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A NOTE ON REMOVING A POINT OF 
A STRONG DIGRAPH 

PETER HORAK 

Throughout the paper we use the notation and terminology of Harary [3]. In 
particular, the set of points and the set of lines in a given digraph D will be denoted 
by V(D) and E(D) respectively. If there is a walk from a point u to a point v, then 
v is said to be reachable from u. A digraph is strong if every two points are 
mutually reachable and is unilateral if for every pair u, v of points either v is 
reachable from u or u is reachable from v. 

The effect that the removal of a point from a strong digraph has on its 
connectivity class was studied by Ross and H a r a r y [6], H a r a r y , N o r m a n and 
C a r t w r i g h t [4], Manve l , S t o c k m e y e r and Welsh [5], G e l l e r [2], F ink [1]. 

From [2] it immediately follows that any strong digraph D has a point v such that 
D — v is unilateral. Further, in [5] it is stated that for any point v of a strong 
digraph D there is a point u(v) i= v such that v can reach every point in D — u(v). 
We combine these two statements in the following theorem. 

Theorem. Let D be a strong digraph with at least two points. Then for every 
point vofD there exists a point u(v)£v such that D — u(v) is unilateral and v can 
reach every point in D — u(v). 

Proof. We prove our theorem by the induction on | V(D)| . The first step of the 
induction is straightforward. Now, let D be a strong digraph with p > 2 points and 
let v be a point of D. If D is hamiltonian, then the initial point of the line of the 
hamiltonian cycle whose terminal point is v has the required properties. Otherwise 
D contains a cycle C=v, v\, ...', vk, v, where k<p — 1. Let D\ be the digraph 
obtained from D by the contraction of C to the point v (i.e., V(D\) = V(D) — W, 
where W= {v\, v2, ..., vk} and a line x belongs to E(D\) iff either xeE(D) and 
x = u\ u2 where U\ £ W, u2 £ W or x = vz (x = zv) in the case when there is an /, 
1 ^ i ^ k such that vfzeE(D) (zv< eE(D))). As 2 ^ | V(D\)\<p, by the induction 
hypothesis there exists a point u(v)¥=v, u(v)eV(D\) such that the digraph 
D\ — u(v) is unilateral and v can reach every point in D\ — u(v). From the 
construction of D\ it is clear that the point u(v) has the same properties in D. 

Corollary. Let D be a strong digraph with at least two points. Then there exists 
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a line x(v) such that D — x(v) is unilateral and v can reach every point in D — x(v) 
for every point v of D. 

Proof. Let u(v) be a point assigned to v by the Theorem. Then it is sufficient to 
define x(v) as the line directed from u(v). 

Obviously, the theorem and corollary dual to the preceding ones (i.e. that can be 
obtained by replacing the phrase "can reach" by "can be reached") hold. 

A c k n o w l e d g m e n t . The author wishes to thank J. P l e s n i k for helpful 
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ЗAMEЧAHИE OБ УДAЛEHИИ BEPШИHЫ ИЗ CИЛЬHOГO OPГPAФA 

Peteг H o г á k 

P e з ю м e 

B cтaтьe дoкaзaнa cлeдyющaя тeopeмa. Пycть D cильный opфaф. Toгдa для кaждoй вepшины 
v из D cyщecтвyeт вepшинa u(v) Ф v тaк, чтo o p ф a ф D — u(v) oднocтopoннии и кaждaя вepшинa 
opфaфa D—u(v) дocгижимa из вepшины i». 
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