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ON MEASURES AND INTEGRALS WITH
VALUES IN ORDERED GROUPS

BELOSLAV RIECAN

In the paper presented we shall formulate and prove two main results: the
measure extension theorem and the Daniell integral extension theorem, both with
values in partially ordered groups.

These results are analogies of corresponding results holding in linear ordered
spaces. Probably the first result of this kind was published in [4] (see also [2]) and it
was concerned with the extension of linear continuous operators in regular
K-spaces. A more general result was published in [6]. A special case of this result is
the measure extension theorem as well as the Kantorovi¢ theorem: both with
values in regular K-spaces.

Of course, regular K-spaces present a quite special kind of linear ordered spaces.
The measure extension problem for values in linear ordered spaces was definitively
solved by J. D. M. Wright in [12]. He found a sufficient and necessary condition
(o-distributivity of X) for every measure with values in X could be extended from
a ring to the generated o-ring. Other proofs of the Wright theorem were published
in [3] and [8].

In the paper we present some improvements of the preceding results. Firstly we
suppose that the rang space G is a group instead of previous assumption that G is
a linear space. Of course, if G is moreover a linear space, the corresponding
mentioned results are special cases of our theorems. Secondly G need not be
a lattice ; we assume only that G is a partially ordered group. Thirdly we study from
a unique point of view the measure as well as the integral. This permits to obtain
simultaneously the measure extension theorem as well as the Daniell integral
extension theorem. (This method was first used in [1] and [5] ; see also [6], [10] and
[11].) Fourthly we admit weaker assumptions on the domain of studied maps. Thus
we obtain the measure extension theorem for measures on Boolean algebras. On
the other hand we obtain the theory of the Daniell integral for maps defined on
a subgroup of a lattice ordered group.

Our constructions and proof are very similar to that of Fremlin ([3]), but more
general and simpler (see [8]).

Recall that measures and integrals with values in ordered groups were studied in
[7], [9], [10] and [11].
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1. Range space

Our range space will consist of an ordered commutative group G, i.e. such
a commutative group (G, + ), which is a partially ordered set (G, =) and such that
a=bimplies a+ c=b+ c forevery c e G. G is called monotonously o-complete if
every increasing bounded sequence has the least upper bound. If p is a positive
integer and x € G, then we define px=x+x+...+x (p times), i.e. lx=x and
px=(p—1Dx+x for p>1.

Usually we shall assume that G is an /-group, i. e. such an ordered group which
becomes a lattice. The lattice operations will be denoted by avb, anb and
similarly \/ a, /\la,-. In any /-group we can define a*=av O (where O is the

i=1 i=
neutral element), @~ =(—a)v O. It is well known that a=a*—a forevery ae G.

We shall write a, 7a, if a.=a..: (n=1, 2, ...) and a =/ a;, the symbol a.\,a has
i=1

an analogous meaning.

The group G will be sometimes assumed to have some further properties,
namely the following two ones.

An ordered group G is called o-distributive if a; O (j—> =, i=1, 2, ...) implies

/\~ V gy = 0.
@eN" i=1
An ordered group G satisfies the condition (P) if for any bounded sequence
(an, i j)n i j of elements of G such that a, ,,\NO (j—>», n,i=1,2,...) and any
a> O there is a bounded sequence (a; )., of elements of G such that a;;\NO
(j— =) and for every ¢ e NV

a/\( Z V An, i gli+n-1) = V1 ai, g(i) -
n=1 i=1 i=

Proposition 1. Every monotonously o-complete I-group satisfies the condition
(P).
Proof. See [13].

2. Assumptions

We shall extend mappings whose domains and ranges are partially ordered sets
of special types. First we list the assumptions concerning the structure X containing
the domain of a given mapping.

The structure (X, v, A, +, —) satisfies the following properties:

(1) (X, v, A) is a boundedly o-complete lattice, i. e. every bounded sequence
has the least upper bound and the greatest lower bound.

(2) If a=b and c=d, then a+c=b+d, c—b=d—a.
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) If a./ a, b,/'b, then a,+b,'a+b, a.Ab,/anbh.

(4) If a.\ya, b,\ub, then a,vb,\avb.

(b) If b,/ b, ca\c, then b, —ca/'b—c, ca—ba\ic—b.

Let X satisfy the preceding conditions, A = X be a subset closed under v, A, +,
— and such that to every x € X there is an a € A with x=a. Let G be an ordered,
commutative, monotonously o-complete group and let J;: A— G satisfy the
following conditions :

(i) If a, be A, a=b, then Jo(a)=Jo(b) and Jo(b) = Jo(a) + Jo(b — a).

(ii) Jo(a)=Jo(b)+ Jo(a — b) for every a, be A.

(iii) Jo(a+ b)=Jo(a)+ Jo(b) for every a, be A.

(iv) If a. /a, ba\\b, aZ b, a., b A (n=1, 2, ...) and (Jo(as))n=1, (Jo(bn))n=1
are bounded, then

Z\l Jo(bn)= ,.\Z Jo(an).

3. Construction

Lemmal. If a.,, b.e A (n=1, 2, ...), a.,/a, b./'b, a=b and (Jo(a,))r-1,
(Jo(bn))z-1 are bounded, then \/ Jo(a)= \/ Jo(by).
n=1 n=1
Proof. By the assumption (3) a. A bm,”a, A b = a,(m— =), hence by (i) and (iv)

Jo(an) = m\i/l To(an A bm) = i/l To(bm).

Definition 1. By A* we denote the set of all be X for which there exists
a sequence (a»)n-1 of elements of A such that a, /'b and (Jo(an))~-1 is bounded.
Further we define J*: A*— G by the formula

J(b)= \_/l Jo(an),
where a, € A, a./'b. The symbols A~, J~ will have an analogous meaning.

Proposition 2. Ifa, be A* ora, be A™ resp. and a=< b, then J"(a)=J"(b) or
J (a)=T (b) resp.
Proof. It follows from Lemma 1 or the dual assertion resp.

Proposition3. If be A*, ce A, b=c, then J'(b)=J (c).
Proof. It follows from (iv) and the definition of J* and J .

Proposition 4. For every be A*, ce A~ we have
J(©)=T (c—-b)+T"(b),
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TBYST(b—c)+ T (c).
Proof. The assertion follows from (ii) and (5).
Proposition 5. Let b,e A*, c,e A~ (n=1, 2, ...), b.,/'b, c.\vc, (J"(b.))7 1,
(J7(¢a))n-1 be bounded. Then be A*, ce A~ and
J+(b)=\=/lf'(b,,), J_(c)=/\ll_(c,.).

Proof. Since b,e A", there are d, € A such that d,/ b, (m— »). Put d, =
\/ dz. Then dy=b,, dne A, Jo(d) =T (d)=T"(b,) (n=1,2, ...) and d,/b.
m=1
Therefore be A and

T (b) = \/:szo(d,.)é"\ZJ*(b,.)éﬁ(b).

The second assertion can be proved similarly.

Proposition6. If be A*, ce A , b=c, then J'(b)=J" (b—c)+J (c).

Proof. Let c.€e A, c.\\c. Then bac,e A", hence there are d. .c€A,
di.n/"bAci(k— ®). Since di,n=b, di,»=c., we have by (2) b—di .=b—c,,
hence by (iv), (i) and Proposition 2

T (b)=Jo(de )+ T (b—di. ) ZJo(de. ) + T (b —c.).

Therefore by Proposition 4 (bAc.=c, bac,e A", ce A7)
T BYZV To(din) + T (b—c) =T (brcy) +
A=1

+J(b—c) =T () + T (b—cn).-

Proposition 5 implies
FB)ZT () + VI (b=c)=T(c)+ ' (b~c).

The opposite inequality follows trom Proposition 4.
Proposition 7. For every a, be A* we have
J'(a+b)=T (a)+ T (b).
Proof. It follows from (iii) and (3)

Defini_tion 2. We shall write xe€ L if there is we G and a; , b je G, a; ;}\0,
bi,\O (=, i=1,2,...) such that for every @ € N" there are xTe A , xYe A"
such that x{=x=xY and
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T(x%) - Vlai. s SEWSET (xF)+V bi o)
i= i=1
Proposition 8. If xe L, then
AT (x2); x2Zx, 2e AT} =\V{JT (x1); x:1=x, x1€ A7}
Proof. If x;)=x, x,e A7, then x; =x¥, hence by Proposition 3 J (x:) = J"(x%).
It follows that

JT(x)—-wsT'(x¥)—ws= \7ai, ®i) -
i=1

By the o-distributivity of G one obtains

J-(XI)— W§0=/\\/a,-' @(i) s
hence @ i

T (x)=w

and therefore the element w is an upper bound of the set {J (x1); x;=x, x1e A™}.
Let z € G be any upper bound of this set. We show that z = w. Indeed, z=J (x¥),
hence

w_zgw—f(xlp)évbi,w(i)

for every @ e N" and therefore
w—z§0=/\\i/b.-,¢(,-)
by the o-distributivity of G. We have jus: proved the equality
w=V{I (x1), x=x, x1e A"}.
The equality
w= A{J"(x2); 2=x, 26 A"}
can be proved similarly.
Definition 3. For x e L we define

Jx)=A{J"(x2); x:Zx, 26 A"} =
=V{J—(x1)§ X=x,x1€A}.

4. General results

Theorem 1. Let G be a monotonously o-complete, o-distributive, commutative
ordered group satisfying the condition (P). Letx, ye L,x=y. Theny—xe€ L and

J(y=x)=J(y) = J(x).
Proof. Follows immediately from the condition (P) and the definition of L.
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Theorem 2. Let G be a monotously o-complete, o-distributive, commutative
ordered group satisfying the condition (P). Letx,e L (n=1, 2, ...), x./'x. Then

xeL and J(x)= \:/ J(xn).

Proof. By the assumption there is a€ A such that a=x. By Theorem 1,
X1, X2 — X1, X3— X2, ... € L, hence there are a,, i ;€ G, an, i ;\O (j— ) such that for
every @ e N" there are y,e A* with y1=Zxi, yaZxa —Xoo1, yn=a, (n=2,3,..)
and

J(xl)>-,+(yl)-yal,i,qp(i)
J(xn = Xn-1)>T" () — \/ An, i, pi+n—1) (n=2,3,..).
By the condition (P) there are a;,€ G such that a; \O(j— «) and
(Jo(a)—J(xl))A(Z\i/a,., i ¢(i+n-1))§\i/ai, 0

for every @ € N". Hence by Theorem 1 and Proposition 7 we have

I =) + 300 = JE)) > 3T 00 = 3V s ansy

;J*(’i y,) —kzlvak. i, @(i+k—1)+

If we put un=an p yi, then

T () = J(xn) = Jo(a) — J(x1),
hence

T () = () S Uo(@) = I A DV an . iren ) 5
= \‘_/a,», i) -
Put u=n\=:/1 u,. Then ue A", uZx,
T (u)— \/ai, o) = Y‘I(xn)
by Proposition 5.

Since x. € L, there are ba, .;\O(j— ) such that for every ¢ € N" there are
vn€ A~ with v,=x, and

J—(Un) + vbn, i, q;(n+i—1)>](xn) .
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Put bo.;; =V J(x.)— J(x;). Finally fix j=¢@(1) (hence bo,; ;= bo,iem) and put
v =v,. By the condition (P) there is b; ;\O(j— %) such that
(@) = T @D A(ZV brisrn-) <V biso

for every @ e N™. Since

V J(ta) = J(x) + bo. .

ST (V) +Vbuioysi-nt+ V boi o,

i
and

\'/1 T(xa) — T (v) S Jo(@) — T (v),

we have
VJ(x,.)éJ_(v) + Vb, (i) -

Hence we have constructed two sequences (a;, )i, » (b, )i ; of elements of G such
that a; ;\O, b, ;\\O (j— ) and such that to every @ € N" there are ue A*, ve A~
with v=x=u and

T @)=V aw<w= \"/l J(x) <T (0) +V b, -

Therefore x e L and

I =w=V JGx).

Corollary. Let G satisfy the assumptions of Theorem 1. Let x.€ L, x,\\x,
(J(x))n-1 be bounded. Then x,—x € L and

/"\J(x,.) =J(x1) — J(x1—x).

Proof. By (5) x1—x»/x1—x. By Theorem 1 J(x; — x,) = J(x1) — J(x.), hence
(J(x1— Xa))n=1 is bounded and by Theorem 2 x; —x € L and

J(x1—x)= YJ(xl —Xa)= Y(J(xl) —J(xa))=J(x1) — /,.\J(x")'

5. Measure theory

Definition 4. By a measure with values in an ordered group G we mean
a mapping u: R— G defined on a ring R of subsets of a set and satisfying the
following conditions :
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1. u(@)=0, u(A)=0 for every A€ R.
2. u is o-additive, I. e.

u(A)= i u(A.) = \71 gu(A,)

whenever A,, Ae R (n=1,2,..), A=|J A, and A.nA,.=0 (n¥m).
n=1

Evidently, a mapping u: #— G is a measure iff u(#) =0, u =0, u is additive and
continuous from below.

Theorem 3. Let G be a monotonously o-complete, o-distributive, commutative
ordered group satisfying the condition (P). Let u: R— G be a measure defined on
an algebra R of subsets of a set. Then there is exactly one measure fi: 0(R)— G
extending y and defined on the o-algebra o(R) generated by R.

Proof. Let X be the family of all subsets of a given set. Let X be ordered by the
inclusion. For every E, Fe X put E+ F= EUF, E — F= E\F (the set-theoretical
union or difference resp.). Evidently X satisfies all assumptions listed in Section 2.
Further put A = R and Jo = u. Our general results (from Section 4) can be applied
now to the triple X, A, Jo. Hence we can use first A*, J*, A”, J” and then L and J.
By Theorem2 L is a monotone family containing %, hence L > o(2R). Put
i =J|o(R). By Theorem 2, g is continuous from below. We shall prove that f is
additive.

Let E, Fe R, EnF=0. Then there are a;,\0, b, ;\NO(j— =) such that for
every @ e N" there are Cc E, Dc F such that Ce A™, De A and

J(E)“\’/ﬂi. o <J (C), J(F)— \(bi o <J (D).

Evidently CnDc EnF=@, hence C, D are disjoint and therefore J (C)+
J(D)=J (CnD)+J (CuD)=J (CuD). Choose (by the property (P)) such
¢i,;\O(j— ) that for every p e N¥

V aioi+V bi oy = V i ot
We have
A(E)+ a(F) — i(EVF)=J (CuD) +V i oy — A(EUF) =

éVc,», @i)»
i

hence by the o-distributivity of G, a(E)+ a(F)— a(EuF)=0.

The opposite inequality can be obtained similarly using Proposition 7.

If v:o(R)—> G is another measure extending u, then ¥ ={Ee€o(R):
v(E) = f(E)} is a monotone family containing R, hence % > o(®R) and therefore v
coincides with u on o(R).
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6. The Daniell integral

Now we present a theorem on the extension of continuous linear operators as
a consequence of our general theory. Our main result will be concerned with lattice
ordered groups. Of course, the first proposition will be formulated more generally.

Proposition 9. Let G satisfy the assumptions of Theorem 1 and X, A, J, satisfy
the assumptions of Section 1. Moreover let + be continuous (i. e. also x.\yx,
y»\y implies x,+ y.\x + y) and Jo be additive (i. e. Jo(x + y) = Jo(x) + Jo(y) for
allx, y € A). Then the set L is closed under the operation + and J is additive, too.

Proof. Evidently A*, A~ are closed under + and J*, J~ are additive. Let
x, ye L. Then there are a;,;\O0, b ;\O, ¢ ;\O, d; ;\NO(j— =) such that for every
@ e N" there are x1, y €A™, x2, y2€ A” such that x,=x=x,, yy=<y=y, and

T (x2) = Vai, oo SIxX) ST (x1)+ Vbi, o,
T'(y2)=Veioorx TS T (1) + Vdi o

If we choose (property (P))e: N0, fi.;\NO(j— ) such that \/ai o)+ Vi oy =
Vei o and Vbi ooy + Vdioiy = Vfiew for every @ e NV, then

T (2t y) = Ve oo ZIx) + J(y) ST (01 + y) + Vi oo,

where x;+ y1=Sx+y=x;+y.and xi+y1€ A7, x,+ y.€ A*. Hence x+ ye L and
J(x+y)=J(x)+J(y).

Theorem 4. Let G be a commutative, ordered, o-distributive and o-complete
group satisfying the condition (P). Let X be a o-complete I-group, A its I-subgroup
majorizing X (i. e. to every x € X there is a€ A such that x=a). Let J,: A— G be
an additive, positive and order continuous mapping (i. €. xn /' x = Jo(xx) /' Jo(x)).
Then there is a subgroup L of the group X and an additive, positive and order
continuous mapping J: L — G extending Jo and satisfying the following additional
condition :

If x./'x, x,eL (n=1,2,...) and (J(xa))a-1 is bounded, then x € L.

If moreover G is complete, then L is a lattice group.

Proof. In Proposition 9 we proved that J is additive and L is closed under the
operation +. Now it suffices to prove that xe L implies —xe L. Let a;;\O,
b ;\O (j— =) be corresponding sequences, x; = x = x, be corresponding elements,
x1€A7, x,e A" and

J'(x2)— Va, s =J(X) =T (x1) + Vb o0

Evidently —x; S —x=-x;, — €A™, —xi€ ATand J'(—x))=-T (x1), T (—x) =
—J"(x2). Therefore

T (—=x1)— Vb.-, o= —J(xX)ET (—x2)+ \/a,~, @) -
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It follows that —xe L and moreover J(—x)= —J(¥)- (Of course, the equality
J(—x)=—J(x) is a consequence of additivity of J.)
If G is complete, we can define for every xe X

JHx)= A{J'(b): be A*, bZx),
Jx(x)=\{J (c): ceA~, c=x}.

Evidently J*(x)=Jx(x) for every xe X and xe L iff J*(x)=J«(x). Now let
x,yeL, i.e. J*(x)=Jx(x), J*(y)=Jx(y). Since Jo is additive and x+y=
xvy+xAy, we have

T (x)+ T (y)ZT*(xvy) + T (xny),
J(X)+L(y)STx(xvy)+ J«(xny).
Therefore
J*(xvy)ST*(x)+ J*(y) —J*(x Ay) S
STx(x) + Ix(y) = Ix(x AY) = Tx(x v y),
hence xvye L. On the other hand x Ay =—((—x)Vv(=y)).
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O MEPAX U UHTEITPAJIAX CO 3HAYEHUSAMHU B YIIOPAOOYEHHLIX IPYIIITAX
Beloslav Riecan

Pe3tome

B cratbe ¢opMynMpoBaHbl M JOKa3aHbl NS pe3ynbTaTa Ans OTOGPaXeHMid CO 3HAYEHUSIMH
B YAaCTHYHO YMOPSAOYEHHBIX FPYNMax: TEOPeMa O MPOJOMKEHHUH MEPbI U TEOPEMa O MPOAOKEHUH
unterpana [dauuens. TIpuBeReHbI HEKOTOPbIe YNYy4YLIEHMS M3BECTHbIX pe3ynbTaToB. Bo mnepsbIx,
AOMYCTUMBIM MHOXECTBOM 3HA4Y€HHil SABJISETCSA TPYMMa, a HE TONBKO JHMHEHI .o MPOCTPaHCTBO. Bo
BTOPBIX, 3TO MHOXECTBO HE [OJXKHO GbITb CTPYKTYpOil. B TpeTbux, 06 TEOPHHM paccMaTpHUBAIOTCH
C euHOM TOYKH 3penusi. TakuM 06pa3oM TeopeMa O MPOAOKEHHH MEPBI M TEOPEMA O NPOJOIKEHHH
uHTerpana Jlanuenst ABNAIOTCA CNEACTBUSIMH OJHOM OOILEN TEOPEMbI O MPOAOJKEHHH OTOGPaXKeHHI
onpeneneHHbIX Ha MOACTPYKTYPE NAHHOM CTPYKTYp HeKoToporo Tuna. M, HakKOHel, B YETBEPTHIX,
npuBoasTcs Gonee ciabble YCIOBHS HalOXEHHbIE Ha O6NAcTh OMpEAENeHUs MPOJOIXKAEMOro 0To6-
paxenust. TakuMm o6Gpa3oM monyyaeTcs TeopemMa O NpPOJOJXKEHHMHM Mepbl Ha ByneBbix anre6pax,
M C Ipyro# CTOpOHbI, TEOPUs MHTerpana [laHHena Ha CTPYKTYPHO YMOPSAAOYEHHbIX IPymmax.
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