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A NOTE ON EQUALITIES 
OF RADICALS IN A SEMIGROUP 

FRANTlSEK KMET 

Let 5 be a semigroup with an ideal J c S. All ideals in the following are supposed 
to be two-sided. The principal twosided ideal of S generated by an element a e S is 
denoted by J(a). 

An element x e S is called nilpotent with respect to J if xn e J for some positive 
integer n. An ideal, or a subsemigroup I of 5 is called nilpotent with respect to J if 
In cz J for some positive integer n. An ideal I of S is called a nilideal with respect to 
J if each element of I is nilpotent with respect to J. An ideal 7, each finitely 
generated subsemigroup of which is nilpotent with respect to J, is called a locally 
nilpotent ideal with respect to J. An ideal P of S is called prime if for any two ideals 
A, B of 5, AB cz P implies that either A c P o r B c P . A n ideal P of 5 is called 
completely prime if for any a, b eS abeP implies that either a e P or be P. 

The set of all nilpotent elements of S with respect to J will be denoted by N(J). 
The union R(J) of all nilpotent ideals of S with respect to J is called the Schwarz 
radical of S with respect to J. The union L(J) of all locally nilpotent ideals of 5 
with respect to J is called the Sevrin radical of S with respect to J. The union 
R*(J) of all nilideals of S with respect to Jis called the Clifford radical of S with 
respect to J. The intersection M(J) of all prime ideals of S which contain J is called 
the McCoy radical of S with respect to J. The intersection C(J) of all completely 
prime ideals of S which contain Jis called the Luh radical of S with respect to J. 

R. Sulka [4, Lemma 19] and J. Bosak [1, Theorem 2] proved that in an 
arbitrary semigroup 5 with an ideal / we have 

R(J) <= M(J) cz L(J) = R*(J) cN(J) cz C(J). (1) 

In a commutative semigroup 5 as proved by R. Sulka [4, Theorem 7] and 
J. Bosak [1, Corollary 1] we have 

R(J) = M(J) = L(J) = R*(J) = N(J) = C(J). 

A semigroup 5 is called a C2-semigroup if xyzyx = yxzxy for all x, y, z of 5. J. E. 
Kuczkowski [2] proved that in a C2-semigroup 5 we have M(J)^L(J) = 
R*(J) = N(J)-C(J) for every ideal J of S. 
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R. Sulka [5, p. 276] gave an example of a C2-semigroup with R(J)^= M(J). 
B. Ponde l i cek [3] studied in a semigroup S the necessary and sufficient 

condition in order that 

M(J) = L(J) = R*(J) = N(J) = C(J) (2) 

holds for every ideal J of S. 
The purpose of this note is to give in an arbitrary semigroup 5 necessary and 

sufficient conditions which are equivalent to the condition of B. P o n d e l i c e k 
[3, Theorem] such that (2) holds for every ideal J of S. 

Lemma 1 (B. Ponde l i cek [3, Theorem]). Let S be a semigroup. Then (2) holds 
for every ideal J of S if and only if 

J(a)nJ(b)^M(J(ab)) 
for all a, b of S. 

Theorem 2. Let S be a semigroup. Then the following statements are 
equivalent: 

(I) The equalities M(J) = L(J) = R*(J) = N(J) = C(J) hold for every ideal J of 
S. 

(II) J(a)nJ(b)czM(J(ab)) holds for all a, b of S. 
(III) J(a)J(b)czM(J(ab)) holds for all a, b of S. 
(IV) Every prime ideal is a completely prime ideal of S. 

Proof. That (I) implies (II) is proved by B. Pondelicek (cf. Lemma 1). 
Evidently (II) implies (III). 

We prove that (III) implies (IV). Let P be an arbitrary prime ideal of S and 
abeP. Then J(ab)^P. From this by Lemma 7 of [5] we have that M(J(ab))cz 
M(P) = P. 

By the assumption then J(a)J(b) cz M(J(ab)) cz P. Since P is a prime ideal of 5, 
this implies that either J(a) cz P or J(b) cz P and so either a e P or b e P. It means 
that P is a completely prime ideal of S. 

(IV) evidently implies (I). 

Lemma 3 ([6, Corollary 3]). In a finite semigroup S with an ideal J the equalities 
R(J) = M(J) = L(J) = jR*(J) = N(J) = C(J) hold if and only if the set N(J) is an 
ideal of S. 

Then from Theorem 2 and Lemma 3 there follows 

Corollary 4. In a finite semigroup S the following statements are equivalent: 
(I) The set N(J) is an ideal of S for every ideal J of S. 
(II) R(J) = M(J) = L(J) = R*(J) = N(J) = C(J) holds for every ideal J of S. 

(III) J(a)nJ(b)czM(J(ab)) for all a, b of S. 
(IV) J(a)J(b)czM(J(ab)) for all a, b of S. 
(V) Every prime ideal is a completely prime ideal of S. 
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ЗАМЕТКА К РАВЕНСТВАМ РАДИКАЛОВ В ПОЛУГРУППЕ 

Ргапп§ек Кте1' 

Резюме 

В статье изучаются необходимые и достаточные условия для равенства радикалов Маккойа, 
Шеврина, Клиффорда и Луга относительно произвольного идеала полугруппы. 
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