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Math. Slovaca 33, 1983, No. 2,153—163 

ON MEASURES AND INTEGRALS WITH 
VALUES IN ORDERED GROUPS 

BELOSLAV RIECAN 

In the paper presented we shall formulate and prove two main results: the 
measure extension theorem and the Daniell integral extension theorem, both with 
values in partially ordered groups. 

These results are analogies of corresponding results holding in linear ordered 
spaces. Probably the first result of this kind was published in [4] (see also [2]) and it 
was concerned with the extension of linear continuous operators in regular 
K"-spaces. A more general result was published in [6]. A special case of this result is 
the measure extension theorem as well as the Kantorovic theorem; both with 
values in regular K-spaces. 

Of course, regular K"-spaces present a quite special kind of linear ordered spaces. 
The measure extension problem for values in linear ordered spaces was definitively 
solved by J. D. M. Wright in [12]. He found a sufficient and necessary condition 
(a-distributivity of X) for every measure with values in X could be extended from 
a ring to the generated a-ring. Other proofs of the Wright theorem were published 
in [3] and [8]. 

In the paper we present some improvements of the preceding results. Firstly we 
suppose that the rang space G is a group instead of previous assumption that G is 
a linear space. Of course, if G is moreover a linear space, the corresponding 
mentioned results are special cases of our theorems. Secondly G need not be 
a lattice; we assume only that G is a partially ordered group. Thirdly we study from 
a unique point of view the measure as well as the integral. This permits to obtain 
simultaneously the measure extension theorem as well as the Daniell integral 
extension theorem. (This method was first used in [1] and [5]; see also [6], [10] and 
[11].) Fourthly we admit weaker assumptions on the domain of studied maps. Thus 
we obtain the measure extension theorem for measures on Boolean algebras. On 
the other hand we obtain the theory of the Daniell integral for maps defined on 
a subgroup of a lattice ordered group. 

Our constructions and proof are very similar to that of Fremlin ([3]), but more 
general and simpler (see [8]). 

Recall that measures and integrals with values in ordered groups were studied in 
[7], [9], [10] and [11]. 
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1. Range space 

Our range space will consist of an ordered commutative group G, i. e. such 
a commutative group (G, +), which is a partially ordered set (G, ^ ) and such that 
a ^ b implies a + c ̂  b + c for every c e G. G is called monotonously a-complete if 
every increasing bounded sequence has the least upper bound. If p is a positive 
integer and xeG, then we define px = x + x + ... + x (p times), i .e. lx = x and 
px = (p — l)x + x for p>l. 

Usually we shall assume that G is an /-group, i. e. such an ordered group which 
becomes a lattice. The lattice operations will be denoted by avb, at\b and 

similarly Va i 9 A^t- 1° a n v /-group we can define a+ = avO (where O is the 
i = i i = i 

neutral element), a~ = (—a)vO. It is well known that a = a+ — a for every aeG. 

We shall write an/a, if an^an+i (n = 1, 2, ...) and a = \ / at, the symbol an\a has 
i = i 

an analogous meaning. 
The group G will be sometimes assumed to have some further properties, 

namely the following two ones. 
An ordered group G is called a-distributive if aiy\ O (y—> o°, / = 1, 2, ...) implies 

A „ V ca<P(i)=0. 
<peNN i=l 

An ordered group G satisfies the condition (P) if for any bounded sequence 
(an,i,/)n.i,y of elements of G such that a„,,,y\0 (y-*°°> n> /=!> 2> ...) and any 
a>0 there is a bounded sequence (a,,/),,, of elements of G such that aitJ\0 
(y _• oo) and for every <p e N N 

. °° oo oo 

« A ^ V f l « . Í . ? o + " - i ) ) = Va«\<PO: 
\ n = l i = l i = l 

Proposition 1. Every monotonously o-complete I-group satisfies the condition 

(n 
Proof. See [13]. 

2. Assumptions 

We shall extend mappings whose domains and ranges are partially ordered sets 
of special types. First we list the assumptions concerning the structure X containing 
the domain of a given mapping. 

The structure (X, v, A , -I-, —) satisfies the following properties: 
(1) (X, v, A ) is a boundedly a-complete lattice, i. e. every bounded sequence 

has the least upper bound and the greatest lower bound. 
(2) If a^b and c^d, then a + c^b + d, c-b^d-a. 
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(3) If an/a, bn/b, then an + b„/a + b, anr\bn/a/\b. 
(4) If an\a, bn\b, then anvb„\avb. 
(b) If bn/b, cn\c, then bn-cn/b-c, c„-bn\c-b. 
Let Xsatisfy the preceding conditions, A c X b e a subset closed under v, A, + , 

— and such that to every xeX there is an a 6 A with x^a. Let G be an ordered, 
commutative, monotonously a-complete group and let J0: A —• G satisfy the 
following conditions: 

(i) If a, be A, a§ b, then J0(a)^J0(b) and J0(b) = J0(a) + J0(b - a). 
(ii) J0(a)^J0(b) + J0(a — b) for every a, be A. 
(iii) J0(a +b)^J0(a) + J0(b) for every a, be A. 
(iv) If an/a, bn\b, a^b, an, bneA (n = l, 2, ...) and (J0(an))n=i, (J0(bn))n=i 

are bounded, then 

A/o(6n)^VJo(an). 

3. Construction 

Lemma 1. If an, bneA (n = l, 2, ...), an/a, bn/b, a^b and (J0(an))n=i, 

(Jo(bn))n=i are bounded, then \J J0(an)^\J J0(bn). 
n = l „=1 

Proof. By the assumption (3) an A b m / a n Ab = a„(m —• oo), hence by (i) and (iv) 

Jo(an)= V Jo(anAbm)^ V Mb*). 
m = l m = l 

Definition 1. By A+ we denote the set of all beX for which there exists 
a sequence (an)n=i of elements of A such that an/b and (J0(an))n=i is bounded. 
Further we define J*: A+^>G by the formula 

r(b)=\J J0(an), 
n = l 

where aneA, an/b. The symbols A~, J~ will have an analogous meaning. 

Proposition 2. If a, beA+ or a, beA~ resp. and a^b, then J* (a) ^ J* (b) or 
r(a)^T(b) resp. 

Proof. It follows from Lemma 1 or the dual assertion resp. 

Proposition3. IfbeA+, ceA~, b^\c, then J+(b)z%r(c). 
Proof. It follows from (iv) and the definition of J* and J~. 

Proposition 4. For every beA*, ceA~ we have 
r(c)^r(c-b) + r(b), 
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r(b)=r(b-c)+r(c). 
Proof. The assertion follows from (ii) and (5). 

Propositions. Let bneA+, cneA~ (n = l, 2, ...), bn/b, cn\c, (J+(bn))n 1, 
(J~(c„))r=i be bounded. Then beA+, ceA~ and 

r(b)=\/r(bn), r(c)=]\r(cn). 
n = l n 1 

Proof. Since bneA+, there are dmeA such that dm/bn (rrz—>°o). Put dn = 

V dm. Then dn = bn, dneA, Jo(dn) = r(dn) = r(bn) (n = l,2, ...) and dn/b. 
m = l 

Therefore b e A+ and 

r(b) = \f:=ljo(dn)=\/ r(bn)=r(b). 
n = \ 

The second assertion can be proved similarly. 

Proposition 6. If b e A+, ceA , b^c, then J^(b) = J+(b - c) +T(c). 
Proof. Let cneA, cn\c. Then bAcneA+, hence there are dk,neA, 

dkyn/bACn(k-+™). Since dk,n=b, dk,n=cn, we have by (2) b — dk,n=b- cn, 
hence by (iv), (i) and Proposition 2 

r(b) = Jo(dk,n) + r(b-dk,n)=^Jo(dk,n) + r(b-Cn). 

Therefore by Proposition 4 (bAcn = c, bAcneA+, c e A~) 

r(b)=\j jo(dk,n)+r(b-Cn)=r(bACn) + 
A = l 

+ r(b - cn)^r(c) + r(b - Cn). 

Proposition 5 implies 

r(b)=r(c) + v r(b - Cn) = r(c) + r(b - c). 
n = l 

The opposite inequality follows trom Proposition 4. 

Proposition 7. For every a, b e A+ we have 

r(a + b)=r(a) + r(b). 

Proof. It follows from (iii) and (3) 

Definition 2. We shall write xeL if there is weG and at,}, bitje G, a,,/\0, 
bi, / \ 0 6""* °°> / = 1, 2, ...) such that for every cp e NN there are xt e A , x* e A + 

such that x~^x^x~ and 
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r(x~)-y ai,fpii)=w=r(x~) + \/ bi,^). 
1 = 1 1=1 

Proposition 8. If xeL, then 
A{J*(*2); x2 ^ x , x2 e A+} = \/{r(xi); xi = x, xi e A~} . 

Proof. If Xi=^x, Xi e A~, then Xi^x2, hence by Proposition 3 J~(xi) = J+(x2). 
It follows that 

00 

J~(xi) -w = J*(x~) -w=\/ai, v(l-). 
i = i 

By the a-distributivity of G one obtains 

J~(xi)- w=^0 = /\\f ai,^), 
hence ~ ' 

r(xi)=w 

and therefore the element w is an upper bound of the set {J~(xi); Xi=^x, Xi e A~}. 
Let z e G be any upper bound of this set. We show that z = w. Indeed, z=J~(xT), 
hence 

w-z=w-r(xX) = \/bi,^i) 
i 

for every cp e NN and therefore 

w-z = 0 = /\\/bi,<p(i) 
<P i 

by the a-distributivity of G. We have just proved the equality 

w = \/ {J~(xi), xi = x, xie A~} . 

The equality 

w = A{J*(x2); x2^x, x2e A+} 

can be proved similarly. 

Definition 3. For xeL we define 

J(x) = A i ^ f a ) ; x2 = x, X2eA+} = 
= V {•*""(*-); xi = x, XieA~}. 

4. General results 

Theorem 1. Let G be a monotonously o-complete, o-distributive, commutative 
ordered group satisfying the condition (P). Let x, yeL, x=^y. Then y — xeL and 
J(y-x) = J(y)-J(x). 

Proof. Follows immediately from the condition (P) and the definition of L. 
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Theorem 2. Let G be a monotously o-complete, o-distributive, commutative 
ordered group satisfying the condition (P). Let xn eL (n = 1, 2, . . .) , xn/x. Then 

xeL and J(x) = V J(xn). 
n = \ 

Proof. By the assumption there is aeA such that a=jc. By Theorem 1, 
xi, x2 — Xi, X3~x2, ...eL, hence there are an,iyJe G, an,i,J\0 0-^°°) such that for 
every cp e NN there are yneA* with >>i=xi, yn =\xn - x „ - i , yn^a, (n=2,3, ...) 
and 

J(xl)>r(yl)-\/al,i,<p(i) 
i 

J(x„ - xn-\)> J*(yn) - \/ an, i, V(,+n-i), (n = 2,3, ...). 
i 

By the condition (P) there are aitJe G such that £7,\/\0(/—>oo) and 

(J0(a) - J(X\)) A ( ]~j V -~n. i. <p(/+n-l)) = V «/. V(0 
\ n /' /' 

for every q> e NN. Hence by Theorem 1 and Proposition 7 we have 

/(*.)=/(*.)+£(•/(*) - J(x,-i))>'2J+{yl) - y v«*. •• *«+*-u = 

n n 

=ЈҶ 2y.) - X V я*. /. Ф(/+/.-І). 
\ / = l / A=l / 

If we put M„ = t7A^)'i, then 

r(un)-J(xn)^Jo(a)-J(xl), 

hence 

J"( W„) - J(Xn) = (Jo(«) " J(*l)) A ( | V ^ , /. */ + "-!)) = 

= V «/,<?(/)• 

Put u=\J un. Then we A + , « = * , 
n = l 

rw-v-^^vIw 
/ n 

by Proposition 5. 
Since xneL, there are bn, i\/\0(/—*°°) such that for every q?eNN there are 

tj„ e A ~ with vn = *n and 

r(Vn) + V *«. /. <p(n + /-D > J(*n) . 
/ 
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Put bo,i,j=\JJ(xn)-J(xj). Finally fix j^(p(l) (hence bo, ../-^b*./,*(-)) and put 

v = vj. By the condition (P) there is b,, j\0(j-+ <*>) such that 

(J0(a) - J~(V)) A ( 2 V bn, i, <p(i+n-l)) <\/ b{, V(/) 
V n i i 

for every qp 6 1V". Since 

V / (** ) = /(*/) +bo,,,/ 
n = l 

^ J-(t>) + \J bkt it «p(/+,-i) + V *o. i, <p(i), 

and 

we have 

\/j(xn)-r(v)ž J0(a) -r(v), 

V/(*«)^-r>) +V !><.*(»• 

Hence we have constructed two sequences (a,,/),,/, (bitJ)itJ of elements of G such 
that a,./\0, b,,/\0 (/—> 00) and such that to every cp e NN there are u e A + , veA~ 
with v^x^u and 

/^(w) -\/ ait <?(» < w = V J(*n) < J"(v) + V bt, <p(,). 
i rt = 1 ,' 

Therefore * e L and 

/ ( A : ) = W = V/ (*„) . 
n = l 

Corollary. Let G satisfy the assumptions of Theorem 1. Let xneL, x„\x, 
(J(xn))n=i be bounded. Then xi — xeL and 

A J(xn) = J(xi) - J(xi - x). 
n 

Proof. By (5) xi-xn/xi-x. By Theorem 1 J(xi -xn) = J(xi)- J(xn), hence 
(J(xi — xn))n=i is bounded and by Theorem 2 Xi — xeL and 

J(Xl ~X) = \/J(xi-Xn) = \/ (J(Xl) - J(Xn)) = J(Xl) - A J(Xn) . 
n n n 

5. Measure theory 

Definition 4. By a measure with values in an ordered group G we mean 
a mapping [i: 0?—• G defined on a ring 0t of subsets of a set and satisfying the 
following conditions: 
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1. /i(0) = O, fi(A)^0 for every Ae0l. 
2. n is o-additive, i. e. 

,«(>-)=i ,«(A.)=vi>(A) 
n I n = l , - l 

whenever An, Ae0t (n = l,2, ...), A = [J An and AnnAm = 0 (n^h m). 
n = \ 

Evidently, a mapping u: 01-* G is a measure iff pi(0) = 0, fi i?0, n is additive and 
continuous from below. 

Theorem 3. Let G be a monotonously o-complete, o-distributive, commutative 
ordered group satisfying the condition (P). Let p: £%—> G be a measure defined on 
an algebra 01 of subsets of a set. Then there is exactly one measure fi: o(0l)^>G 
extending /i and defined on the o-algebra o(0t) generated by 01. 

Proof. Let X b e the family of all subsets of a given set. Let X b e ordered by the 
inclusion. For every E, FeXput E + F= EuF, E — F= E\F (the set-theoretical 
union or difference resp.). Evidently X satisfies all assumptions listed in Section 2. 
Further put A = 01 and J0 = pi. Our general results (from Section 4) can be applied 
now to the triple X, A, J0. Hence we can use first A+, J*, A~, J~ and then L and J. 
By Theorem 2 L is a monotone family containing 0t, hence Lzoo(0l). Put 
(l = J\ o(0t). By Theorem 2, (i is continuous from below. We shall prove that fi is 
additive. 

Let E, Fe0l, EnF=0. Then there are aitJ\0, b, / \ 0 ( / - * ° ° ) such that for 
every cpeNN there are C<z\E, D<=F such that CeA~, DeA and 

J(E)-\/ai,<p(l)<r(C),J(F)-\/bi^l)<r(D). 

Evidently CnDczEnF=0, hence C, D are disjoint and therefore J (C)-h 
r(D) = r(CnD) + r(CuD) = T(CuD). Choose (by the property (P)) such 
Ci,y\0(/—>oo) that for every q>eNN 

V 0'\ vd) + V £«\ <P(» = V c«\ <PO) • 
' i f 

We have 

/2(E) + fi(F) - fl(EuF) ^ F(CuD) + V c„ v(l) - fi(EuF) ^ 

,' 

hence by the a-distributivity of G, fi(E) + fi(F) — fi(EuF)^0. 

The opposite inequality can be obtained similarly using Proposition 7. 
If v: o(0t)^>G is another measure extending jU, then J{ = {E e o(0l): 

v(E) = fi(E)} is a monotone family containing 01, hence XZD o(0t) and therefore v 
coincides with \i on o(0l). 
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6. The Daniell integral 

Now we present a theorem on the extension of continuous linear operators as 
a consequence of our general theory. Our main result will be concerned with lattice 
ordered groups. Of course, the first proposition will be formulated more generally. 

Proposition 9. Let G satisfy the assumptions of Theorem 1 andX, A, J0 satisfy 
the assumptions of Section 1. Moreover let + be continuous (i. e. also x„\x, 
yn\y implies xn + y»\x + y) and J0 be additive (i. e. J0(x + y) = J0(x) + Jo(y) for 
allx, y e A). Then the set Lis closed under the operation + and J is additive, too. 

Proof. Evidently A+, A~ are closed under + and J+, J~ are additive. Let 
x, yeL. Then there are a,,/\0, 6 . , / \0 , c , , y \0 , di,/\0(/-->oo) such that for every 
q>eNN there are x1,y1eA~, x2, y2eA+ such that x^x^x2, y i ^ y l = y 2 and 

r(x2) - \fat, v(/) =" J(x) = J~(.*i) + \/bi, rto, 

r(y2) - \Ja, *0 = J(y) = r(yi) + \Jd, «0. 

If we choose (property (P) )e l W \0 , /,w\0(y—• oo) such that Va«. <P(0 +Vc'.<?0) = 
\Jeit <p(i) and V^«. <p(0 + \Jdit <K<) — V/«. vO) I o r every qpeNN, then 

r(x2 + y2) - V^i. */> = /(*) + ^(y) = J~(*i + yO + VA *o, 

where JCI + yi -.5 x + y lS *2 + y2 and ;ti + yi eA~, *2 + y2 e A+. Hence x + y e L and 
J(* + y) = .J(*) + J(y). 

Theorem 4. Lef G be a commutative, ordered, o-distributive and o-complete 
group satisfying the condition (P). Let X be a o-complete I-group, A its l-subgroup 
majorizingX(i. e. to everyxeXthere is aeA such thatx^a). Let J0: A —> G be 
an additive, positive and order continuous mapping (i. e. xn/x --> J0(xn)/J0(x)). 
Then there is a subgroup L of the group X and an additive, positive and order 
continuous mapping J: L^>G extending J0 and satisfying the following additional 
condition: 

If Xn/x, xneL (n = l,2, ...) and (J(xn))n=i is bounded, then xeL. 
If moreover G is complete, then L is a lattice group. 
Proof. In Proposition 9 we proved that J is additive and L is closed under the 

operation + . Now it suffices to prove that xeL implies — xeL. Let alW\0, 
bi, j\0 (/—>oo) be corresponding sequences, JCI 1= x ^ x2 be corresponding elements, 
XieA~, x2eA+ and 

r(x2) - \/ai, „(i) =" J(x) =" r(x,) + \/bi, ^i). 

Evidently -x2^-x^-xu -x2eA~, -x1e A+ and r(-Xi) = -J~(xt), J~(-x2) = 
~r(x2). Therefore 

r(-x1)-\Jbi,(p{i)^-J(x)^r(-x2)^\/ai,<p{i). 
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It follows that — xeL and moreover J(—x) = — J(x)> (Of course, the equality 
J(—x) = —J(x) is a consequence of additivity of J.) 

If G is complete, we can define for every x e X 

J*(x) = /\{J\b):beA\b^x}, 

J*(x) = \/{J-(c); ceA~, c^x). 

Evidently J*(x)SJ*(x) for every xeX and xeL iff J*(x) = J*(x). Now let 
x, yeL, i .e. J*(x) = J*(x), J*(y) = J*(y). Since Jo is additive and x + y = 
xvy + XAy, we have 

P ( . r ) + P(y)^/*(.rvy) + /*(^Ay), 

X(x) + J.(y)^J*(xv>0 + J*(*A>>). 

Therefore 

/ * ( ^ v y ) ^ P ( j ) + ; * ( y ) - / * ( ^ A y ) - i 

^ J*(x) -I- J*(>!) - J*(x A y) = J*(x v y), 

hence xvyeL. On the other hand x/\y = — ((—x)v(—y)). 
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О МЕРАХ И ИНТЕГРАЛАХ СО ЗНАЧЕНИЯМИ В УПОРЯДОЧЕННЫХ ГРУППАХ 

Ве1о$1ау Я1есап 

Р е з ю м е 

В статье формулированы и доказаны для результата для отображений со значениями 

в частично упорядоченных фуппах: теорема о продолжении меры и теорема о продолжении 

интефала Даниеля. Приведены некоторые улучшения известных результатов. Во первых, 

допустимым множеством значений является фуппа, а не только линейг.с пространство. Во 

вторых, это множество не должно быть структурой. В третьих, обе теории рассматриваются 

с единой точки зрения. Таким образом теорема о продолжении меры и теорема о продолжении 

интефала Даниеля являются следствиями одной общей теоремы о продолжении отображений 

определенных на подструктуре данной структур некоторого типа. И, наконец, в четвертых, 

приводятся более слабые условия наложенные на область определения продолжаемого отоб­

ражения. Таким образом получается теорема о продолжении меры на Булевых алгебрах, 

и с другой стороны, теория интефала Даниела на структурно упорядоченных фуппах. 
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