclusion finishing the proof.

Theorem 20. Let Y be a second countable space which has an open-closed basis
and let F: X—X(Y) be an I-quasi-continuous map. If AcX is a set of
u-quasi-continuity points, then (Int A)\A is the first category set.

Proof: Let Wi, k=1, 2, ... be such as in the proof of theorem 19. We assume
that G is the set of all points x € X satisfying the next condition: if F(x) = W, then
there exists a neighbourhood U of x such that F(U)c Wi. Then G is the

semi-open set, [ | Gi is the set of all points at which F is upper semi-continuous
k=1
and the remaining part of the proof is exactly the same as in theorem 19.

Theorem 21. Let Y be a second countable regular space and let F: X— H(Y) be
a u-irresolute map. If A is a set of I-quasi-continuity points, then (Int A)\A is the
first category.

Proof: Let { V.}.-1 be a basis of a space Y. By G, we will denote the set of all
points xe X satisfying the condition: if F(x)nInt Vi#@, then there exists
a neighbourhood U of x such that F(x')nInt Vi#@ for every x’ € U. The rest of
the proof is such as in the 19.

Similary to the above we have
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Theorem 22. Let a space Y have a countable open-closed basis, and let F:
X— HAY) be a u-quasi-continuous map. If A< X is a set of I-quasi-continuity
points, then (Int A)\A is the first category.

From the proofs of these theorems there immediately follows:

Remark 23. Let Y be a second countable space, and F: X— 5%(Y) any map. If :
1) Y is regular and F [-irresolute; or 2) Y has an open-closed basis and F is
I-quasi-continuous, then a set of upper semi-continuity points of F is the
intersection of a countable family of semi-open sets.

Remark 24. Let a space Y have a countable open-closed basis. If F: X— (YY)
is lower semi-continuous map, then a set of upper semi-continuity points is Gs.

Remark 25. If in the assumptions of 23 and 24 the words ‘“‘/-irresolute”,
I-quasi-continuous”, “lower semi-continuous’ are replaced by ‘‘u-irresolute”,
“u-quasi-continuous” and ‘“‘upper semi-continuous” respectively, then we have the
analogous properties of the set of lower semi-continuity points.
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