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QUASI-CONTINUOUS MULTIVALUED MAPPINGS 

JANINA EWERT—TADEUSZ LIPSKI 

Let X be a topological space. The closure, the interior and the boundary of a set 
A will be denoted by A, IntA, FvA, respectively. 

Definition 1. [4, 2]. A set A cz Xis called semi-open if there is an open set Ucz X 
such that UczAczU. A set A is semi-closed if its complementary X\A is 
semi-open. 

The following propositions are an immediate consequence of the definition. 

Proposition 2. 1) A set A is semi-open if and only if A =Int A. 
2) A set A is semi-open if and only if A =(Int A)uB, where BCZFTA. 

Proposition 3. [4, 2]. 1) The union of semi-open sets and the intersection of an 
open and a semi-open set are semi-open. 

2) If A is a semi-open (semi-closed) set, then all of the sets: IntA, A are 
semi-open (semi-closed). 

The reader can easily verify the following: 

Lemma 4. 1) If A is a semi-open set, then FrA =Fr ( In tA) . 
2) If A is a semi-open (semi-closed) set, then FrA is a border set. 
Any semi-open set U such that xeU will be called a semineighbourhood of 

a point x (briefly s-neighbourhood). Let X, Ybe topological spaces and let Sf( Y), 
^(Y), JC(Y) be classes of all non-empty, non-empty-closed and non-empty 
compact subsets of Y, respectively. For a multivalued map F: X—• Sf( Y) we will 
denote 

F(A)=\jF(x), F~(B) = {xeX: F(x)nB±0}, F+(B) = {xeX: F(x)czB} 
xeA 

for any sets AczX, BczY. 

Definition 5. [8]. A multivalued map F: X-+£f(Y) is said to be 
I-quasi-continuous (u-quasi-continous) at a point x0eXif for any open set Wcz Y 
such thatF(x0)n W± 0 (F(x0) cz W) there is an s-neighbourhood U of the point x0 

such that F(x)nW±0 (F(x)czW) for every xeU. A multivalued map F is 
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I-quasi-continuous (u-quasi-continuous) in Xif it is I-quasi-continuous (u-quasi-
-continuous) at every point of X. 

Definition 6. A multivalued map F is said to be: 
— injective if for any xu x2eX, x\ ^x2 we have F(xi)nF(x2)-0 ([1], p. 22); 
— pre-semi-open if for any semi-open set A czX the set F(A) is semi-open. 

Theorem 7. Let Y be a regular topological space and let F: X—> £f( Y) be 
a pre-semi-open, u-quasi-continuous multivalued map. If one of the two conditions 
is satisfied: 

1) IntF(x) = 0 for every xeX\ or 
2) F is injective and l-quasi continuous, then F is lower semi-continuous. 
(For the definition of a lower and upper semi-continuity see [1].) 
P roof : Suppose that F is not lower semi-continuous. There is an open set 

GczY such that F~(G) is not open; F~(G)j=X. Thus there is a point xe F~(G) 
such that ;ceFrF~(G). 

Let yeF(x)nG. Since Y is regular, there exists an open set V such that 
yeVczVczG. Hence we have xeF~(V)czF~(G) and xeFrF (V). The set 
X\F~( V) is non-empty and semi-open, and moreover x e Fr [X\F~( V)]. Therefore 
U={x}u[X\F~(V)] = {x}uF*(y \V) is a semi-open set. Thus the sets F(U) and 
F (L0n Vare semi-open. But F (L0n V = [F(x)uF(F+(Y\V))]nV = F(x)nV. 
If 1) is satisfied, then Int [F([J)n V\ = Int[F(*)n V] =0. If 2) holds then the set 
F~[F(U)n V] = {x} has the non-empty interior. On the other hand {x} cz 
Fr[F~(V)] and Int Fr[F~(V)] = 0 (lemma 4), therefore the proof is completed. 

R e m a r k 8. Theorem 7 remains true if we suppose instead of regularity that the 
space y has a basis composed of open-closed sets. Simple examples show that such 
a space need not be regular. 

Definition 9. A multivalued map F: X-+£f(Y) is said to be l-irresolute 
(u-irresolute) at a point x0eX if for any semi-open set WczY such that 
F(x0)n Wi= 0 (F(xo) cz W) there exists an s-neighbourhood U of the point x0 such 
that F(x)n WV= 0 (F(x) cz W) for every xeU. A multivalued map is l-irresolute 
(u-irresolute) in X if it is l-irresolute (u-irresolute) at every point of X. 

A set A is said to be the open domain if A = Int A. 

Theorem 10. Let Y be a topological space, which has a basis composed of open 
domains and let F: X—> &(Y) be a pre-semiopen, u-irresolute multivalued map. If 
one of the conditions holds: 1) IntF(x) = 0 for every xeX; or 2) Fis injective, 
I - quasi-continuous; then F is lower semi-continuous. 

The proof is similar to that of theorem 7. 

Theorem 11. Let Y be a regular topological space or a space which has a basis 
composed of open-closed sets. If F: X-*3V(Y) is a pre-semi-open, l-quasi-cont-
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inuous, u-irresolute and infective multivalued map, then it is upper 
semi-continuous. 

Proof: Suppose that F i s not upper semi-continuous and let G c Y b e a n open 
set such that F*(G) is not open. Then 0j=F*(G)£X. There exists a point 
xeF*(G) such that xeFrF*(G). Let y b e regular. Since F(x) is compact, there 
exists an open set V such that F(x)c= V c V c G. So we have xeF*(V)cF*(G) 
and x e F r F ^ V ) . Since the set F~(Y\V) is semi-open and xeFrF^(Y\V), it 
follows that U={x}uF^(Y\V) is semi-open. Hence the sets F(U)nV and 
F*[F(LT)nV] are semi-open. On the other hand, F*[F(U)nV\ = 
= F+[(F(x)vF(F-(Y\V)))nV\ = {x}uF^[F(F~(Y\V))nV\. We will show that 
f [ F ( r ( y \ V ) ) n V ] = 0. On the contrary, assume that x0eF+[F(F^(Y\V))nV\. 
Then F(x0) c F(F~( Y\ V))n V and by the injectivity of F we have x0 e F~( Y\ V); 
this is a contradiction. Hence F*[F(U)nV\ = {x}c=FrF*(V); by lemma4 
IntF*[F(LI)n V\ = 0 and the proof is completed. If we assume that Y has a basis 
composed of open-closed sets, the proof is exactly the same. 

By 2 Y we denote the set ^(Y) with the Vietoris topology ([3], p. 162). As an 
immediate consequence of theorems 7 and 11 we have: 

Corollary 12. Let Ybe a regular topological space or a space which has a basis 
composed of open-closed sets, and let F: X—> jK(Y)bea pre-semi-open, infective, 
I-quasi-continuous map. 1) If Fis u-quasi-continuous map, then the ordinary map 
F: X—>2Y is quasi-continuous (for a definition of a quasicontinuity see [5]). 2) If 
F is u-irresolute, then the map F: X-*2Y is continuous. 

An ordinary map /: X—> Y may be interpreted as a multivalued map, which 
assigns to every point xeX the set {f(x)}. Moreover, we have f~(A)=f+(A) = 
f~l(A)9 where f~*(A) denotes the inverse image of the set A a Y. In this case 
/-quasicontinuity and w-quasi-continuity mean quasi-continuity of map / (called 
sometimes semi-continuity of / ; cf. [2, 6]). By theorem 7 and remark 8 we have: 

Corollary 13. Let Ybe a regular topological space or a space which has a basis 
composed of open-closed sets, and let 
f: X - » Y be a pre-semi-open and quasi-continuous map. If one of two conditions is 
satisfied: 1) the space Yis dense in itself ([6], theorem 7 ) ; 2) fis one-to-one; them 
f is continuous. 

Similarly, theorem 10 implies 

Corollary 14. Let Ybe a topological space which has a basis composed of open 
domains. Iff: X-± Y is a pre-semi-open, irresolute map and one of the conditions 
is satisfied: 1) the space Y is dense in itself; 2) f is one-to-one; then f is 
continuous. 

From 14 (1) we have the theorem of Piotrowski ([6], theorem 8). 
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Theorem 15. Let Y be a second countable topological space. If F: X-*JC(Y) is 
a u-quasi-continuous multivalued map, then the set A of all points at which Fis not 
upper semicontinuous is the first category in the sense of Baire. 

Proof: Let {V„K=i be a basis of Y. Let us denote by si the set of all finite, 
one-to-one sequences of natural numbers. Then we have s# = {ak}T=\, where 

j(k) 

ak = (nktl, nk,2, ..., «/.,/(*))• Let us put Wk = U »̂*,.« K ^0eA, then there exists an 
1=1 

open set [/<= Y such that x0eF*(U) and x0eFrF*(U). By the compactivity of 
F(xo) there is a natural number k such that F(x0) czWkczU9 hence x0s¥rF+(Wk). 

oo 

Thus we have A c | J FrF*( Wk). As the sets F+(Wk) are semi-open, by lemma 4 
k=\ 

FrF^(Wt), k = l, 2, ... are nowhere dense and the proof is completed. 

Theorem 16. Let Y be a second countable topological space. If F: X—» &( Y) is 
a I-quasi-continuous multivalued map, then the set A of all points at which Fis not 
lower semicontinuous is the first category. 

Proof: It follows from the inclusion: Ac|jFrF(V,), where {Vn}n=l is 
n = \ 

a basis of a space Y. 
Remark 17. From theorem 15 or 16 we obtain a theorem of Levine [4] for an 

ordinary map. 
Let y be a metric space. If A c X is a set of all quasicontinuity points of an 

ordinary map /: X-+ Y, then the set (Int A) \A is the first category in the sense of 
Baire [5, remark 3]. For multivalued maps — in general — this condition does not 
hold. 

Example 18. The multivalued map F defined on the space of real numbers by 
the formula: F(x) = [0, 2] if x is rational and F(x) = [1, 2] in the other case, has the 
set A of all u-quasicontinuity points equal to the set of rational numbers. Thus 
(IntA)\A is equal to the set of irrational numbers; this is not the first category. 
Similarly the set A of /-quasi-continuity points of the map F\ given by: F\(x) = 
[1, 2] if x is rational and F\(x) = [0, 2] in the other case does not satisfy the above 
condition. 

Theorem 19. Let Ybea second countable regular space and let F: X--> JK( Y) be 
an l-irresolute map. If A <= Xis a set of u-quasi-continuity points of F, then the set 
(Int A) \ A is the first category. 

Proof: Let {Vn}„=\ be a basis of a space Y. Let us denote by sd the set of all 
finite one-to-one sequences of natural numbers. Then sd = {ak}Z=\, where ak = 

(nk,u nk,2, .., nk,j(k)). Let us put Wk = U Vnk t. We will denote by Gk the set of all 
i = i 

points xeX such that the following condition is satisfied: if F(jc)czlnt Wk, then 
there exists a neighbourhood Uof the point x such that F(U)aInt Wk. Let x e Gk. 
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If F(jc)czlnt Wk, then jcelntG*. In the other case xeF^(Y\lntWk). Because 
Y\Int Wk is the semi-open set and F is /-irresolute, F~( Y\lnt Wk) is semi-open. 

Moreover F~( Y\Int Wk)czGk, hence jcelntG*. Hence we have shown that Gk is 

semi-open. Let xef]Gk and let Vcz Y be an open set such that F(JC) cz V. By the 
k=l 

regularity of the space Y we have F(x) cz Wk cz Wk cz V for some Wk, and 
F(JC)czInt Wk cz V. Then there exists an open set U such that xeU and F(U)cz 
Int Wk. Thus F is upper semicontinuous at the point JC. On the other hand every 

00 oo 

point of the upper semi-continuity of F belongs to f] Gk; thus f] Gk is the set of 
k=l k=l 

all points at which F is upper semi-continuous. Hence f]GkczA. Now, let JC e A 
k = l 

be a point such that F(jc)czlnt Wky and let U be any neighbourhood of JC. There 
exists an open set IP, 0j=U'czU such that F(U')czlnt Wk. It implies UczGk, 
therefore JJnlnt Gk =£ 0 and JC € Gk. If JC e A and F(JC) cj: Int Wky then xeGk. Finally 
we obtain AczGk. From this it follows \ntAczGk and (Int A)\Gk cz Gk\Gk = 
FvGk. Since FrG* is nowhere dense by lemma 4 neither (IntA)\G* is nowhere 

oo _ 

dense. Hence |J [(Inty4)\Gfc] is the first category set. But 
k=i 

(Int A)\A cz(lnt A)\f) Gk = Q [(Int A)\Gk] 
k=l k=l 

and this is the inclusion finishing the proof. 

Theorem 20. Let Ybe a second countable space which has an open-closed basis 
and let F: X-+3%(Y) be an I-quasi-continuous map. If AczX is a set of 
u-quasi-continuity points, then (lntA)\A is the first category set. 

Proof: Let Wk, k = 1, 2, ... be such as in the proof of theorem 19. We assume 
that Gk is the set of all points JC e X satisfying the next condition: if F(JC) cz Wk, then 
there exists a neighbourhood U of JC such that F(U)czWk. Then Gk is the 

oo 

semi-open set, H Gk is the set of all points at which F is upper semi-continuous 
k=i 

and the remaining part of the proof is exactly the same as in theorem 19. 

Theorem 21. Let Ybe a second countable regular space and let F: X-+ Sf( Y) be 
a u-irresolute map. If A is a set of l-quasi-continuity points, then (Int A)\A is the 
first category. 

Proof: Let { Vn}"=i be a basis of a space Y. By Gk we will denote the set of all 
points JCGX satisfying the condition: if F(jc)nlnt V*=£0, then there exists 
a neighbourhood U of x such that F(jc')nlnt Vk±0 for every JC' € U. The rest of 
the proof is such as in the 19. 

Similary to the above we have 
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Theorem 22. Let a space Y have a countable open-closed basis, and let F: 

X-*5f(Y) be a u-quasi-continuous map. If AczX is a set of l-quasi-continuity 

points, then (Int A)\A is the first category. 

From the proofs of these theorems there immediately follows: 
R e m a r k 23. Let Ybe a second countable space, and F: X—»jff,( Y) any map. If: 

1) Y is regular and F /-irresolute; or 2) Y has an open-closed basis and F is 
/-quasi-continuous, then a set of upper semi-continuity points of F is the 
intersection of a countable family of semi-open sets. 

R e m a r k 24. Let a space Yhave a countable open-closed basis. If F: X—> J{( Y) 

is lower semi-continuous map, then a set of upper semi-continuity points is G8. 

R e m a r k 25. If in the assumptions of 23 and 24 the words "/-irresolute", 
/-quasi-continuous", "lower semi-continuous" are replaced by "w-irresolute", 
" w -quasi-continuous" and "upper semi-continuous" respectively, then we have the 
analogous properties of the set of lower semi-continuity points. 
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76-200 Slupsk 
POLSKO 

KBA3H-HEIIPEPBIBHME MHOrOSHAHHBIE OTOBPAXEHHH 

Janina Ewert—Tadeusz Lipski 

Pe3IOMe 

B 3TOH pa6oTe cc})opMyjiHpoBaHLi HeKOTopwe ycnoBHfl KacaK>mHecH nojivHenpeptroHocTH cBepxy 
(cHH3y) KBa3H-Henpepbn3HbIX MH0r03HaMHbIX 0T06pa5KeHHH. KpOMe 3TOrO OrOBOpeHbl HeKOTOpble 
CBOHCTBa MHO.*eCTBa TOHeK nOJIVHenpepbffiHOCTH CBepxy (cHH3y) 3THX 0T06pa)KeHHH. 
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